tomaarsen HF Staff commited on
Commit
85e0949
·
verified ·
1 Parent(s): 509c9bf

Add new SparseEncoder model

Browse files
1_SpladePooling/config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "pooling_strategy": "max",
3
+ "word_embedding_dimension": 50368
4
+ }
README.md ADDED
@@ -0,0 +1,823 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sparse-encoder
7
+ - generated_from_trainer
8
+ - dataset_size:99000
9
+ - loss:SpladeLoss
10
+ widget:
11
+ - source_sentence: who are the dancers in the limp bizkit rollin video
12
+ sentences:
13
+ - Voting age Before the Second World War, the voting age in almost all countries
14
+ was 21 years or higher. Czechoslovakia was the first to reduce the voting age
15
+ to 20 years in 1946, and by 1968 a total of 17 countries had lowered their voting
16
+ age.[1] Many countries, particularly in Western Europe, reduced their voting ages
17
+ to 18 years during the 1970s, starting with the United Kingdom (1969),[2] with
18
+ the United States (26th Amendment) (1971), Canada, West Germany (1972), Australia
19
+ (1974), France (1974), and others following soon afterwards. By the end of the
20
+ 20th century, 18 had become by far the most common voting age. However, a few
21
+ countries maintain a voting age of 20 years or higher. It was argued that young
22
+ men could be drafted to go to war at 18, and many people felt they should be able
23
+ to vote at the age of 18.[3]
24
+ - Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower of
25
+ the former World Trade Center in New York City. The introduction features Ben
26
+ Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the
27
+ keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles.
28
+ The rest of the video has several cuts to Durst and his bandmates hanging out
29
+ of the Bentley as they drive about Manhattan. The song Ben Stiller is playing
30
+ at the beginning is "My Generation" from the same album. The video also features
31
+ scenes of Fred Durst with five girls dancing in a room. The video was filmed around
32
+ the same time as the film Zoolander, which explains Stiller and Dorff's appearance.
33
+ Fred Durst has a small cameo in that film.
34
+ - Eobard Thawne When Thawne reappears, he murders the revived Johnny Quick,[9] before
35
+ proceeding to trap Barry and the revived Max Mercury inside the negative Speed
36
+ Force. Thawne then attempts to kill Wally West's children through their connection
37
+ to the Speed Force in front of Linda Park-West, only to be stopped by Jay Garrick
38
+ and Bart Allen. Thawne defeats Jay and prepares to kill Bart, but Barry, Max,
39
+ Wally, Jesse Quick, and Impulse arrive to prevent the villain from doing so.[8][10]
40
+ In the ensuing fight, Thawne reveals that he is responsible for every tragedy
41
+ that has occurred in Barry's life, including the death of his mother. Thawne then
42
+ decides to destroy everything the Flash holds dear by killing Barry's wife, Iris,
43
+ before they even met.[10]
44
+ - source_sentence: who wins season 14 of hell's kitchen
45
+ sentences:
46
+ - Hell's Kitchen (U.S. season 14) Season 14 of the American competitive reality
47
+ television series Hell's Kitchen premiered on March 3, 2015 on Fox. The prize
48
+ is a head chef position at Gordon Ramsay Pub & Grill in Caesars Atlantic City.[1]
49
+ Gordon Ramsay returned as head chef with Andi Van Willigan and James Avery returning
50
+ as sous-chefs for both their respective kitchens as well as Marino Monferrato
51
+ as the maître d'. Executive chef Meghan Gill from Roanoke, Virginia, won the
52
+ competition, thus becoming the fourteenth winner of Hell's Kitchen.
53
+ - 'Maze Runner: The Death Cure On April 22, 2017, the studio delayed the release
54
+ date once again, to February 9, 2018, in order to allow more time for post-production;
55
+ months later, on August 25, the studio moved the release forward two weeks.[17]
56
+ The film will premiere on January 26, 2018 in 3D, IMAX and IMAX 3D.[18][19]'
57
+ - North American Plate On its western edge, the Farallon Plate has been subducting
58
+ under the North American Plate since the Jurassic Period. The Farallon Plate has
59
+ almost completely subducted beneath the western portion of the North American
60
+ Plate leaving that part of the North American Plate in contact with the Pacific
61
+ Plate as the San Andreas Fault. The Juan de Fuca, Explorer, Gorda, Rivera, Cocos
62
+ and Nazca plates are remnants of the Farallon Plate.
