barto_exp1_10partition_modelo_msl12000
This model is a fine-tuned version of vgaraujov/bart-base-spanish on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3274
- Model Preparation Time: 0.0031
- Bleu Msl: 0
- Bleu 1 Msl: 0.7983
- Bleu 2 Msl: 0.7311
- Bleu 3 Msl: 0.6693
- Bleu 4 Msl: 0.5665
- Ter Msl: 25.3289
- Bleu Asl: 0
- Bleu 1 Asl: 0.9864
- Bleu 2 Asl: 0.9742
- Bleu 3 Asl: 0.9595
- Bleu 4 Asl: 0.9414
- Ter Asl: 1.7398
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Bleu Msl | Bleu 1 Msl | Bleu 2 Msl | Bleu 3 Msl | Bleu 4 Msl | Ter Msl | Bleu Asl | Bleu 1 Asl | Bleu 2 Asl | Bleu 3 Asl | Bleu 4 Asl | Ter Asl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 300 | 0.2151 | 0.0031 | 0 | 0.7679 | 0.6803 | 0.6089 | 0.5167 | 24.0921 | 0 | 0.9615 | 0.9355 | 0.9075 | 0.8756 | 4.8123 |
0.4301 | 2.0 | 600 | 0.1845 | 0.0031 | 0 | 0.8353 | 0.7778 | 0.7160 | 0.6210 | 18.5120 | 0 | 0.9768 | 0.9595 | 0.9390 | 0.9149 | 2.8975 |
0.4301 | 3.0 | 900 | 0.1652 | 0.0031 | 0 | 0.7743 | 0.7037 | 0.6406 | 0.5480 | 18.1577 | 0 | 0.9753 | 0.9574 | 0.9363 | 0.9106 | 3.0990 |
0.0922 | 4.0 | 1200 | 0.1778 | 0.0031 | 0 | 0.8149 | 0.7637 | 0.7139 | 0.6257 | 16.2976 | 0 | 0.9768 | 0.9595 | 0.9393 | 0.9151 | 2.8975 |
0.0573 | 5.0 | 1500 | 0.1854 | 0.0031 | 0 | 0.8296 | 0.7657 | 0.7028 | 0.6154 | 17.6262 | 0 | 0.9798 | 0.9641 | 0.9452 | 0.9220 | 2.4943 |
0.0573 | 6.0 | 1800 | 0.2056 | 0.0031 | 0 | 0.8118 | 0.7316 | 0.6512 | 0.5375 | 20.6377 | 0 | 0.9798 | 0.9642 | 0.9454 | 0.9226 | 2.3684 |
0.0376 | 7.0 | 2100 | 0.1904 | 0.0031 | 0 | 0.8111 | 0.7447 | 0.6831 | 0.5942 | 18.9548 | 0 | 0.9819 | 0.9667 | 0.9473 | 0.9235 | 2.2676 |
0.0376 | 8.0 | 2400 | 0.1995 | 0.0031 | 0 | 0.7990 | 0.7323 | 0.6681 | 0.5774 | 18.2462 | 0 | 0.9837 | 0.9699 | 0.9526 | 0.9311 | 1.9400 |
0.0313 | 9.0 | 2700 | 0.1854 | 0.0031 | 0 | 0.7930 | 0.7317 | 0.6723 | 0.5888 | 20.5492 | 0 | 0.9830 | 0.9687 | 0.9509 | 0.9286 | 1.9652 |
0.0211 | 10.0 | 3000 | 0.1965 | 0.0031 | 0 | 0.7923 | 0.7288 | 0.6682 | 0.5762 | 18.6005 | 0 | 0.9832 | 0.9694 | 0.9519 | 0.9303 | 1.9652 |
0.0211 | 11.0 | 3300 | 0.1845 | 0.0031 | 0 | 0.7928 | 0.7263 | 0.6630 | 0.5748 | 18.8663 | 0 | 0.9835 | 0.9694 | 0.9514 | 0.9292 | 1.9652 |
0.0185 | 12.0 | 3600 | 0.2036 | 0.0031 | 0 | 0.8338 | 0.7701 | 0.7111 | 0.6219 | 17.1833 | 0 | 0.9822 | 0.9686 | 0.9513 | 0.9295 | 2.0408 |
0.0185 | 13.0 | 3900 | 0.2222 | 0.0031 | 0 | 0.8072 | 0.7467 | 0.6880 | 0.5971 | 18.6891 | 0 | 0.9852 | 0.9719 | 0.9549 | 0.9338 | 1.8141 |
