File size: 2,649 Bytes
12971fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# 检查是否有可用的 GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
# 模型名称
model_name = "Qwen/Qwen2.5-3B-Instruct"
# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# 再次加载 LoRA 模型
base_model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device)
lora_model = PeftModel.from_pretrained(base_model, "wangyiqun/qwen25_3b_instruct_lora_vulgarity_finetuned")
# 推理示例
input_text = "Hello"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(lora_model.device)
output = lora_model.generate(input_ids, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.35)
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(output_text)
#!pip install gradio
import gradio as gr
# 假设这些变量已经定义
# tokenizer, model
# 对话函数
def chatbot(input_text, history):
if history is None:
history = []
# 将当前输入添加到历史记录中
history.append({"role": "user", "content": input_text})
messages = [
{"role": "system", "content": "根据用户友好的打招呼,和用户对骂,注意上下文语义连贯"}
] + history
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
global lora_model
model = lora_model
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# 将模型回复添加到历史记录中
history.append({"role": "assistant", "content": response})
# 转换为 Gradio Chatbot 所需的格式
chat_history = [(msg["content"] if msg["role"] == "user" else None,
msg["content"] if msg["role"] == "assistant" else None) for msg in history if
msg["role"] in ["user", "assistant"]]
return chat_history, history
# Gradio 界面
iface = gr.Interface(
fn=chatbot,
inputs=[gr.Textbox(label="输入你的问题"), gr.State()],
outputs=[gr.Chatbot(label="聊天历史"), gr.State()],
title="Qwen2.5-finetune-骂人专家",
description="Qwen2.5-finetune-骂人专家"
)
iface.launch(share=True, inbrowser=False, debug=True) |