63
+ - source_sentence: who played the dj in the movie the warriors
64
+ sentences:
65
+ - List of Arrow episodes As of May 17, 2018,[update] 138 episodes of Arrow have
66
+ aired, concluding the sixth season. On April 2, 2018, the CW renewed the series
67
+ for a seventh season.[1]
68
+ - Lynne Thigpen Cherlynne Theresa "Lynne" Thigpen (December 22, 1948 – March 12,
69
+ 2003) was an American actress, best known for her role as "The Chief" of ACME
70
+ in the various Carmen Sandiego television series and computer games from 1991
71
+ to 1997. For her varied television work, Thigpen was nominated for six Daytime
72
+ Emmy Awards; she won a Tony Award in 1997 for portraying Dr. Judith Kaufman in
73
+ An American Daughter.
74
+ - The Washington Post The Washington Post is an American daily newspaper. It is
75
+ the most widely circulated newspaper published in Washington, D.C., and was founded
76
+ on December 6, 1877,[7] making it the area's oldest extant newspaper. In February
77
+ 2017, amid a barrage of criticism from President Donald Trump over the paper's
78
+ coverage of his campaign and early presidency as well as concerns among the American
79
+ press about Trump's criticism and threats against journalists who provide coverage
80
+ he deems unfavorable, the Post adopted the slogan "Democracy Dies in Darkness".[8]
81
+ - source_sentence: how old was messi when he started his career
82
+ sentences:
83
+ - Lionel Messi Born and raised in central Argentina, Messi was diagnosed with a
84
+ growth hormone deficiency as a child. At age 13, he relocated to Spain to join
85
+ Barcelona, who agreed to pay for his medical treatment. After a fast progression
86
+ through Barcelona's youth academy, Messi made his competitive debut aged 17 in
87
+ October 2004. Despite being injury-prone during his early career, he established
88
+ himself as an integral player for the club within the next three years, finishing
89
+ 2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year
90
+ award, a feat he repeated the following year. His first uninterrupted campaign
91
+ came in the 2008–09 season, during which he helped Barcelona achieve the first
92
+ treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA
93
+ World Player of the Year award by record voting margins.
94
+ - We Are Marshall Filming of We Are Marshall commenced on April 3, 2006, in Huntington,
95
+ West Virginia, and was completed in Atlanta, Georgia. The premiere for the film
96
+ was held at the Keith Albee Theater on December 12, 2006, in Huntington; other
97
+ special screenings were held at Pullman Square. The movie was released nationwide
98
+ on December 22, 2006.
99
+ - One Fish, Two Fish, Red Fish, Blue Fish One Fish, Two Fish, Red Fish, Blue Fish
100
+ is a 1960 children's book by Dr. Seuss. It is a simple rhyming book for beginning
101
+ readers, with a freewheeling plot about a boy and a girl named Jay and Kay and
102
+ the many amazing creatures they have for friends and pets. Interspersed are some
103
+ rather surreal and unrelated skits, such as a man named Ned whose feet stick out
104
+ from his bed, and a creature who has a bird in his ear. As of 2001, over 6 million
105
+ copies of the book had been sold, placing it 13th on a list of "All-Time Bestselling
106
+ Children's Books" from Publishers Weekly.[1] Based on a 2007 online poll, the
107
+ United States' National Education Association labor union named the book one of
108
+ its "Teachers' Top 100 Books for Children."[2]
109
+ - source_sentence: is send in the clowns from a musical
110
+ sentences:
111
+ - Money in the Bank ladder match The first match was contested in 2005 at WrestleMania
112
+ 21, after being invented (in kayfabe) by Chris Jericho.[1] At the time, it was
113
+ exclusive to wrestlers of the Raw brand, and Edge won the inaugural match.[1]
114
+ From then until 2010, the Money in the Bank ladder match, now open to all WWE
115
+ brands, became a WrestleMania mainstay. 2010 saw a second and third Money in the
116
+ Bank ladder match when the Money in the Bank pay-per-view debuted in July. Unlike
117
+ the matches at WrestleMania, this new event featured two such ladder matches –
118
+ one each for a contract for the WWE Championship and World Heavyweight Championship,
119
+ respectively.