0.0134 | 14.0 | 4200 | 0.2190 | 0.0031 | 0 | 0.7826 | 0.7010 | 0.6305 | 0.5388 | 22.4978 | 0 | 0.9847 | 0.9716 | 0.9548 | 0.9339 | 1.8644 |
0.0097 | 15.0 | 4500 | 0.2151 | 0.0031 | 0 | 0.8007 | 0.7261 | 0.6617 | 0.5711 | 20.0177 | 0 | 0.9843 | 0.9707 | 0.9536 | 0.9321 | 1.8644 |
0.0097 | 16.0 | 4800 | 0.2083 | 0.0031 | 0 | 0.8034 | 0.7422 | 0.6843 | 0.6028 | 17.4491 | 0 | 0.9845 | 0.9715 | 0.9542 | 0.9324 | 1.8896 |
0.0074 | 17.0 | 5100 | 0.2247 | 0.0031 | 0 | 0.7831 | 0.7168 | 0.6572 | 0.5693 | 20.2834 | 0 | 0.9841 | 0.9708 | 0.9538 | 0.9326 | 1.9904 |
0.0074 | 18.0 | 5400 | 0.2348 | 0.0031 | 0 | 0.8080 | 0.7415 | 0.6793 | 0.5904 | 19.3091 | 0 | 0.9839 | 0.9702 | 0.9529 | 0.9310 | 1.9652 |
0.007 | 19.0 | 5700 | 0.2282 | 0.0031 | 0 | 0.8198 | 0.7650 | 0.7129 | 0.6271 | 19.3091 | 0 | 0.9841 | 0.9708 | 0.9535 | 0.9318 | 1.9400 |
0.0054 | 20.0 | 6000 | 0.2363 | 0.0031 | 0 | 0.7859 | 0.7273 | 0.6733 | 0.5908 | 20.8149 | 0 | 0.9854 | 0.9724 | 0.9554 | 0.9341 | 1.8141 |
0.0054 | 21.0 | 6300 | 0.2313 | 0.0031 | 0 | 0.8296 | 0.7676 | 0.7082 | 0.6170 | 18.2462 | 0 | 0.9860 | 0.9737 | 0.9574 | 0.9368 | 1.6881 |
0.0044 | 22.0 | 6600 | 0.2352 | 0.0031 | 0 | 0.7974 | 0.7346 | 0.6805 | 0.5993 | 19.3977 | 0 | 0.9843 | 0.9712 | 0.9542 | 0.9329 | 1.8141 |
0.0044 | 23.0 | 6900 | 0.2402 | 0.0031 | 0 | 0.7982 | 0.7360 | 0.6793 | 0.5948 | 19.3091 | 0 | 0.9845 | 0.9712 | 0.9540 | 0.9323 | 1.8393 |
0.0041 | 24.0 | 7200 | 0.2345 | 0.0031 | 0 | 0.8148 | 0.7558 | 0.7029 | 0.6164 | 18.6005 | 0 | 0.9852 | 0.9725 | 0.9557 | 0.9346 | 1.7889 |
0.0029 | 25.0 | 7500 | 0.2363 | 0.0031 | 0 | 0.8262 | 0.7659 | 0.7112 | 0.6293 | 17.2719 | 0 | 0.9843 | 0.9711 | 0.9541 | 0.9329 | 1.8896 |
0.0029 | 26.0 | 7800 | 0.2451 | 0.0031 | 0 | 0.8177 | 0.7535 | 0.6980 | 0.6197 | 17.4491 | 0 | 0.9841 | 0.9710 | 0.9540 | 0.9326 | 1.8644 |
0.0028 | 27.0 | 8100 | 0.2483 | 0.0031 | 0 | 0.8246 | 0.7628 | 0.7090 | 0.6236 | 17.8034 | 0 | 0.9854 | 0.9727 | 0.9563 | 0.9356 | 1.7637 |
0.0028 | 28.0 | 8400 | 0.2459 | 0.0031 | 0 | 0.8212 | 0.7609 | 0.7084 | 0.6276 | 17.8034 | 0 | 0.9845 | 0.9715 | 0.9546 | 0.9334 | 1.8393 |
0.0021 | 29.0 | 8700 | 0.2491 | 0.0031 | 0 | 0.8239 | 0.7626 | 0.7103 | 0.6280 | 17.8034 | 0 | 0.9850 | 0.9720 | 0.9551 | 0.9340 | 1.8141 |
0.002 | 30.0 | 9000 | 0.2524 | 0.0031 | 0 | 0.8270 | 0.7666 | 0.7145 | 0.6331 | 17.6262 | 0 | 0.9850 | 0.9720 | 0.9551 | 0.9340 | 1.8141 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for vania2911/barto_exp1_10partition_modelo_msl12000
Base model
vgaraujov/bart-base-spanish