barto_exp4_10partition_modelo_msl6000
This model is a fine-tuned version of vgaraujov/bart-base-spanish on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7794
- Model Preparation Time: 0.0035
- Bleu Msl: 0
- Bleu 1 Msl: 0.8321
- Bleu 2 Msl: 0.7380
- Bleu 3 Msl: 0.5998
- Bleu 4 Msl: 0.4237
- Ter Msl: 23.2218
- Bleu Asl: 0
- Bleu 1 Asl: 0.9740
- Bleu 2 Asl: 0.9554
- Bleu 3 Asl: 0.9344
- Bleu 4 Asl: 0.9093
- Ter Asl: 2.9784
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Bleu Msl | Bleu 1 Msl | Bleu 2 Msl | Bleu 3 Msl | Bleu 4 Msl | Ter Msl | Bleu Asl | Bleu 1 Asl | Bleu 2 Asl | Bleu 3 Asl | Bleu 4 Asl | Ter Asl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 150 | 0.4939 | 0.0035 | 0 | 0.7940 | 0.7431 | 0.6246 | 0.4697 | 22.9908 | 0 | 0.9380 | 0.9009 | 0.8632 | 0.8244 | 7.4242 |
No log | 2.0 | 300 | 0.4169 | 0.0035 | 0 | 0.8179 | 0.7459 | 0.6315 | 0.4817 | 24.2116 | 0 | 0.9568 | 0.9283 | 0.8975 | 0.8634 | 5.2273 |
No log | 3.0 | 450 | 0.3977 | 0.0035 | 0 | 0.8199 | 0.7461 | 0.6370 | 0.4995 | 22.8891 | 0 | 0.9582 | 0.9306 | 0.9002 | 0.8657 | 5.0758 |
0.4335 | 4.0 | 600 | 0.4259 | 0.0035 | 0 | 0.8071 | 0.7533 | 0.6364 | 0.4776 | 22.9908 | 0 | 0.9627 | 0.9365 | 0.9081 | 0.8754 | 4.4697 |
0.4335 | 5.0 | 750 | 0.3683 | 0.0035 | 0 | 0.8599 | 0.8031 | 0.6959 | 0.5524 | 18.2096 | 0 | 0.9665 | 0.9431 | 0.9171 | 0.8866 | 3.8636 |
0.4335 | 6.0 | 900 | 0.3889 | 0.0035 | 0 | 0.8316 | 0.7665 | 0.6575 | 0.5022 | 21.1597 | 0 | 0.9640 | 0.9401 | 0.9136 | 0.8832 | 4.3182 |
0.0653 | 7.0 | 1050 | 0.4314 | 0.0035 | 0 | 0.8489 | 0.7888 | 0.6864 | 0.5501 | 20.3459 | 0 | 0.9666 | 0.9437 | 0.9177 | 0.8879 | 3.7879 |
0.0653 | 8.0 | 1200 | 0.4212 | 0.0035 | 0 | 0.8579 | 0.7999 | 0.6957 | 0.5523 | 18.7182 | 0 | 0.9653 | 0.9414 | 0.9154 | 0.8855 | 4.2424 |
0.0653 | 9.0 | 1350 | 0.4298 | 0.0035 | 0 | 0.8530 | 0.7917 | 0.6886 | 0.5460 | 19.4303 | 0 | 0.9628 | 0.9387 | 0.9111 | 0.8800 | 4.0909 |
0.0374 | 10.0 | 1500 | 0.4524 | 0.0035 | 0 | 0.8184 | 0.7516 | 0.6436 | 0.5061 | 23.8047 | 0 | 0.9684 | 0.9457 | 0.9206 | 0.8919 | 3.7121 |
0.0374 | 11.0 | 1650 | 0.4429 | 0.0035 | 0 | 0.8392 | 0.7797 | 0.6771 | 0.5381 | 22.2787 | 0 | 0.9640 | 0.9395 | 0.9129 | 0.8818 | 4.1667 |
0.0374 | 12.0 | 1800 | 0.4376 | 0.0035 | 0 | 0.8479 | 0.7939 | 0.6902 | 0.5468 | 19.4303 | 0 | 0.9640 | 0.9403 | 0.9137 | 0.8828 | 4.2424 |
0.0374 | 13.0 | 1950 | 0.4262 | 0.0035 | 0 | 0.8447 | 0.7834 | 0.6851 | 0.5424 | 20.7528 | 0 | 0.9653 | 0.9426 | 0.9169 | 0.8883 | 4.0152 |