120
+ - The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired
121
+ on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off
122
+ of the Disney Channel Original Series The Suite Life of Zack & Cody. The series
123
+ follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in
124
+ a new setting, the SS Tipton, where they attend classes at "Seven Seas High School"
125
+ and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around
126
+ the world to nations such as Italy, France, Greece, India, Sweden and the United
127
+ Kingdom where the characters experience different cultures, adventures, and situations.[1]
128
+ - 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim
129
+ for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s
130
+ film Smiles of a Summer Night. It is a ballad from Act Two, in which the character
131
+ Desirée reflects on the ironies and disappointments of her life. Among other things,
132
+ she looks back on an affair years earlier with the lawyer Fredrik, who was deeply
133
+ in love with her but whose marriage proposals she had rejected. Meeting him after
134
+ so long, she realizes she is in love with him and finally ready to marry him,
135
+ but now it is he who rejects her: he is in an unconsummated marriage with a much
136
+ younger woman. Desirée proposes marriage to rescue him from this situation, but
137
+ he declines, citing his dedication to his bride. Reacting to his rejection, Desirée
138
+ sings this song. The song is later reprised as a coda after Fredrik''s young wife
139
+ runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]'
140
+ datasets:
141
+ - sentence-transformers/natural-questions
142
+ pipeline_tag: feature-extraction
143
+ library_name: sentence-transformers
144
+ metrics:
145
+ - dot_accuracy@1
146
+ - dot_accuracy@3
147
+ - dot_accuracy@5
148
+ - dot_accuracy@10
149
+ - dot_precision@1
150
+ - dot_precision@3
151
+ - dot_precision@5
152
+ - dot_precision@10
153
+ - dot_recall@1
154
+ - dot_recall@3
155
+ - dot_recall@5
156
+ - dot_recall@10
157
+ - dot_ndcg@10
158
+ - dot_mrr@10
159
+ - dot_map@100
160
+ co2_eq_emissions:
161
+ emissions: 65.75690749093074
162
+ energy_consumed: 0.16917048919462915
163
+ source: codecarbon
164
+ training_type: fine-tuning
165
+ on_cloud: false
166
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
167
+ ram_total_size: 31.777088165283203
168
+ hours_used: 0.59
169
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
170
+ model-index:
171
+ - name: SparseEncoder
172
+ results:
173
+ - task:
174
+ type: sparse-information-retrieval
175
+ name: Sparse Information Retrieval
176
+ dataset:
177
+ name: NanoMSMARCO
178
+ type: NanoMSMARCO
179
+ metrics:
180
+ - type: dot_accuracy@1
181
+ value: 0.06
182
+ name: Dot Accuracy@1
183
+ - type: dot_accuracy@3
184
+ value: 0.08
185
+ name: Dot Accuracy@3
186
+ - type: dot_accuracy@5
187
+ value: 0.1
188
+ name: Dot Accuracy@5
189
+ - type: dot_accuracy@10
190
+ value: 0.22
191
+ name: Dot Accuracy@10
192
+ - type: dot_precision@1
193
+ value: 0.06
194
+ name: Dot Precision@1
195
+ - type: dot_precision@3
196
+ value: 0.026666666666666665
197
+ name: Dot Precision@3
198
+ - type: dot_precision@5
199
+ value: 0.02
200
+ name: Dot Precision@5
201
+ - type: dot_precision@10
202
+ value: 0.022000000000000002
203
+ name: Dot Precision@10
204
+ - type: dot_recall@1
205
+ value: 0.06
206
+ name: Dot Recall@1
207
+ - type: dot_recall@3
208
+ value: 0.08
209
+ name: Dot Recall@3
210
+ - type: dot_recall@5
211
+ value: 0.1
212
+ name: Dot Recall@5
213
+ - type: dot_recall@10
214
+ value: 0.22
215
+ name: Dot Recall@10
216
+ - type: dot_ndcg@10
217
+ value: 0.11962859325699711
218
+ name: Dot Ndcg@10
219
+ - type: dot_mrr@10
220
+ value: 0.08988095238095237
221
+ name: Dot Mrr@10
222
+ - type: dot_map@100
223
+ value: 0.10836157721947347
224
+ name: Dot Map@100
225
+ - task:
226
+ type: sparse-information-retrieval
227
+ name: Sparse Information Retrieval
228
+ dataset:
229
+ name: NanoNFCorpus
230
+ type: NanoNFCorpus
231
+ metrics:
232
+ - type: dot_accuracy@1
233
+ value: 0.04
234
+ name: Dot Accuracy@1
235
+ - type: dot_accuracy@3
236
+ value: 0.14
237
+ name: Dot Accuracy@3
238
+ - type: dot_accuracy@5
239
+ value: 0.22
240
+ name: Dot Accuracy@5
241
+ - type: dot_accuracy@10
242
+ value: 0.28
243
+ name: Dot Accuracy@10
244
+ - type: dot_precision@1
245
+ value: 0.04
246
+ name: Dot Precision@1
247
+ - type: dot_precision@3
248
+ value: 0.05333333333333334
249
+ name: Dot Precision@3
250
+ - type: dot_precision@5
251
+ value: 0.05600000000000001
252
+ name: Dot Precision@5
253
+ - type: dot_precision@10
