exp1_10partition_modelo_msl6000
This model is a fine-tuned version of vgaraujov/bart-base-spanish on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4599
- Model Preparation Time: 0.0035
- Bleu Msl: 0
- Bleu 1 Msl: 0.6392
- Bleu 2 Msl: 0.5125
- Bleu 3 Msl: 0.4224
- Bleu 4 Msl: 0.3388
- Ter Msl: 49.8480
- Bleu Asl: 0
- Bleu 1 Asl: 0.9246
- Bleu 2 Asl: 0.8881
- Bleu 3 Asl: 0.8511
- Bleu 4 Asl: 0.8099
- Ter Asl: 8.7289
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Bleu Msl | Bleu 1 Msl | Bleu 2 Msl | Bleu 3 Msl | Bleu 4 Msl | Ter Msl | Bleu Asl | Bleu 1 Asl | Bleu 2 Asl | Bleu 3 Asl | Bleu 4 Asl | Ter Asl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 150 | 1.4201 | 0.0035 | 0 | 0.5855 | 0.4688 | 0.3803 | 0.2617 | 49.7061 | 0 | 0.8418 | 0.7628 | 0.6958 | 0.6270 | 19.7203 |
No log | 2.0 | 300 | 1.0165 | 0.0035 | 0 | 0.7396 | 0.6342 | 0.5464 | 0.4526 | 37.6994 | 0 | 0.8953 | 0.8417 | 0.7961 | 0.7461 | 13.1469 |
No log | 3.0 | 450 | 0.8755 | 0.0035 | 0 | 0.7379 | 0.6574 | 0.5803 | 0.4725 | 35.7683 | 0 | 0.9177 | 0.8716 | 0.8293 | 0.7826 | 10.7692 |
1.6824 | 4.0 | 600 | 0.8238 | 0.0035 | 0 | 0.7738 | 0.6926 | 0.6179 | 0.5189 | 30.9824 | 0 | 0.9363 | 0.9006 | 0.8660 | 0.8267 | 8.2517 |
1.6824 | 5.0 | 750 | 0.8042 | 0.0035 | 0 | 0.7149 | 0.6312 | 0.5438 | 0.4332 | 35.1805 | 0 | 0.9374 | 0.9093 | 0.8824 | 0.8507 | 7.9720 |
1.6824 | 6.0 | 900 | 0.8480 | 0.0035 | 0 | 0.7469 | 0.6742 | 0.6091 | 0.5018 | 30.3107 | 0 | 0.9375 | 0.9025 | 0.8698 | 0.8320 | 7.8322 |
0.2441 | 7.0 | 1050 | 0.8531 | 0.0035 | 0 | 0.6312 | 0.5500 | 0.4770 | 0.3797 | 41.4777 | 0 | 0.9406 | 0.9063 | 0.8734 | 0.8372 | 7.6923 |
0.2441 | 8.0 | 1200 | 0.8495 | 0.0035 | 0 | 0.7302 | 0.6401 | 0.5653 | 0.4614 | 36.9437 | 0 | 0.9477 | 0.9165 | 0.8873 | 0.8551 | 6.9231 |
0.2441 | 9.0 | 1350 | 0.8623 | 0.0035 | 0 | 0.6935 | 0.6149 | 0.5451 | 0.4552 | 39.4626 | 0 | 0.9402 | 0.9086 | 0.8778 | 0.8415 | 7.6224 |
0.1022 | 10.0 | 1500 | 0.8533 | 0.0035 | 0 | 0.6700 | 0.6052 | 0.5381 | 0.4471 | 37.9513 | 0 | 0.9453 | 0.9139 | 0.8848 | 0.8516 | 6.9231 |
0.1022 | 11.0 | 1650 | 0.9126 | 0.0035 | 0 | 0.6731 | 0.5920 | 0.5202 | 0.4231 | 38.9589 | 0 | 0.9525 | 0.9238 | 0.8951 | 0.8631 | 6.0839 |
0.1022 | 12.0 | 1800 | 0.9068 | 0.0035 | 0 | 0.7141 | 0.6329 | 0.5539 | 0.4452 | 37.1956 | 0 | 0.9473 | 0.9165 | 0.8869 | 0.8533 | 6.7832 |
0.1022 | 13.0 | 1950 | 0.9214 | 0.0035 | 0 | 0.6425 | 0.5591 | 0.4849 | 0.3882 | 43.6608 | 0 | 0.9471 | 0.9164 | 0.8881 | 0.8574 | 6.9930 |