0.0233 | 14.0 | 2100 | 0.4827 | 0.0035 | 0 | 0.8478 | 0.7877 | 0.6793 | 0.5323 | 19.9390 | 0 | 0.9666 | 0.9445 | 0.9186 | 0.8881 | 3.7879 |
0.0233 | 15.0 | 2250 | 0.4489 | 0.0035 | 0 | 0.8459 | 0.7872 | 0.6792 | 0.5276 | 19.9390 | 0 | 0.9653 | 0.9434 | 0.9184 | 0.8899 | 3.9394 |
0.0233 | 16.0 | 2400 | 0.4538 | 0.0035 | 0 | 0.8579 | 0.7989 | 0.6915 | 0.5404 | 18.7182 | 0 | 0.9652 | 0.9421 | 0.9154 | 0.8843 | 3.9394 |
0.0152 | 17.0 | 2550 | 0.5196 | 0.0035 | 0 | 0.8339 | 0.7799 | 0.6687 | 0.5179 | 19.6338 | 0 | 0.9703 | 0.9483 | 0.9234 | 0.8939 | 3.3333 |
0.0152 | 18.0 | 2700 | 0.4844 | 0.0035 | 0 | 0.8416 | 0.7862 | 0.6851 | 0.5429 | 19.6338 | 0 | 0.9665 | 0.9440 | 0.9192 | 0.8897 | 3.8636 |
0.0152 | 19.0 | 2850 | 0.4768 | 0.0035 | 0 | 0.8498 | 0.7884 | 0.6839 | 0.5380 | 20.2442 | 0 | 0.9665 | 0.9436 | 0.9171 | 0.8856 | 3.9394 |
0.0111 | 20.0 | 3000 | 0.4795 | 0.0035 | 0 | 0.8599 | 0.8037 | 0.7016 | 0.5574 | 18.5148 | 0 | 0.9652 | 0.9413 | 0.9142 | 0.8823 | 4.0909 |
0.0111 | 21.0 | 3150 | 0.4967 | 0.0035 | 0 | 0.8400 | 0.7771 | 0.6712 | 0.5224 | 20.3459 | 0 | 0.9690 | 0.9467 | 0.9211 | 0.8912 | 3.7121 |
0.0111 | 22.0 | 3300 | 0.4832 | 0.0035 | 0 | 0.8518 | 0.7905 | 0.6817 | 0.5365 | 18.9217 | 0 | 0.9678 | 0.9449 | 0.9189 | 0.8882 | 3.7879 |
0.0111 | 23.0 | 3450 | 0.5077 | 0.0035 | 0 | 0.8479 | 0.7921 | 0.6842 | 0.5358 | 18.9217 | 0 | 0.9665 | 0.9431 | 0.9169 | 0.8858 | 3.8636 |
0.0067 | 24.0 | 3600 | 0.4972 | 0.0035 | 0 | 0.8569 | 0.7994 | 0.6973 | 0.5553 | 18.6165 | 0 | 0.9672 | 0.9447 | 0.9190 | 0.8885 | 3.7879 |
0.0067 | 25.0 | 3750 | 0.5022 | 0.0035 | 0 | 0.8529 | 0.7989 | 0.6962 | 0.5480 | 18.5148 | 0 | 0.9678 | 0.9454 | 0.9200 | 0.8903 | 3.7121 |
0.0067 | 26.0 | 3900 | 0.5223 | 0.0035 | 0 | 0.8509 | 0.7967 | 0.6938 | 0.5480 | 18.5148 | 0 | 0.9653 | 0.9426 | 0.9162 | 0.8850 | 3.9394 |
0.006 | 27.0 | 4050 | 0.5225 | 0.0035 | 0 | 0.8498 | 0.7977 | 0.6946 | 0.5482 | 18.4130 | 0 | 0.9671 | 0.9450 | 0.9194 | 0.8894 | 3.7879 |
0.006 | 28.0 | 4200 | 0.5249 | 0.0035 | 0 | 0.8539 | 0.8001 | 0.6969 | 0.5500 | 18.2096 | 0 | 0.9678 | 0.9449 | 0.9187 | 0.8877 | 3.7879 |
0.006 | 29.0 | 4350 | 0.5314 | 0.0035 | 0 | 0.8469 | 0.7906 | 0.6845 | 0.5375 | 18.9217 | 0 | 0.9678 | 0.9449 | 0.9187 | 0.8877 | 3.7879 |
0.0044 | 30.0 | 4500 | 0.5327 | 0.0035 | 0 | 0.8489 | 0.7929 | 0.6865 | 0.5401 | 18.8199 | 0 | 0.9678 | 0.9449 | 0.9187 | 0.8877 | 3.7879 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for vania2911/barto_exp4_10partition_modelo_msl6000
Base model
vgaraujov/bart-base-spanish