254
+ value: 0.039999999999999994
255
+ name: Dot Precision@10
256
+ - type: dot_recall@1
257
+ value: 0.0007272727272727272
258
+ name: Dot Recall@1
259
+ - type: dot_recall@3
260
+ value: 0.003485594847471253
261
+ name: Dot Recall@3
262
+ - type: dot_recall@5
263
+ value: 0.015079083137479745
264
+ name: Dot Recall@5
265
+ - type: dot_recall@10
266
+ value: 0.025913656492513457
267
+ name: Dot Recall@10
268
+ - type: dot_ndcg@10
269
+ value: 0.046230356055562416
270
+ name: Dot Ndcg@10
271
+ - type: dot_mrr@10
272
+ value: 0.10252380952380952
273
+ name: Dot Mrr@10
274
+ - type: dot_map@100
275
+ value: 0.013574541484243996
276
+ name: Dot Map@100
277
+ - task:
278
+ type: sparse-information-retrieval
279
+ name: Sparse Information Retrieval
280
+ dataset:
281
+ name: NanoNQ
282
+ type: NanoNQ
283
+ metrics:
284
+ - type: dot_accuracy@1
285
+ value: 0.06
286
+ name: Dot Accuracy@1
287
+ - type: dot_accuracy@3
288
+ value: 0.16
289
+ name: Dot Accuracy@3
290
+ - type: dot_accuracy@5
291
+ value: 0.18
292
+ name: Dot Accuracy@5
293
+ - type: dot_accuracy@10
294
+ value: 0.3
295
+ name: Dot Accuracy@10
296
+ - type: dot_precision@1
297
+ value: 0.06
298
+ name: Dot Precision@1
299
+ - type: dot_precision@3
300
+ value: 0.05333333333333333
301
+ name: Dot Precision@3
302
+ - type: dot_precision@5
303
+ value: 0.036000000000000004
304
+ name: Dot Precision@5
305
+ - type: dot_precision@10
306
+ value: 0.030000000000000006
307
+ name: Dot Precision@10
308
+ - type: dot_recall@1
309
+ value: 0.06
310
+ name: Dot Recall@1
311
+ - type: dot_recall@3
312
+ value: 0.16
313
+ name: Dot Recall@3
314
+ - type: dot_recall@5
315
+ value: 0.18
316
+ name: Dot Recall@5
317
+ - type: dot_recall@10
318
+ value: 0.28
319
+ name: Dot Recall@10
320
+ - type: dot_ndcg@10
321
+ value: 0.15945390133280277
322
+ name: Dot Ndcg@10
323
+ - type: dot_mrr@10
324
+ value: 0.12333333333333332
325
+ name: Dot Mrr@10
326
+ - type: dot_map@100
327
+ value: 0.1410012610991671
328
+ name: Dot Map@100
329
+ - task:
330
+ type: sparse-nano-beir
331
+ name: Sparse Nano BEIR
332
+ dataset:
333
+ name: NanoBEIR mean
334
+ type: NanoBEIR_mean
335
+ metrics:
336
+ - type: dot_accuracy@1
337
+ value: 0.05333333333333334
338
+ name: Dot Accuracy@1
339
+ - type: dot_accuracy@3
340
+ value: 0.12666666666666668
341
+ name: Dot Accuracy@3
342
+ - type: dot_accuracy@5
343
+ value: 0.16666666666666666
344
+ name: Dot Accuracy@5
345
+ - type: dot_accuracy@10
346
+ value: 0.26666666666666666
347
+ name: Dot Accuracy@10
348
+ - type: dot_precision@1
349
+ value: 0.05333333333333334
350
+ name: Dot Precision@1
351
+ - type: dot_precision@3
352
+ value: 0.044444444444444446
353
+ name: Dot Precision@3
354
+ - type: dot_precision@5
355
+ value: 0.037333333333333336
356
+ name: Dot Precision@5
357
+ - type: dot_precision@10
358
+ value: 0.030666666666666665
359
+ name: Dot Precision@10
360
+ - type: dot_recall@1
361
+ value: 0.04024242424242424
362
+ name: Dot Recall@1
363
+ - type: dot_recall@3
364
+ value: 0.08116186494915709
365
+ name: Dot Recall@3
366
+ - type: dot_recall@5
367
+ value: 0.09835969437915992
368
+ name: Dot Recall@5
369
+ - type: dot_recall@10
370
+ value: 0.17530455216417118
371
+ name: Dot Recall@10
372
+ - type: dot_ndcg@10
373
+ value: 0.10843761688178744
374
+ name: Dot Ndcg@10
375
+ - type: dot_mrr@10
376
+ value: 0.10524603174603174
377
+ name: Dot Mrr@10
378
+ - type: dot_map@100
379
+ value: 0.08764579326762818
380
+ name: Dot Map@100
381
+ ---
382
+
383
+ # SparseEncoder
384
+
385
+ This is a [Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model trained on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 50368-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
386
+
387
+ ## Model Details
388
+
389
+ ### Model Description
390
+ - **Model Type:** Sparse Encoder
391
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
392
+ - **Maximum Sequence Length:** 8192 tokens
393
+ - **Training Dataset:**
394
+ - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
395
+ - **Language:** en
396
+ <!-- - **License:** Unknown -->
397
+
398
+ ### Model Sources
399
+
400
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
401
+ - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
402
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
403
+ - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
404
+
405
+ ## Usage
406
+
407
+ ### Direct Usage (Sentence Transformers)
408
+
409
+ First install the Sentence Transformers library:
410
+
411
+ ```bash
412
+ pip install -U sentence-transformers
413
+ ```
414
+
415
+ Then you can load this model and run inference.
