File size: 72,844 Bytes
9106cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Llava-NeXT model."""

import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F

from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.image_processing_utils import select_best_resolution
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from transformers.models.auto import AutoModel, AutoModelForCausalLM
from transformers.models.llava_next.configuration_llava_next import LlavaNextConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "LlavaNextConfig"
from pathlib import Path

def save_list_to_incremental_file(data_list, save_dir="/common/home/users/w/wzhao/vqclip/llava_next_tensors"):
    """
    将列表保存到指定目录,文件名按数字递增
    
    Args:
        data_list: 要保存的列表数据
        save_dir: 保存目录路径
    
    Returns:
        保存的文件路径
    """
    # 确保目录存在
    save_dir = Path(save_dir)
    save_dir.mkdir(parents=True, exist_ok=True)
    
    # 查找可用的文件名
    index = 1
    while True:
        file_path = save_dir / f"{index}.npy"
        if not file_path.exists():
            break
        index += 1
    
    # 将列表转换为numpy数组并保存
    np_array = np.array(data_list)
    np.save(str(file_path), np_array)
    
    return file_path

def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (`tuple`):
            The size of the input image in the format (width, height).
        grid_pinpoints (`List`):
            A list containing possible resolutions. Each item in the list should be a tuple or list
            of the form `(height, width)`.
        patch_size (`int`):
            The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if not isinstance(grid_pinpoints, list):
        raise TypeError("grid_pinpoints should be a list of tuples or lists")

    # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
    if not isinstance(image_size, (list, tuple)):
        if not isinstance(image_size, (torch.Tensor, np.ndarray)):
            raise TypeError(
                f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
            )
        image_size = image_size.tolist()

    height, width = select_best_resolution(image_size, grid_pinpoints)
    return height // patch_size, width // patch_size


def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
    """
    Calculate the number of patches after the preprocessing for images of any resolution.

    Args:
        image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`):
            The size of the input image in the format (height, width). ?
        grid_pinpoints (`List`):
            A list containing possible resolutions. Each item in the list should be a tuple or list
            of the form `(height, width)`.
        patch_size (`int`):
            The size of each image patch.

    Returns:
        int: the number of patches
    """
    if not isinstance(grid_pinpoints, list):
        raise TypeError("grid_pinpoints should be a list of tuples or lists")

    # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
    if not isinstance(image_size, (list, tuple)):
        if not isinstance(image_size, (torch.Tensor, np.ndarray)):
            raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
        image_size = image_size.tolist()

    best_resolution = select_best_resolution(image_size, grid_pinpoints)
    height, width = best_resolution
    num_patches = 0
    # consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            num_patches += 1
    # add the base patch
    num_patches += 1
    return num_patches


def unpad_image(tensor, original_size):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
        tensor (`torch.Tensor`):
            The image tensor, assumed to be of shape (num_channels, height, width).
        original_size (`tuple`):
            The original size of the image (height, width).

    Returns:
        `torch.Tensor`: The unpadded image tensor.
    """
    if not isinstance(original_size, (list, tuple)):
        if not isinstance(original_size, (torch.Tensor, np.ndarray)):
            raise TypeError(
                f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor"
            )
        original_size = original_size.tolist()
    original_height, original_width = original_size
    current_height, current_width = tensor.shape[1:]

    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if original_aspect_ratio > current_aspect_ratio:
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding : current_height - padding, :]
    else:
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding : current_width - padding]

    return unpadded_tensor


@dataclass
class LlavaNextCausalLMOutputWithPast(ModelOutput):
    """
    Base class for LlavaNext causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        image_hidden_states (`torch.FloatTensor`, *optional*):
            A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`.
            image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[torch.FloatTensor] = None

class VectorQuantizer(nn.Module):
    def __init__(self, num_embeddings: int, embedding_dim: int, commitment_cost: float = 0.25):
        super().__init__()
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        self.commitment_cost = commitment_cost
        
        # Embedding table
        self.embedding = nn.Embedding(num_embeddings, embedding_dim)
        self.embedding.weight.data.uniform_(-1/num_embeddings, 1/num_embeddings)

    def forward(self, inputs):
        
        self.embedding.weight.data = self.embedding.weight.data.to(dtype=inputs.dtype)
        # Convert inputs from BCHW -> BHWC
        inputs = inputs.permute(0, 2, 1).contiguous()
        input_shape = inputs.shape
        
        # Flatten input
        flat_input = inputs.view(-1, self.embedding_dim)

        # Calculate distances
        distances = (torch.sum(flat_input**2, dim=1, keepdim=True) 
                    + torch.sum(self.embedding.weight**2, dim=1)
                    - 2 * torch.matmul(flat_input, self.embedding.weight.t()))
            
