exp1_10partition_modelo_msl6000

This model is a fine-tuned version of vgaraujov/bart-base-spanish on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4599
  • Model Preparation Time: 0.0035
  • Bleu Msl: 0
  • Bleu 1 Msl: 0.6392
  • Bleu 2 Msl: 0.5125
  • Bleu 3 Msl: 0.4224
  • Bleu 4 Msl: 0.3388
  • Ter Msl: 49.8480
  • Bleu Asl: 0
  • Bleu 1 Asl: 0.9246
  • Bleu 2 Asl: 0.8881
  • Bleu 3 Asl: 0.8511
  • Bleu 4 Asl: 0.8099
  • Ter Asl: 8.7289

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Bleu Msl Bleu 1 Msl Bleu 2 Msl Bleu 3 Msl Bleu 4 Msl Ter Msl Bleu Asl Bleu 1 Asl Bleu 2 Asl Bleu 3 Asl Bleu 4 Asl Ter Asl
No log 1.0 150 1.4201 0.0035 0 0.5855 0.4688 0.3803 0.2617 49.7061 0 0.8418 0.7628 0.6958 0.6270 19.7203
No log 2.0 300 1.0165 0.0035 0 0.7396 0.6342 0.5464 0.4526 37.6994 0 0.8953 0.8417 0.7961 0.7461 13.1469
No log 3.0 450 0.8755 0.0035 0 0.7379 0.6574 0.5803 0.4725 35.7683 0 0.9177 0.8716 0.8293 0.7826 10.7692
1.6824 4.0 600 0.8238 0.0035 0 0.7738 0.6926 0.6179 0.5189 30.9824 0 0.9363 0.9006 0.8660 0.8267 8.2517
1.6824 5.0 750 0.8042 0.0035 0 0.7149 0.6312 0.5438 0.4332 35.1805 0 0.9374 0.9093 0.8824 0.8507 7.9720
1.6824 6.0 900 0.8480 0.0035 0 0.7469 0.6742 0.6091 0.5018 30.3107 0 0.9375 0.9025 0.8698 0.8320 7.8322
0.2441 7.0 1050 0.8531 0.0035 0 0.6312 0.5500 0.4770 0.3797 41.4777 0 0.9406 0.9063 0.8734 0.8372 7.6923
0.2441 8.0 1200 0.8495 0.0035 0 0.7302 0.6401 0.5653 0.4614 36.9437 0 0.9477 0.9165 0.8873 0.8551 6.9231
0.2441 9.0 1350 0.8623 0.0035 0 0.6935 0.6149 0.5451 0.4552 39.4626 0 0.9402 0.9086 0.8778 0.8415 7.6224
0.1022 10.0 1500 0.8533 0.0035 0 0.6700 0.6052 0.5381 0.4471 37.9513 0 0.9453 0.9139 0.8848 0.8516 6.9231
0.1022 11.0 1650 0.9126 0.0035 0 0.6731 0.5920 0.5202 0.4231 38.9589 0 0.9525 0.9238 0.8951 0.8631 6.0839
0.1022 12.0 1800 0.9068 0.0035 0 0.7141 0.6329 0.5539 0.4452 37.1956 0 0.9473 0.9165 0.8869 0.8533 6.7832
0.1022 13.0 1950 0.9214 0.0035 0 0.6425 0.5591 0.4849 0.3882 43.6608 0 0.9471 0.9164 0.8881 0.8574 6.9930
0.0478 14.0 2100 0.9292 0.0035 0 0.6367 0.5527 0.4761 0.3818 42.1495 0 0.9409 0.9071 0.8741 0.8374 7.9021
0.0478 15.0 2250 0.9934 0.0035 0 0.6377 0.5528 0.4728 0.3743 42.6532 0 0.9438 0.9115 0.8803 0.8446 7.1329
0.0478 16.0 2400 0.9738 0.0035 0 0.6457 0.5657 0.4902 0.3998 42.5693 0 0.9443 0.9124 0.8817 0.8465 7.3427
0.0274 17.0 2550 0.8840 0.0035 0 0.6418 0.5598 0.4831 0.3861 41.4777 0 0.9474 0.9185 0.8896 0.8553 6.8531
0.0274 18.0 2700 0.9120 0.0035 0 0.6428 0.5599 0.4832 0.3895 43.2410 0 0.9442 0.9110 0.8812 0.8489 7.3427
0.0274 19.0 2850 0.9104 0.0035 0 0.6790 0.6017 0.5266 0.4279 40.4702 0 0.9480 0.9174 0.8880 0.8555 6.7133
0.017 20.0 3000 0.9158 0.0035 0 0.6488 0.5616 0.4771 0.3772 40.8900 0 0.9425 0.9084 0.8769 0.8420 7.6224
0.017 21.0 3150 0.9166 0.0035 0 0.6541 0.5670 0.4891 0.3918 40.2183 0 0.9431 0.9103 0.8804 0.8472 7.4825
0.017 22.0 3300 0.8951 0.0035 0 0.6413 0.5573 0.4797 0.3779 41.3938 0 0.9427 0.9095 0.8785 0.8441 7.0629
0.017 23.0 3450 0.9018 0.0035 0 0.6557 0.5731 0.4941 0.3926 41.1419 0 0.9444 0.9122 0.8818 0.8481 7.1329
0.012 24.0 3600 0.8967 0.0035 0 0.6830 0.6007 0.5199 0.4124 37.9513 0 0.9479 0.9183 0.8900 0.8582 6.6434
0.012 25.0 3750 0.9093 0.0035 0 0.6570 0.5781 0.5005 0.3941 39.5466 0 0.9504 0.9225 0.8954 0.8646 6.3636
0.012 26.0 3900 0.8968 0.0035 0 0.6863 0.6044 0.5242 0.4228 38.3711 0 0.9474 0.9174 0.8889 0.8570 6.7133
0.0089 27.0 4050 0.8918 0.0035 0 0.6705 0.5902 0.5122 0.4065 39.7145 0 0.9498 0.9196 0.8913 0.8597 6.4336
0.0089 28.0 4200 0.8972 0.0035 0 0.6690 0.5861 0.5066 0.4014 39.7145 0 0.9480 0.9176 0.8887 0.8564 6.7133
0.0089 29.0 4350 0.9027 0.0035 0 0.6605 0.5778 0.4965 0.3926 40.8060 0 0.9474 0.9170 0.8876 0.8550 6.7133
0.0075 30.0 4500 0.8992 0.0035 0 0.6606 0.5775 0.4969 0.3932 40.3862 0 0.9480 0.9180 0.8889 0.8566 6.6434

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
5
Safetensors
Model size
139M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for vania2911/exp1_10partition_modelo_msl6000

Finetuned
(19)
this model