SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-modernbert-base on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-modernbert-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("waris-gill/ModernBert-Medical-v1")
# Run inference
sentences = [
'My rheumatologist said \'if a patient has lupus then prednisone doesn\'t work." why is that?',
"I have lupus,my rheumatologist told me that prednisone doesn't work in my case. Could you educate me why? What are my chances? ",
'Hello doctor, my grandmother has 3rd degree bed sore. What can be done to help?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
My Binary Classification
- Evaluated with
scache.train.MyBinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.916 |
cosine_accuracy_threshold | 0.8091 |
cosine_f1 | 0.9216 |
cosine_f1_threshold | 0.8091 |
cosine_precision | 0.9305 |
cosine_recall | 0.9129 |
cosine_ap | 0.9742 |
cosine_mcc | 0.8313 |
Training Details
Training Dataset
csv
Dataset: csv
Size: 2,438 training samples
Columns:
question_1
,question_2
, andlabel
Approximate statistics based on the first 1000 samples:
Loss:
MatryoshkaLoss
with these parameters:{ "loss": "OnlineContrastiveLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
csv
- Dataset: csv
- Size: 2,438 evaluation samples
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 256learning_rate
: 6.5383156211679e-05max_grad_norm
: 0.5num_train_epochs
: 1lr_scheduler_type
: constantload_best_model_at_end
: Truetorch_compile
: Truetorch_compile_backend
: inductorbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 6.5383156211679e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 0.5num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: constantlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Truetorch_compile_backend
: inductortorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_ap |
---|---|---|---|---|
0.0323 | 1 | 4.4977 | - | - |
0.0645 | 2 | 4.9952 | - | - |
0.0968 | 3 | 2.9984 | - | - |
0.1290 | 4 | 4.8052 | - | - |
0.1613 | 5 | 4.0031 | - | - |
0.1935 | 6 | 3.7682 | - | - |
0.2258 | 7 | 4.0361 | - | - |
0.2581 | 8 | 3.4003 | - | - |
0.2903 | 9 | 1.1674 | - | - |
0.3226 | 10 | 2.3826 | 14.3756 | 0.9742 |
0.3548 | 11 | 3.8777 | - | - |
0.3871 | 12 | 2.6367 | - | - |
0.4194 | 13 | 2.5763 | - | - |
0.4516 | 14 | 3.5591 | - | - |
0.4839 | 15 | 2.3568 | - | - |
0.5161 | 16 | 2.9432 | - | - |
0.5484 | 17 | 2.746 | - | - |
0.5806 | 18 | 3.647 | - | - |
0.6129 | 19 | 3.0907 | - | - |
0.6452 | 20 | 3.9776 | 12.4766 | 0.9771 |
0.6774 | 21 | 3.4131 | - | - |
0.7097 | 22 | 3.0084 | - | - |
0.7419 | 23 | 2.7182 | - | - |
0.7742 | 24 | 1.5211 | - | - |
0.8065 | 25 | 1.8332 | - | - |
0.8387 | 26 | 3.4883 | - | - |
0.8710 | 27 | 2.0585 | - | - |
0.9032 | 28 | 2.775 | - | - |
0.9355 | 29 | 2.9137 | - | - |
0.9677 | 30 | 2.4238 | 12.4805 | 0.9769 |
1.0 | 31 | 1.2115 | 14.3756 | 0.9742 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for waris-gill/ModernBert-Medical-v1
Base model
answerdotai/ModernBERT-base
Finetuned
Alibaba-NLP/gte-modernbert-base
Evaluation results
- Cosine Accuracy on Unknownself-reported0.916
- Cosine Accuracy Threshold on Unknownself-reported0.809
- Cosine F1 on Unknownself-reported0.922
- Cosine F1 Threshold on Unknownself-reported0.809
- Cosine Precision on Unknownself-reported0.931
- Cosine Recall on Unknownself-reported0.913
- Cosine Ap on Unknownself-reported0.974
- Cosine Mcc on Unknownself-reported0.831