        # Encoding
        encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)
        encodings = torch.zeros(encoding_indices.shape[0], self.num_embeddings, device=inputs.device).to(inputs.dtype)
        encodings.scatter_(1, encoding_indices, 1)
        #self.embedding.weight = self.embedding.weight.to(input_type)
        # Quantize and unflatten
        #print(inputs.dtype)
        #print(self.embedding.weight.dtype)
        quantized = torch.matmul(encodings, self.embedding.weight).view(input_shape)
        
        # Loss
        e_latent_loss = torch.mean((quantized.detach() - inputs)**2)
        q_latent_loss = torch.mean((quantized - inputs.detach())**2)
        loss = q_latent_loss + self.commitment_cost * e_latent_loss
        print("this is q_latent_loss", q_latent_loss)
        print("This is e_latent_loss", self.commitment_cost * e_latent_loss)
        quantized = inputs + (quantized - inputs).detach()
        avg_probs = torch.mean(encodings, dim=0)
        perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))

        # Convert quantized from BHWC -> BCHW
        return quantized.permute(0, 2, 1).contiguous(), loss, perplexity

# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->LlavaNext
class LlavaNextMultiModalProjector(nn.Module):
    def __init__(self, config: LlavaNextConfig):
        super().__init__()

        self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.act = ACT2FN[config.projector_hidden_act]
        self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.vq = VectorQuantizer(
                    num_embeddings=16000,  # codebook size
                    embedding_dim=config.text_config.hidden_size,  # dimension of each embedding vector
                    commitment_cost=0.5
                )
        self.vq_cls = VectorQuantizerCLS(
            num_embeddings=128,
            embedding_dim=4096,
            commitment_cost=0.25,
            use_cosine=True
        )
    def forward(self, image_features):
        cls_features = image_features[: , :1]
        cls_features = self.linear_1(cls_features)
        cls_features = self.act(cls_features)
        cls_features = self.linear_2(cls_features)
        cls_features = cls_features[:, 0:]
        cls_features = cls_features.mean(dim=0, keepdim=True).squeeze(0)
        #save_list_to_incremental_file(cls_features.cpu().detach().numpy())
        quantized, loss, perplexity, indices = self.vq_cls(cls_features)
        categories = self.vq_cls.get_category_from_index(indices)
        indices = indices.cpu().numpy()
        print(indices)
        print(categories)
        if categories[0] != 0:
            raise ValueError([indices, categories[0]]) 
        #save_list_to_incremental_file(save_list)
        # tensor(54)
        # ['porn']
        image_features = image_features[: , 1:]
        hidden_states = self.linear_1(image_features)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        
        quantized_features, vq_loss, perplexity = self.vq(hidden_states)
        print(quantized_features.shape)
        return quantized_features, vq_loss


LLAVA_NEXT_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`LlavaNextConfig`] or [`LlavaNextVisionConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
class VectorQuantizerCLS(nn.Module):
    def __init__(self, num_embeddings: int = 64, embedding_dim: int = 4096, commitment_cost: float = 0.25, 
                 codebook_path: str = None, mapping_path: str = None, use_cosine: bool = True, 
                 randomize_indices: bool = True):
        super().__init__()
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        self.commitment_cost = commitment_cost
        self.use_cosine = use_cosine
        
        # Embedding table
        self.embedding = nn.Embedding(num_embeddings, embedding_dim)
        self.embedding.weight.data.uniform_(-1/num_embeddings, 1/num_embeddings)
        
        # 初始化合适大小的buffer,避免加载时大小不匹配
        self.register_buffer('_category_mapping_indices', torch.zeros(num_embeddings, dtype=torch.long))
        self.register_buffer('_category_mapping_names', torch.zeros(num_embeddings, dtype=torch.long))
        
        # 非持久化属性
        self.center_to_category = None
        
        # 加载预先计算的codebook
        if codebook_path is not None and mapping_path is not None:
            self.load_codebook(codebook_path, mapping_path, randomize_indices)
    
    def load_codebook(self, codebook_path, mapping_path, randomize_indices=True):
        """加载预计算的codebook和类别映射,并可选择随机化索引"""
        try:
            # 加载codebook
            print(f"Loading codebook from {codebook_path}")
            centers = np.load(codebook_path)
            print(f"Loaded codebook with shape: {centers.shape}")
            
            # 加载类别映射
            print(f"Loading category mappings from {mapping_path}")
            with open(mapping_path, 'rb') as f:
                mappings = pickle.load(f)
            
            # 将文本类别映射为数字
            category_mapping_text = mappings['category_mapping']
            classes = {'neutral':0, 'porn':1, 'gun':2, 'cigarette':3, 'alcohol':4, 'knife':5, 'blood':6, 'insulting_gesture':7}
            
