model_jeff
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("wongzien2000/model_jeff")
topic_model.get_topic_info()
Topic overview
- Number of topics: 26
- Number of training documents: 36727
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | jeff - just - great - love - thank | 256 | -1_jeff_just_great_love |
0 | protein - fat - weight - eat - calories | 8978 | 0_protein_fat_weight_eat |
1 | sets - reps - exercise - week - sets reps | 9577 | 1_sets_reps_exercise_week |
2 | content - great - thank - science - informative | 5017 | 2_content_great_thank_science |
3 | breaking bad - breaking - bad - better - better breaking | 1473 | 3_breaking bad_breaking_bad_better |
4 | level - ready - ready level - level ready - level level | 1425 | 4_level_ready_ready level_level ready |
5 | bench - press - chest - bench press - grip | 1234 | 5_bench_press_chest_bench press |
6 | thank - great - man - amazing - thanks | 951 | 6_thank_great_man_amazing |
7 | fitness - videos - science - thank - jeff | 818 | 7_fitness_videos_science_thank |
8 | pro - elite - average - lost - level | 741 | 8_pro_elite_average_lost |
9 | app - macros - macrofactor - macro - fat | 641 | 9_app_macros_macrofactor_macro |
10 | jeff - jeff jeff - bro jeff - bro - love jeff | 578 | 10_jeff_jeff jeff_bro jeff_bro |
11 | videos - love - love videos - youtube - quality | 524 | 11_videos_love_love videos_youtube |
12 | kiwi - kiwi juice - juice - snort - snorting | 468 | 12_kiwi_kiwi juice_juice_snort |
13 | steroids - testosterone - steroid - anabolic - use steroids | 440 | 13_steroids_testosterone_steroid_anabolic |
14 | book - program - bought - books - ordered | 395 | 14_book_program_bought_books |
15 | roids - women - habits - atomic - atomic habits | 393 | 15_roids_women_habits_atomic |
16 | tall - short - look - height - dude | 382 | 16_tall_short_look_height |
17 | mask - wearing - wearing mask - hoodie - shirt | 340 | 17_mask_wearing_wearing mask_hoodie |
18 | shapiro - ben - ben shapiro - jacked - nerd | 336 | 18_shapiro_ben_ben shapiro_jacked |
19 | mom - chili - macros - recipe - plastic | 314 | 19_mom_chili_macros_recipe |
20 | jeff - thanks jeff - thanks - thank jeff - thank | 308 | 20_jeff_thanks jeff_thanks_thank jeff |
21 | sleep - hours - sleeping - work - job | 301 | 21_sleep_hours_sleeping_work |
22 | steph - bro steph - ber - bro - ber ber | 288 | 22_steph_bro steph_ber_bro |
23 | voice - sound - match - voice doesn - sounds | 282 | 23_voice_sound_match_voice doesn |
24 | thumbnail - picture - look - pic - photo | 267 | 24_thumbnail_picture_look_pic |
Training hyperparameters
- calculate_probabilities: True
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: True
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 2.0.2
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.2
- Scikit-Learn: 1.6.1
- Sentence-transformers: 3.4.1
- Transformers: 4.50.2
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.11.11
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support