416
+ ```python
417
+ from sentence_transformers import SparseEncoder
418
+
419
+ # Download from the 🤗 Hub
420
+ model = SparseEncoder("tomaarsen/splade-ModernBERT-nq-fresh")
421
+ # Run inference
422
+ sentences = [
423
+ 'is send in the clowns from a musical',
424
+ 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
425
+ 'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
426
+ ]
427
+ embeddings = model.encode(sentences)
428
+ print(embeddings.shape)
429
+ # (3, 50368)
430
+
431
+ # Get the similarity scores for the embeddings
432
+ similarities = model.similarity(embeddings, embeddings)
433
+ print(similarities.shape)
434
+ # [3, 3]
435
+ ```
436
+
437
+ <!--
438
+ ### Direct Usage (Transformers)
439
+
440
+ <details><summary>Click to see the direct usage in Transformers</summary>
441
+
442
+ </details>
443
+ -->
444
+
445
+ <!--
446
+ ### Downstream Usage (Sentence Transformers)
447
+
448
+ You can finetune this model on your own dataset.
449
+
450
+ <details><summary>Click to expand</summary>
451
+
452
+ </details>
453
+ -->
454
+
455
+ <!--
456
+ ### Out-of-Scope Use
457
+
458
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
459
+ -->
460
+
461
+ ## Evaluation
462
+
463
+ ### Metrics
464
+
465
+ #### Sparse Information Retrieval
466
+
467
+ * Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
468
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
469
+
470
+ | Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
471
+ |:-----------------|:------------|:-------------|:-----------|
472
+ | dot_accuracy@1 | 0.06 | 0.04 | 0.06 |
473
+ | dot_accuracy@3 | 0.08 | 0.14 | 0.16 |
474
+ | dot_accuracy@5 | 0.1 | 0.22 | 0.18 |
475
+ | dot_accuracy@10 | 0.22 | 0.28 | 0.3 |
476
+ | dot_precision@1 | 0.06 | 0.04 | 0.06 |
477
+ | dot_precision@3 | 0.0267 | 0.0533 | 0.0533 |
478
+ | dot_precision@5 | 0.02 | 0.056 | 0.036 |
479
+ | dot_precision@10 | 0.022 | 0.04 | 0.03 |
480
+ | dot_recall@1 | 0.06 | 0.0007 | 0.06 |
481
+ | dot_recall@3 | 0.08 | 0.0035 | 0.16 |
482
+ | dot_recall@5 | 0.1 | 0.0151 | 0.18 |
483
+ | dot_recall@10 | 0.22 | 0.0259 | 0.28 |
484
+ | **dot_ndcg@10** | **0.1196** | **0.0462** | **0.1595** |
485
+ | dot_mrr@10 | 0.0899 | 0.1025 | 0.1233 |
486
+ | dot_map@100 | 0.1084 | 0.0136 | 0.141 |
487
+
488
+ #### Sparse Nano BEIR
489
+
490
+ * Dataset: `NanoBEIR_mean`
491
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
492
+ ```json
493
+ {
494
+ "dataset_names": [
495
+ "msmarco",
496
+ "nfcorpus",
497
+ "nq"
498
+ ]
499
+ }
500
+ ```
501
+
502
+ | Metric | Value |
503
+ |:-----------------|:-----------|
504
+ | dot_accuracy@1 | 0.0533 |
505
+ | dot_accuracy@3 | 0.1267 |
506
+ | dot_accuracy@5 | 0.1667 |
507
+ | dot_accuracy@10 | 0.2667 |
508
+ | dot_precision@1 | 0.0533 |
509
+ | dot_precision@3 | 0.0444 |
510
+ | dot_precision@5 | 0.0373 |
511
+ | dot_precision@10 | 0.0307 |
512
+ | dot_recall@1 | 0.0402 |
513
+ | dot_recall@3 | 0.0812 |
514
+ | dot_recall@5 | 0.0984 |
515
+ | dot_recall@10 | 0.1753 |
516
+ | **dot_ndcg@10** | **0.1084** |
517
+ | dot_mrr@10 | 0.1052 |
518
+ | dot_map@100 | 0.0876 |
519
+
520
+ <!--
521
+ ## Bias, Risks and Limitations
522
+
523
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
524
+ -->
525
+
526
+ <!--
527
+ ### Recommendations
528
+
529
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
530
+ -->
531
+
532
+ ## Training Details
533
+
534
+ ### Training Dataset
535
+
536
+ #### natural-questions
537
+
538
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
539
+ * Size: 99,000 training samples
540
+ * Columns: <code>query</code> and <code>answer</code>
541
+ * Approximate statistics based on the first 1000 samples:
542
+ | | query | answer |
543
+ |:--------|:-----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
544
+ | type | string | string |
545
+ | details | <ul><li>min: 29 characters</li><li>mean: 46.96 characters</li><li>max: 93 characters</li></ul> | <ul><li>min: 10 characters</li><li>mean: 582.13 characters</li><li>max: 2141 characters</li></ul> |