            # 转换为数字映射
            center_category_mapping = {}
            for i, category_text in enumerate(category_mapping_text):
                center_category_mapping[i] = classes.get(category_text, 0)  # 默认为neutral(0)
            
            print(f"Loaded {len(center_category_mapping)} category mappings")
            
            # 准备数据
            actual_centers = centers.shape[0]
            print(f"Actual centers: {actual_centers}")
            
            # 更新num_embeddings为实际中心点数量
            self.num_embeddings = actual_centers
            print(f"Setting num_embeddings to {self.num_embeddings}")
            
            # 如果需要随机化索引,创建随机排列
            if randomize_indices:
                print("Randomizing codebook indices to prevent category clustering")
                # 创建随机排列
                permutation = list(range(actual_centers))
                random.shuffle(permutation)
                inverse_permutation = {v: k for k, v in enumerate(permutation)}
                
                # 应用随机排列到中心点和类别映射
                permuted_centers = np.zeros_like(centers)
                permuted_categories = {}
                
                for new_idx, old_idx in enumerate(permutation):
                    permuted_centers[new_idx] = centers[old_idx]
                    if old_idx < len(center_category_mapping):
                        permuted_categories[new_idx] = center_category_mapping[old_idx]
                
                # 使用随机化后的数据
                centers = permuted_centers
                self.center_to_category = permuted_categories
                
                # 打印一些随机化后的映射示例
                print("Sample randomized mappings:")
                for i in range(min(5, len(self.center_to_category))):
                    print(f"  New index {i}: {self.center_to_category[i]}")
            else:
                # 不随机化,直接使用原始映射
                self.center_to_category = {i: center_category_mapping[i] 
                                          for i in range(min(actual_centers, len(center_category_mapping)))}
            
            # 验证类别映射是否完整
            for i in range(self.num_embeddings):
                if i not in self.center_to_category:
                    print(f"Warning: No category mapping for center {i}, setting to 0")
                    self.center_to_category[i] = 0  # 用0代替"unknown"
            
            # 创建embedding数据并更新
            embedding_data = torch.tensor(centers, dtype=torch.float32)
            
            # 重新创建embedding层以匹配实际大小
            self.embedding = nn.Embedding(self.num_embeddings, self.embedding_dim)
            self.embedding.weight.data.copy_(embedding_data)
            
            # 重新注册buffer以匹配新的大小
            self.register_buffer('_category_mapping_indices', torch.zeros(self.num_embeddings, dtype=torch.long))
            self.register_buffer('_category_mapping_names', torch.zeros(self.num_embeddings, dtype=torch.long))
            
            # 将类别映射存储到buffer中(用于state_dict)
            self._store_category_mapping()
            
            print(f"Successfully loaded codebook with {self.num_embeddings} entries")
            
            # 分析类别分布
            category_counts = {}
            for category in self.center_to_category.values():
                if category in category_counts:
                    category_counts[category] += 1
                else:
                    category_counts[category] = 1
            
            print("Category distribution in codebook:")
            for category, count in sorted(category_counts.items()):
                print(f"  {category}: {count} centers")
            
            return True
            
        except Exception as e:
            print(f"Error loading codebook: {e}")
            import traceback
            traceback.print_exc()
            print("Using random initialization instead")
            return False
    
    def _store_category_mapping(self):
        """将类别映射存储到模型的buffer中,以便在state_dict中保存"""
        if not self.center_to_category:
            warnings.warn("No category mapping to store")
            return
        
        # 获取所有类别ID
        all_categories = sorted(set(self.center_to_category.values()))
        
        # 创建索引和对应类别ID的映射
        indices = list(self.center_to_category.keys())
        category_ids = [self.center_to_category[idx] for idx in indices]
        
        # 确保indices数组长度与buffer大小一致
        if len(indices) != self._category_mapping_indices.size(0):
            # 重新注册buffer以匹配大小
            self.register_buffer('_category_mapping_indices', torch.zeros(len(indices), dtype=torch.long))
            self.register_buffer('_category_mapping_names', torch.zeros(len(indices), dtype=torch.long))
        
        # 存储到buffer中
        self._category_mapping_indices.copy_(torch.tensor(indices, dtype=torch.long))
        self._category_mapping_names.copy_(torch.tensor(category_ids, dtype=torch.long))
        
        print(f"Stored category mapping with {len(indices)} entries and {len(all_categories)} unique categories")
    
    def _load_category_mapping(self):
        """从模型的buffer恢复类别映射"""
        if not hasattr(self, '_category_mapping_indices') or self._category_mapping_indices.numel() == 0:
            warnings.warn("No stored category mapping found")
            return {}
        
