wolf_topics
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("wongzien2000/wolf_topics")
topic_model.get_topic_info()
Topic overview
- Number of topics: 3
- Number of training documents: 2933
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | lengthened partials - partials - lengthened - partials bitch - fucking partials | 277 | -1_lengthened partials_partials_lengthened_partials bitch |
0 | pull ups - deadlifts - deadlift - biceps - curls | 148 | 0_pull ups_deadlifts_deadlift_biceps |
1 | pistol squats - pistol squat - sissy squats - sissy squat - squats | 2508 | 1_pistol squats_pistol squat_sissy squats_sissy squat |
Training hyperparameters
- calculate_probabilities: True
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 5
- verbose: True
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 2.0.2
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.2
- Scikit-Learn: 1.6.1
- Sentence-transformers: 3.4.1
- Transformers: 4.50.2
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.11.11
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support