546
+ * Samples:
547
+ | query | answer |
548
+ |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
549
+ | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> |
550
+ | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
551
+ | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> |
552
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
553
+ ```json
554
+ {'lamda_corpus': 0.08, 'lamda_query': 0.1, 'main_loss': SparseMultipleNegativesRankingLoss(
555
+ (model): SparseEncoder(
556
+ (0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM
557
+ (1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None})
558
+ )
559
+ (cross_entropy_loss): CrossEntropyLoss()
560
+ )}
561
+ ```
562
+
563
+ ### Evaluation Dataset
564
+
565
+ #### natural-questions
566
+
567
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
568
+ * Size: 1,000 evaluation samples
569
+ * Columns: <code>query</code> and <code>answer</code>
570
+ * Approximate statistics based on the first 1000 samples:
571
+ | | query | answer |
572
+ |:--------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
573
+ | type | string | string |
574
+ | details | <ul><li>min: 30 characters</li><li>mean: 47.2 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 58 characters</li><li>mean: 598.96 characters</li><li>max: 2480 characters</li></ul> |
575
+ * Samples:
576
+ | query | answer |
577
+ |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
578
+ | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
579
+ | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> |
580
+ | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> |
581
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
582
+ ```json
583
+ {'lamda_corpus': 0.08, 'lamda_query': 0.1, 'main_loss': SparseMultipleNegativesRankingLoss(
584
+ (model): SparseEncoder(
585
+ (0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM
586
+ (1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None})
587
+ )
588
+ (cross_entropy_loss): CrossEntropyLoss()
589
+ )}
590
+ ```
591
+
592
+ ### Training Hyperparameters
593
+ #### Non-Default Hyperparameters
594
+
595
+ - `eval_strategy`: steps
596
+ - `per_device_train_batch_size`: 4
597
+ - `learning_rate`: 5e-06
598
+ - `num_train_epochs`: 1
599
+ - `lr_scheduler_type`: cosine
600
+ - `lr_scheduler_kwargs`: {'num_cycles': 0.5}
601
+ - `bf16`: True
602
+
603
+ #### All Hyperparameters
604
+ <details><summary>Click to expand</summary>
605
+
606
+ - `overwrite_output_dir`: False
607
+ - `do_predict`: False
608
+ - `eval_strategy`: steps
609
+ - `prediction_loss_only`: True
610
+ - `per_device_train_batch_size`: 4
611
+ - `per_device_eval_batch_size`: 8
612
+ - `per_gpu_train_batch_size`: None
613
+ - `per_gpu_eval_batch_size`: None
614
+ - `gradient_accumulation_steps`: 1
615
+ - `eval_accumulation_steps`: None
616
+ - `torch_empty_cache_steps`: None
617
+ - `learning_rate`: 5e-06
618
+ - `weight_decay`: 0.0
619
+ - `adam_beta1`: 0.9
620
+ - `adam_beta2`: 0.999
621
+ - `adam_epsilon`: 1e-08
622
+ - `max_grad_norm`: 1.0
623
+ - `num_train_epochs`: 1
624
+ - `max_steps`: -1
625
+ - `lr_scheduler_type`: cosine
626
+ - `lr_scheduler_kwargs`: {'num_cycles': 0.5}
627
+ - `warmup_ratio`: 0.0
628
+ - `warmup_steps`: 0
629
+ - `log_level`: passive
630
+ - `log_level_replica`: warning
631
+ - `log_on_each_node`: True
632
+ - `logging_nan_inf_filter`: True
633
+ - `save_safetensors`: True
634
+ - `save_on_each_node`: False
635
+ - `save_only_model`: False
636
+ - `restore_callback_states_from_checkpoint`: False
637
+ - `no_cuda`: False
638
+ - `use_cpu`: False
639
+ - `use_mps_device`: False
640
+ - `seed`: 42
641
+ - `data_seed`: None
642
+ - `jit_mode_eval`: False
643
+ - `use_ipex`: False
644
+ - `bf16`: True
645
+ - `fp16`: False
646
+ - `fp16_opt_level`: O1
647
+ - `half_precision_backend`: auto
648
+ - `bf16_full_eval`: False
649
+ - `fp16_full_eval`: False
650
+ - `tf32`: None