        # 重建类别映射字典
        indices = self._category_mapping_indices.tolist()
        category_ids = self._category_mapping_names.tolist()
        
        mapping = {}
        for idx, cat_id in zip(indices, category_ids):
            mapping[idx] = cat_id
        
        return mapping
    
    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        """自定义state_dict加载方法,处理buffer大小不匹配的问题"""
        # 检查并调整buffer大小,以匹配加载的state_dict
        indices_key = prefix + '_category_mapping_indices'
        names_key = prefix + '_category_mapping_names'
        
        if indices_key in state_dict and names_key in state_dict:
            indices_size = state_dict[indices_key].size()
            names_size = state_dict[names_key].size()
            
            # 重新注册buffer以匹配加载的大小
            if hasattr(self, '_category_mapping_indices') and self._category_mapping_indices.size() != indices_size:
                self.register_buffer('_category_mapping_indices', torch.zeros(indices_size, dtype=torch.long))
            
            if hasattr(self, '_category_mapping_names') and self._category_mapping_names.size() != names_size:
                self.register_buffer('_category_mapping_names', torch.zeros(names_size, dtype=torch.long))
        
        # 调用父类方法加载常规参数
        super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
        
        # 在加载完成后重建类别映射
        self.center_to_category = self._load_category_mapping()
        
        # 更新num_embeddings以匹配加载的模型
        if hasattr(self, 'embedding') and hasattr(self.embedding, 'weight'):
            self.num_embeddings = self.embedding.weight.size(0)
    
    def forward(self, inputs):
        """
        前向传播,专门处理(1, 4096)形状的输入
        
        Args:
            inputs: 形状为(1, 4096)的特征向量
            
        Returns:
            quantized: 量化后的特征向量
            loss: 承诺损失
            perplexity: 困惑度
            encoding_indices: 编码索引
        """
        # 验证输入形状
        if inputs.shape != (1, 4096):
            raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}")
        
        # 确保embedding权重与输入使用相同的数据类型
        self.embedding.weight.data = self.embedding.weight.data.to(dtype=inputs.dtype)
        
        # 直接使用输入,不需要形状转换
        flat_input = inputs
        
        # 计算与codebook中各向量的距离
        if self.use_cosine:
            # 归一化向量进行余弦相似度计算
            normalized_input = F.normalize(flat_input, p=2, dim=1)
            normalized_weights = F.normalize(self.embedding.weight, p=2, dim=1)
            
            # 计算余弦相似度
            cosine_sim = torch.matmul(normalized_input, normalized_weights.t())
            
            # 将相似度转换为距离(最大相似度对应最小距离)
            distances = 1 - cosine_sim
        else:
            # 使用欧氏距离
            distances = (torch.sum(flat_input**2, dim=1, keepdim=True) 
                        + torch.sum(self.embedding.weight**2, dim=1)
                        - 2 * torch.matmul(flat_input, self.embedding.weight.t()))
        
        # 找到最近的编码向量索引
        encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)
        
        # 创建one-hot编码
        encodings = torch.zeros(encoding_indices.shape[0], self.num_embeddings, device=inputs.device).to(inputs.dtype)
        encodings.scatter_(1, encoding_indices, 1)
        
        # 量化
        quantized = torch.matmul(encodings, self.embedding.weight)
        
        # 计算损失
        e_latent_loss = torch.mean((quantized.detach() - flat_input)**2)
        q_latent_loss = torch.mean((quantized - flat_input.detach())**2)
        loss = q_latent_loss + self.commitment_cost * e_latent_loss
        
        print("this is q_latent_loss", q_latent_loss)
        print("This is e_latent_loss", self.commitment_cost * e_latent_loss)
        
        # Straight-through estimator
        quantized = flat_input + (quantized - flat_input).detach()
        
        # 计算perplexity
        avg_probs = torch.mean(encodings, dim=0)
        perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
        
        # 返回量化后的向量、损失、困惑度和索引
        return quantized, loss, perplexity, encoding_indices.squeeze()
    
    def encode(self, inputs):
        """
        仅执行编码过程,返回索引
        
        Args:
            inputs: 形状为(1, 4096)的特征向量
            
        Returns:
            编码索引
        """
        # 验证输入形状
        if inputs.shape != (1, 4096):
            raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}")
        
        with torch.no_grad():
            # 计算距离
            if self.use_cosine:
                normalized_input = F.normalize(inputs, p=2, dim=1)
                normalized_weights = F.normalize(self.embedding.weight, p=2, dim=1)
                cosine_sim = torch.matmul(normalized_input, normalized_weights.t())
                distances = 1 - cosine_sim
            else:
                distances = (torch.sum(inputs**2, dim=1, keepdim=True) 
                            + torch.sum(self.embedding.weight**2, dim=1)
                            - 2 * torch.matmul(inputs, self.embedding.weight.t()))
            
