wolf_topics

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("wongzien2000/wolf_topics")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 3
  • Number of training documents: 2933
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 lengthened partials - partials - lengthened - partials bitch - fucking partials 277 -1_lengthened partials_partials_lengthened_partials bitch
0 pull ups - deadlifts - deadlift - biceps - curls 148 0_pull ups_deadlifts_deadlift_biceps
1 pistol squats - pistol squat - sissy squats - sissy squat - squats 2508 1_pistol squats_pistol squat_sissy squats_sissy squat

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 5
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 2.0.2
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.2
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 3.4.1
  • Transformers: 4.50.2
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.11.11
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support