651
+ - `local_rank`: 0
652
+ - `ddp_backend`: None
653
+ - `tpu_num_cores`: None
654
+ - `tpu_metrics_debug`: False
655
+ - `debug`: []
656
+ - `dataloader_drop_last`: False
657
+ - `dataloader_num_workers`: 0
658
+ - `dataloader_prefetch_factor`: None
659
+ - `past_index`: -1
660
+ - `disable_tqdm`: False
661
+ - `remove_unused_columns`: True
662
+ - `label_names`: None
663
+ - `load_best_model_at_end`: False
664
+ - `ignore_data_skip`: False
665
+ - `fsdp`: []
666
+ - `fsdp_min_num_params`: 0
667
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
668
+ - `tp_size`: 0
669
+ - `fsdp_transformer_layer_cls_to_wrap`: None
670
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
671
+ - `deepspeed`: None
672
+ - `label_smoothing_factor`: 0.0
673
+ - `optim`: adamw_torch
674
+ - `optim_args`: None
675
+ - `adafactor`: False
676
+ - `group_by_length`: False
677
+ - `length_column_name`: length
678
+ - `ddp_find_unused_parameters`: None
679
+ - `ddp_bucket_cap_mb`: None
680
+ - `ddp_broadcast_buffers`: False
681
+ - `dataloader_pin_memory`: True
682
+ - `dataloader_persistent_workers`: False
683
+ - `skip_memory_metrics`: True
684
+ - `use_legacy_prediction_loop`: False
685
+ - `push_to_hub`: False
686
+ - `resume_from_checkpoint`: None
687
+ - `hub_model_id`: None
688
+ - `hub_strategy`: every_save
689
+ - `hub_private_repo`: None
690
+ - `hub_always_push`: False
691
+ - `gradient_checkpointing`: False
692
+ - `gradient_checkpointing_kwargs`: None
693
+ - `include_inputs_for_metrics`: False
694
+ - `include_for_metrics`: []
695
+ - `eval_do_concat_batches`: True
696
+ - `fp16_backend`: auto
697
+ - `push_to_hub_model_id`: None
698
+ - `push_to_hub_organization`: None
699
+ - `mp_parameters`:
700
+ - `auto_find_batch_size`: False
701
+ - `full_determinism`: False
702
+ - `torchdynamo`: None
703
+ - `ray_scope`: last
704
+ - `ddp_timeout`: 1800
705
+ - `torch_compile`: False
706
+ - `torch_compile_backend`: None
707
+ - `torch_compile_mode`: None
708
+ - `dispatch_batches`: None
709
+ - `split_batches`: None
710
+ - `include_tokens_per_second`: False
711
+ - `include_num_input_tokens_seen`: False
712
+ - `neftune_noise_alpha`: None
713
+ - `optim_target_modules`: None
714
+ - `batch_eval_metrics`: False
715
+ - `eval_on_start`: False
716
+ - `use_liger_kernel`: False
717
+ - `eval_use_gather_object`: False
718
+ - `average_tokens_across_devices`: False
719
+ - `prompts`: None
720
+ - `batch_sampler`: batch_sampler
721
+ - `multi_dataset_batch_sampler`: proportional
722
+
723
+ </details>
724
+
725
+ ### Training Logs
726
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
727
+ |:------:|:-----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|
728
+ | 0.5980 | 14800 | 0.1534 | - | - | - | - | - |
729
+ | 0.6141 | 15200 | 0.1246 | - | - | - | - | - |
730
+ | 0.6303 | 15600 | 0.1367 | - | - | - | - | - |
731
+ | 0.6465 | 16000 | 0.1492 | - | - | - | - | - |
732
+ | 0.6626 | 16400 | 0.1306 | - | - | - | - | - |
733
+ | 0.6788 | 16800 | 0.1344 | - | - | - | - | - |
734
+ | 0.6949 | 17200 | 0.1317 | - | - | - | - | - |
735
+ | 0.7111 | 17600 | 0.1248 | - | - | - | - | - |
736
+ | 0.7273 | 18000 | 0.1302 | - | - | - | - | - |
737
+ | 0.7434 | 18400 | 0.1172 | - | - | - | - | - |
738
+ | 0.7596 | 18800 | 0.1216 | - | - | - | - | - |
739
+ | 0.7758 | 19200 | 0.1192 | 0.2194 | 0.0934 | 0.0488 | 0.1486 | 0.0969 |
740
+ | 0.7919 | 19600 | 0.128 | - | - | - | - | - |
741
+ | 0.8081 | 20000 | 0.1027 | - | - | - | - | - |
742
+ | 0.8242 | 20400 | 0.1036 | - | - | - | - | - |
743
+ | 0.8404 | 20800 | 0.1121 | - | - | - | - | - |
744
+ | 0.8566 | 21200 | 0.1243 | - | - | - | - | - |
745
+ | 0.8727 | 21600 | 0.1185 | - | - | - | - | - |
746
+ | 0.8889 | 22000 | 0.1112 | - | - | - | - | - |
747
+ | 0.9051 | 22400 | 0.1157 | - | - | - | - | - |
748
+ | 0.9212 | 22800 | 0.1054 | - | - | - | - | - |
749
+ | 0.9374 | 23200 | 0.1157 | - | - | - | - | - |
750
+ | 0.9535 | 23600 | 0.1188 | - | - | - | - | - |