            # 找到最近的编码向量索引
            encoding_indices = torch.argmin(distances, dim=1)
            
            return encoding_indices
    
    def get_category_from_index(self, indices):
        """
        根据索引获取对应的类别编号
        
        Args:
            indices: 编码索引
            
        Returns:
            类别编号列表
        """
        # 如果没有类别映射,尝试从buffer恢复
        if self.center_to_category is None:
            self.center_to_category = self._load_category_mapping()
            
        if not self.center_to_category:
            return [0] * indices.numel()  # 使用0(neutral)代替"unknown"
        
        # 将索引张量转为NumPy数组
        indices_np = indices.cpu().numpy().flatten()
        
        # 获取类别
        categories = []
        for idx in indices_np:
            idx_int = int(idx)
            category = self.center_to_category.get(idx_int, 0)  # 默认为0(neutral)
            categories.append(category)
        
        return categories
    
    def classify(self, inputs):
        """
        对输入特征进行分类,返回类别编号和索引
        
        Args:
            inputs: 形状为(1, 4096)的特征向量
            
        Returns:
            categories: 预测的类别编号
            indices: 编码索引
        """
        # 验证输入形状
        if inputs.shape != (1, 4096):
            raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}")
        
        indices = self.encode(inputs)
        categories = self.get_category_from_index(indices)
        return categories, indices


@add_start_docstrings(
    "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
    LLAVA_NEXT_START_DOCSTRING,
)
# Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->LlavaNext,llava->llava_next
class LlavaNextPreTrainedModel(PreTrainedModel):
    config_class = LlavaNextConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LlavaNextVisionAttention"]
    _skip_keys_device_placement = "past_key_values"
    _supports_cache_class = True
    _supports_flash_attn_2 = True
    _supports_sdpa = True

    def _init_weights(self, module):
        # important: this ported version of LlavaNext isn't meant for training from scratch - only
        # inference and fine-tuning - so the proper init weights code has been removed - the original codebase
        # https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


LLAVA_NEXT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
            The tensors corresponding to the input images. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`LlavaNextImageProcessor.__call__`] for details. [`LlavaProcessor`] uses
            [`LlavaNextImageProcessor`] for processing images.
        image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
            The sizes of the images in the batch, being (height, width) for each image.
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        vision_feature_layer (`int`, *optional*, defaults to -2):
            The index of the layer to select the vision feature.
        vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
            The feature selection strategy used to select the vision feature from the vision backbone.
            Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
            If `"full"`, the full vision features are used.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""


@add_start_docstrings(
    """The LLAVA-NeXT model which consists of a vision backbone and a language model.""",
    LLAVA_NEXT_START_DOCSTRING,
)
class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel, GenerationMixin):
    def __init__(self, config: LlavaNextConfig):
        super().__init__(config)
        self.vision_tower = AutoModel.from_config(config.vision_config)

        self.multi_modal_projector = LlavaNextMultiModalProjector(config)
        embed_std = 1 / math.sqrt(config.text_config.hidden_size)
        self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std)

        self.vocab_size = config.text_config.vocab_size
        self.language_model = AutoModelForCausalLM.from_config(config.text_config)
        self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
        self._padding_side = "left"  # set it to left by default, user can use setter to change padding_sides
        self.post_init()

    @property
    def padding_side(self):
        return self._padding_side

    @padding_side.setter
    def padding_side(self, padding_side: str):
        if padding_side not in ["left", "right"]:
            raise ValueError(f"{padding_side} is not `left` or `right`.")
        self._padding_side = padding_side

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
    def get_decoder(self):
        return self.language_model.get_decoder()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights
    def tie_weights(self):
        return self.language_model.tie_weights()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    def _merge_input_ids_with_image_features(
        self,
        image_features,
        feature_lens,
        inputs_embeds,
        input_ids,
        attention_mask,
        position_ids=None,
        labels=None,
        image_token_index=None,
        ignore_index=-100,
    ):
        """
        Merge input_ids with with image features into final embeddings

        Args:
            image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
                All vision vectors of all images in the batch
            feature_lens (`torch.LongTensor` of shape `(num_images)`):
                The length of visual embeddings of each image as stacked in `image_features`
            inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
                Token embeddings before merging with visual embeddings
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Input_ids of tokens, possibly filled with image token
            attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Mask to avoid performing attention on padding token indices.
            position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
                config.n_positions - 1]`.
            labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
                :abels need to be recalculated to support training (if provided)
            image_token_index (`int`, *optional*)
                Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
            ignore_index (`int`, *optional*)
                Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
        Returns:
            final_embedding, final_attention_mask, position_ids, final_labels

