🤖 Multi‑Input ResShift Diffusion VFI
⚙️ Setup
Start by downloading the source code directly from GitHub.
git clone https://github.com/VicFonch/Multi-Input-Resshift-Diffusion-VFI.git
Create a conda environment and install all the requirements
conda create -n multi-input-resshift python=3.12
conda activate multi-input-resshift
pip install -r requirements.txt
Note: Make sure your system is compatible with CUDA 12.4. If not, install CuPy according to your current CUDA version.
🚀 Inference Example
import os
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from torchvision.transforms import Compose, ToTensor, Resize, Normalize
from utils.utils import denorm
from model.hub import MultiInputResShiftHub
model = MultiInputResShiftHub.from_pretrained("vfontech/Multiple-Input-Resshift-VFI")
model.requires_grad_(False).cuda().eval()
img0_path = r"_data\example_images\frame1.png"
img2_path = r"_data\example_images\frame3.png"
mean = std = [0.5]*3
transforms = Compose([
Resize((256, 448)),
ToTensor(),
Normalize(mean=mean, std=std),
])
img0 = transforms(Image.open(img0_path).convert("RGB")).unsqueeze(0).cuda()
img2 = transforms(Image.open(img2_path).convert("RGB")).unsqueeze(0).cuda()
tau = 0.5
img1 = model.reverse_process([img0, img2], tau)
plt.figure(figsize=(10, 5))
plt.subplot(1, 3, 1)
plt.imshow(denorm(img0, mean=mean, std=std).squeeze().permute(1, 2, 0).cpu().numpy())
plt.subplot(1, 3, 2)
plt.imshow(denorm(img1, mean=mean, std=std).squeeze().permute(1, 2, 0).cpu().numpy())
plt.subplot(1, 3, 3)
plt.imshow(denorm(img2, mean=mean, std=std).squeeze().permute(1, 2, 0).cpu().numpy())
plt.show()
- Downloads last month
- 201
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no library tag.