751
+ | 0.9697 | 24000 | 0.0996 | 0.2002 | 0.1325 | 0.0471 | 0.1604 | 0.1134 |
752
+ | 0.9859 | 24400 | 0.1211 | - | - | - | - | - |
753
+ | 1 | -1 | - | - | 0.1196 | 0.0462 | 0.1595 | 0.1084 |
754
+
755
+
756
+ ### Environmental Impact
757
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
758
+ - **Energy Consumed**: 0.169 kWh
759
+ - **Carbon Emitted**: 0.066 kg of CO2
760
+ - **Hours Used**: 0.59 hours
761
+
762
+ ### Training Hardware
763
+ - **On Cloud**: No
764
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
765
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
766
+ - **RAM Size**: 31.78 GB
767
+
768
+ ### Framework Versions
769
+ - Python: 3.11.6
770
+ - Sentence Transformers: 4.1.0.dev0
771
+ - Transformers: 4.50.1
772
+ - PyTorch: 2.6.0+cu124
773
+ - Accelerate: 1.5.1
774
+ - Datasets: 2.21.0
775
+ - Tokenizers: 0.21.1
776
+
777
+ ## Citation
778
+
779
+ ### BibTeX
780
+
781
+ #### Sentence Transformers
782
+ ```bibtex
783
+ @inproceedings{reimers-2019-sentence-bert,
784
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
785
+ author = "Reimers, Nils and Gurevych, Iryna",
786
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
787
+ month = "11",
788
+ year = "2019",
789
+ publisher = "Association for Computational Linguistics",
790
+ url = "https://arxiv.org/abs/1908.10084",
791
+ }
792
+ ```
793
+
794
+ #### SpladeLoss
795
+ ```bibtex
796
+ @misc{wen2025matryoshkarevisitingsparsecoding,
797
+ title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
798
+ author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
799
+ year={2025},
800
+ eprint={2503.01776},
801
+ archivePrefix={arXiv},
802
+ primaryClass={cs.LG},
803
+ url={https://arxiv.org/abs/2503.01776},
804
+ }
805
+ ```
806
+
807
+ <!--
808
+ ## Glossary
809
+
810
+ *Clearly define terms in order to be accessible across audiences.*
811
+ -->
812
+
813
+ <!--
814
+ ## Model Card Authors
815
+
816
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
817
+ -->
818
+
819
+ <!--
820
+ ## Model Card Contact
821
+
822
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
823
+ -->
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertForMaskedLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50281,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "mean",
12
+ "cls_token_id": 50281,
13
+ "decoder_bias": true,
14
+ "deterministic_flash_attn": false,
15
+ "embedding_dropout": 0.0,
16
+ "eos_token_id": 50282,
17
+ "global_attn_every_n_layers": 3,
18
+ "global_rope_theta": 160000.0,
19
+ "gradient_checkpointing": false,
20
+ "hidden_activation": "gelu",
21
+ "hidden_size": 768,
22
+ "initializer_cutoff_factor": 2.0,
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 1152,
25
+ "layer_norm_eps": 1e-05,
26
+ "local_attention": 128,
27
+ "local_rope_theta": 10000.0,
28
+ "max_position_embeddings": 8192,
29
+ "mlp_bias": false,
30
+ "mlp_dropout": 0.0,
31
+ "model_type": "modernbert",
32
+ "norm_bias": false,
33
+ "norm_eps": 1e-05,
34
+ "num_attention_heads": 12,
35
+ "num_hidden_layers": 22,
36
+ "pad_token_id": 50283,
37
+ "position_embedding_type": "absolute",
38
+ "reference_compile": false,
39
+ "repad_logits_with_grad": false,
40
+ "sep_token_id": 50282,
41
+ "sparse_pred_ignore_index": -100,
42
+ "sparse_prediction": false,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.50.1",
45
+ "vocab_size": 50368
46
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0.dev0",
4
+ "transformers": "4.50.1",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "dot"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e0366b94df061b924be0997da46323bbba3086c948af8587b7754054d4d0c28
3
+ size 598635032
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_SpladePooling",
12
+ "type": "sentence_transformers.sparse_encoder.models.SpladePooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 8192,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizer",
944
+ "unk_token": "[UNK]"
945
+ }