        Explanation:
            each image has variable length embeddings, with length specified by feature_lens
            image_features is concatenation of all visual embed vectors
            task: fill each <image> with the correct number of visual embeddings
            Example:
                X (5 patches), Y (3 patches), Z (8)
                X, Y are in the same sequence (in-context learning)
            if right padding
                input_ids: [
                    a b c d e f X g h i j k Y l m
                    o p q r Z s t u v _ _ _ _ _ _
                ]
                input_ids should be: [
                    a b c d e f X X X X X g h i j k Y Y Y l m
                    o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
                ]
                labels should be: [
                    a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
                    o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
                ]
            elif left padding
                input_ids: [
                    a b c d e f X g h i j k Y l m
                    _ _ _ _ _ _ o p q r Z s t u v
                ]
                input_ids should be: [
                    a b c d e f X X X X X g h i j k Y Y Y l m
                    _ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
                ]
                labels should be: [
                    a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
                    _ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
                ]
            Edge cases:
                * If tokens are same but image token sizes are different, then cannot infer left or right padding
                ```python
                cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
                chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw)
                prompts = [
                    "[INST] <image>\nWhat is shown in this image? [/INST]",
                    "[INST] <image>\nWhat is shown in this image? [/INST]",
                ]
                inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda")
                    chart_img has 2634 tokens, while cat_img has 2340 tokens
                ```

                input_ids: [
                    a b c d X g h
                    i j Y k l m n
                ]
                where X is 3 tokens while Y is 5, this mean after merge
                if left-padding (batched generation)
                    input_ids should be: [
                        _ _ a b c d X X X g h
                        i j Y Y Y Y Y k l m n
                    ]
                elif (right padding) (training)
                    input_ids should be: [
                        a b c d X X X g h _ _
                        i j Y Y Y Y Y k l m n
                    ]
        """
        image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
        ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index

        if self.training and self.padding_side == "left":
            logger.warning_once(
                "Padding side is set to 'left' but the model is in training mode. For training "
                "it is recommended to set `model.padding_side='right' and `processor.tokenizer.padding_side='right'`. "
                "If that's intended, ignore this warning"
            )
        if not self.training and self.padding_side == "right":
            logger.warning_once(
                "Padding side is set to 'right' but the model is in inference mode. For correct "
                "generation results, please set `model.padding_side='left'` and `processor.tokenizer.padding_side='left'`. "
                "If that's intended, ignore this warning"
            )

        with torch.no_grad():
            # ! in llava 1.6, number of patches is variable
            num_images = feature_lens.size(0)
            num_image_features, embed_dim = image_features.shape
            if feature_lens.sum() != num_image_features:
                raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
            batch_size = input_ids.shape[0]
            _left_padding = torch.any(attention_mask[:, 0] == 0)
            _right_padding = torch.any(attention_mask[:, -1] == 0)

            left_padding = self.padding_side == "left"
            if batch_size > 1:
                if _left_padding and _right_padding:
                    raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
                elif _right_padding and left_padding:
                    left_padding = False
                elif _left_padding and not left_padding:
                    left_padding = True

            # Whether to turn off right padding
            # 1. Create a mask to know where special image tokens are
            special_image_token_mask = input_ids == image_token_index
            # special_image_token_mask: [bsz, seqlen]
            num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
            # num_special_image_tokens: [bsz]
            # Reserve for padding of num_images
            total_num_special_image_tokens = torch.sum(special_image_token_mask)
            if total_num_special_image_tokens != num_images:
                raise ValueError(
                    f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
                )
            # Compute the maximum embed dimension
            # max_image_feature_lens is max_feature_lens per batch
            feature_lens = feature_lens.to(input_ids.device)
            feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
            feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device)
            embed_sequence_lengths = (
                (attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
            )
            max_embed_dim = embed_sequence_lengths.max()

            batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
            # 2. Compute the positions where text should be written
            # Calculate new positions for text tokens in merged image-text sequence.
            # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
            # `torch.cumsum` computes how each image token shifts subsequent text token positions.
            # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
            # ! instead of special_image_token_mask * (num_image_patches - 1)
            #   special_image_token_mask * (num_feature_len - 1)
            special_image_token_mask = special_image_token_mask.long()
            special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
            new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
            if left_padding:
                # shift right token positions so that they are ending at the same number
                # the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
                new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]

            text_to_overwrite = new_token_positions[batch_indices, non_image_indices]