0.0478 | 14.0 | 2100 | 0.9292 | 0.0035 | 0 | 0.6367 | 0.5527 | 0.4761 | 0.3818 | 42.1495 | 0 | 0.9409 | 0.9071 | 0.8741 | 0.8374 | 7.9021 |
0.0478 | 15.0 | 2250 | 0.9934 | 0.0035 | 0 | 0.6377 | 0.5528 | 0.4728 | 0.3743 | 42.6532 | 0 | 0.9438 | 0.9115 | 0.8803 | 0.8446 | 7.1329 |
0.0478 | 16.0 | 2400 | 0.9738 | 0.0035 | 0 | 0.6457 | 0.5657 | 0.4902 | 0.3998 | 42.5693 | 0 | 0.9443 | 0.9124 | 0.8817 | 0.8465 | 7.3427 |
0.0274 | 17.0 | 2550 | 0.8840 | 0.0035 | 0 | 0.6418 | 0.5598 | 0.4831 | 0.3861 | 41.4777 | 0 | 0.9474 | 0.9185 | 0.8896 | 0.8553 | 6.8531 |
0.0274 | 18.0 | 2700 | 0.9120 | 0.0035 | 0 | 0.6428 | 0.5599 | 0.4832 | 0.3895 | 43.2410 | 0 | 0.9442 | 0.9110 | 0.8812 | 0.8489 | 7.3427 |
0.0274 | 19.0 | 2850 | 0.9104 | 0.0035 | 0 | 0.6790 | 0.6017 | 0.5266 | 0.4279 | 40.4702 | 0 | 0.9480 | 0.9174 | 0.8880 | 0.8555 | 6.7133 |
0.017 | 20.0 | 3000 | 0.9158 | 0.0035 | 0 | 0.6488 | 0.5616 | 0.4771 | 0.3772 | 40.8900 | 0 | 0.9425 | 0.9084 | 0.8769 | 0.8420 | 7.6224 |
0.017 | 21.0 | 3150 | 0.9166 | 0.0035 | 0 | 0.6541 | 0.5670 | 0.4891 | 0.3918 | 40.2183 | 0 | 0.9431 | 0.9103 | 0.8804 | 0.8472 | 7.4825 |
0.017 | 22.0 | 3300 | 0.8951 | 0.0035 | 0 | 0.6413 | 0.5573 | 0.4797 | 0.3779 | 41.3938 | 0 | 0.9427 | 0.9095 | 0.8785 | 0.8441 | 7.0629 |
0.017 | 23.0 | 3450 | 0.9018 | 0.0035 | 0 | 0.6557 | 0.5731 | 0.4941 | 0.3926 | 41.1419 | 0 | 0.9444 | 0.9122 | 0.8818 | 0.8481 | 7.1329 |
0.012 | 24.0 | 3600 | 0.8967 | 0.0035 | 0 | 0.6830 | 0.6007 | 0.5199 | 0.4124 | 37.9513 | 0 | 0.9479 | 0.9183 | 0.8900 | 0.8582 | 6.6434 |
0.012 | 25.0 | 3750 | 0.9093 | 0.0035 | 0 | 0.6570 | 0.5781 | 0.5005 | 0.3941 | 39.5466 | 0 | 0.9504 | 0.9225 | 0.8954 | 0.8646 | 6.3636 |
0.012 | 26.0 | 3900 | 0.8968 | 0.0035 | 0 | 0.6863 | 0.6044 | 0.5242 | 0.4228 | 38.3711 | 0 | 0.9474 | 0.9174 | 0.8889 | 0.8570 | 6.7133 |
0.0089 | 27.0 | 4050 | 0.8918 | 0.0035 | 0 | 0.6705 | 0.5902 | 0.5122 | 0.4065 | 39.7145 | 0 | 0.9498 | 0.9196 | 0.8913 | 0.8597 | 6.4336 |
0.0089 | 28.0 | 4200 | 0.8972 | 0.0035 | 0 | 0.6690 | 0.5861 | 0.5066 | 0.4014 | 39.7145 | 0 | 0.9480 | 0.9176 | 0.8887 | 0.8564 | 6.7133 |
0.0089 | 29.0 | 4350 | 0.9027 | 0.0035 | 0 | 0.6605 | 0.5778 | 0.4965 | 0.3926 | 40.8060 | 0 | 0.9474 | 0.9170 | 0.8876 | 0.8550 | 6.7133 |
0.0075 | 30.0 | 4500 | 0.8992 | 0.0035 | 0 | 0.6606 | 0.5775 | 0.4969 | 0.3932 | 40.3862 | 0 | 0.9480 | 0.9180 | 0.8889 | 0.8566 | 6.6434 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for vania2911/exp1_10partition_modelo_msl6000
Base model
vgaraujov/bart-base-spanish