See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-14B-Instruct
bf16: true
mixed_precision: bf16
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d1df3a08281b6407_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d1df3a08281b6407_train_data.json
type:
field_instruction: description
field_output: dreams
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: tuantmdev/2b75fedf-5083-4d0e-95b1-74a16ef563cb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1.0e-05
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/d1df3a08281b6407_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_strategy: best
saves_per_epoch: 5
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e6c94b6f-bf4b-4c52-8828-bfb11b3400e3
wandb_project: Gradients-On-Demand
wandb_run: unknown
wandb_runid: e6c94b6f-bf4b-4c52-8828-bfb11b3400e3
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
device_map: sequential
max_memory:
0: 45GiB
2b75fedf-5083-4d0e-95b1-74a16ef563cb
This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.0818
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0004 | 1 | 3.1000 |
2.9555 | 0.0038 | 10 | 3.0992 |
3.0769 | 0.0076 | 20 | 3.0954 |
3.104 | 0.0114 | 30 | 3.0881 |
3.0013 | 0.0152 | 40 | 3.0825 |
2.9481 | 0.0190 | 50 | 3.0818 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support