        # 3. Create the full embedding, already padded to the maximum position
        final_embedding = torch.zeros(
            batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
        )
        final_attention_mask = torch.zeros(
            batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
        )
        final_input_ids = torch.full(
            (batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device
        )
        # In case the Vision model or the Language model has been offloaded to CPU, we need to manually
        # set the corresponding tensors into their correct target device.
        target_device = inputs_embeds.device
        batch_indices, non_image_indices, text_to_overwrite = (
            batch_indices.to(target_device),
            non_image_indices.to(target_device),
            text_to_overwrite.to(target_device),
        )
        attention_mask = attention_mask.to(target_device)
        input_ids = input_ids.to(target_device)

        # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
        # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
        final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
        final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
        final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices]
        final_labels = None
        if labels is not None:
            labels = labels.to(target_device)
            final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
            final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]

        # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
        with torch.no_grad():
            image_to_overwrite = torch.full(
                (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
            )
            image_to_overwrite[batch_indices, text_to_overwrite] = False
            embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
            embed_indices = embed_indices.expand(batch_size, max_embed_dim)
            embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)

            if left_padding:
                # exclude padding on the left
                max_embed_dim = max_embed_dim.to(target_device)
                val = (max_embed_dim - embed_indices) <= embed_seq_lens
            else:
                # exclude padding on the right
                val = embed_indices < embed_seq_lens
            image_to_overwrite &= val

            if image_to_overwrite.sum() != num_image_features:
                raise ValueError(
                    f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
                    f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
                    f" the number of image given to the model is {num_images}. "
                    f"This prevents correct indexing and breaks batch generation."
                )
        final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
        final_attention_mask |= image_to_overwrite
        position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)

        return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids

    def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None):
        """
        Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.

        Args:
            image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
                List of image feature tensor, each contains all the visual feature of all patches.
            image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
                Actual image size of each images (H, W).
            vision_feature_select_strategy (`str`)
                The feature selection strategy used to select the vision feature from the vision backbone.
            image_newline (`torch.Tensor` of shape `(embed_dim)`)
                New line embedding vector.
        Returns:
            image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
            feature_lens (`List[int]`)
                token length of each image in image_features
        """
        new_image_features = []
        feature_lens = []
        for image_idx, image_feature in enumerate(image_features):
            if image_feature.shape[0] > 1:
                base_image_feature = image_feature[0]
                image_feature = image_feature[1:]
                height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size

                if vision_feature_select_strategy == "default":
                    expected_num_patches = height * width
                elif vision_feature_select_strategy == "full":
                    expected_num_patches = height * width + 1
                if expected_num_patches != base_image_feature.shape[0]:
                    raise ValueError("The number of patches is not consistent with the image size.")

                num_patch_height, num_patch_width = get_anyres_image_grid_shape(
                    image_sizes[image_idx],
                    self.config.image_grid_pinpoints,
                    self.config.vision_config.image_size,
                )
                image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
                image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                image_feature = unpad_image(image_feature, image_sizes[image_idx])
                if image_newline is not None:
                    image_feature = torch.cat(
                        (
                            image_feature,
                            image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype),
                        ),
                        dim=-1,
                    )
                image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                image_feature = torch.cat((base_image_feature, image_feature), dim=0)
            else:
                image_feature = image_feature[0]
                if image_newline is not None:
                    image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
            new_image_features.append(image_feature)
            feature_lens.append(image_feature.size(0))
        image_features = torch.cat(new_image_features, dim=0)
        feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
        return image_features, feature_lens

    def get_image_features(
        self,
        pixel_values: torch.FloatTensor,
        image_sizes: torch.Tensor,
        vision_feature_layer: int,
        vision_feature_select_strategy: str,
    ):
        """
        Obtains image last hidden states from the vision tower and apply multimodal projection.

        Args:
            pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_patches, channels, height, width)`)
               The tensors corresponding to the input images.
            image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
                Actual image size of each images (H, W).
            vision_feature_layer (`int`):
                The index of the layer to select the vision feature.
            vision_feature_select_strategy (`str`):
                The feature selection strategy used to select the vision feature from the vision backbone.
                Can be one of `"default"` or `"full"`
        Returns:
            image_features (List[`torch.Tensor`]): List of image feature tensor, each contains all the visual feature of all patches
            and are of shape `(num_patches, image_length, embed_dim)`).
        """
        # ! infer image_num_patches from image_sizes
        image_num_patches = [
            image_size_to_num_patches(
                image_size=imsize,
                grid_pinpoints=self.config.image_grid_pinpoints,
                patch_size=self.config.vision_config.image_size,
            )
            for imsize in image_sizes
        ]
        if pixel_values.dim() == 5:
            # stacked if input is (batch_size, num_patches, num_channels, height, width)
            _pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
            pixel_values = torch.cat(_pixel_values_list, dim=0)
        elif pixel_values.dim() != 4:
            # otherwise has to be stacked from list of (num_patches, num_channels, height, width)
            raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")

        image_features = self.vision_tower(pixel_values, output_hidden_states=True)
        selected_image_feature = image_features.hidden_states[vision_feature_layer]
        if vision_feature_select_strategy == "default":
        #     selected_image_feature = selected_image_feature[:, 1:]
        # elif vision_feature_select_strategy == "full":
            selected_image_feature = selected_image_feature
        image_features, vq_loss = self.multi_modal_projector(selected_image_feature)
        image_features = torch.split(image_features, image_num_patches, dim=0)
        

        return image_features, vq_loss

    @add_start_docstrings_to_model_forward(LLAVA_NEXT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=LlavaNextCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        image_sizes: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        vision_feature_layer: Optional[int] = None,
        vision_feature_select_strategy: Optional[str] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        num_logits_to_keep: int = 0,
    ) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            num_logits_to_keep (`int`, *optional*):
                Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.

        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration

        >>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
        >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")

        >>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, text=prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(**inputs, max_length=30)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "[INST]  \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        vision_feature_layer = (
            vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
        )
        vision_feature_select_strategy = (
            vision_feature_select_strategy
            if vision_feature_select_strategy is not None
            else self.config.vision_feature_select_strategy
        )

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if pixel_values is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
            )

        legacy_processing = False
        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids)

            # if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing
            # not very reliable, but we don't expect one to actually pass 500+ images for one prompt
            # In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True
            legacy_processing = (
                (input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
            ) or (input_ids.shape[-1] == 1 and pixel_values is not None)

        image_features = None
        if pixel_values is not None and pixel_values.size(0) > 0:
            image_features, vq_loss = self.get_image_features(
                pixel_values,
                image_sizes,
                vision_feature_layer=vision_feature_layer,
                vision_feature_select_strategy=vision_feature_select_strategy,
            )

            # NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
            image_features, feature_lens = self.pack_image_features(
                image_features,
                image_sizes,
                vision_feature_select_strategy=vision_feature_select_strategy,
                image_newline=self.image_newline,
            )

        if legacy_processing:
            logger.warning_once(
                "Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. "
                "Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
                "with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
                "Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
            )
            if input_ids.shape[1] != 1:
                inputs_embeds = inputs_embeds.to(image_features.dtype)
                inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
                    image_features,
                    feature_lens,
                    inputs_embeds,
                    input_ids,
                    attention_mask,
                    position_ids,
                    labels=labels,
                )
                cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
            else:
                # Retrieve the first layer to inspect the logits and mask out the hidden states
                # that are set to 0
                first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]

                # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
                batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)

                # Get the target length
                target_length = input_ids.shape[1]
                past_length = first_layer_past_key_value.shape[-1]

                extended_attention_mask = torch.ones(
                    (attention_mask.shape[0], past_length),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )

                # Filter out only the tokens that can be un-attended, this can happen
                # if one uses Llava + Fused modules where the cache on the
                # first iteration is already big enough, or if one passes custom cache
                valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
                new_batch_index = batch_index[valid_indices]
                new_non_attended_tokens = non_attended_tokens[valid_indices]

                # Zero-out the places where we don't need to attend
                extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
                attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
                cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[-target_length:]

        # TODO: @raushan retain only the new behavior after v4.47
        elif image_features is not None:
            n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
            n_image_features = image_features.shape[0]
            if n_image_tokens != n_image_features:
                raise ValueError(
                    f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
                )
            special_image_mask = (
                (input_ids == self.config.image_token_index)
                .unsqueeze(-1)
                .expand_as(inputs_embeds)
                .to(inputs_embeds.device)
            )
            image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
            inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)

        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            num_logits_to_keep=num_logits_to_keep,
        )

        logits = outputs[0]

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                # we use the input attention mask to shift the logits and labels, because it is 2D.
                # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
                shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
                shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
                shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
            )
            print("This is original loss",loss)
            #vq_loss = vq_loss.to(loss.device)
            loss = loss 
        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return LlavaNextCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=image_features if pixel_values is not None else None,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        pixel_values=None,
        image_sizes=None,
        attention_mask=None,
        cache_position=None,
        num_logits_to_keep=None,
        **kwargs,
    ):
        # Overwritten -- in specific circumstances we don't want to forward image inputs to the model

        model_inputs = self.language_model.prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            num_logits_to_keep=num_logits_to_keep,
            **kwargs,
        )

        # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
        # Otherwise we need pixel values to be passed to model
        if cache_position[0] == 0:
            model_inputs["pixel_values"] = pixel_values
            model_inputs["image_sizes"] = image_sizes

        return model_inputs