wu1701's picture
End of training
6994233 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/biogpt
tags:
  - generated_from_trainer
datasets:
  - ncbi_disease
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: biogpt-ner-checkpoint
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ncbi_disease
          type: ncbi_disease
          config: ncbi_disease
          split: validation
          args: ncbi_disease
        metrics:
          - name: Precision
            type: precision
            value: 0.569364161849711
          - name: Recall
            type: recall
            value: 0.5412087912087912
          - name: F1
            type: f1
            value: 0.5549295774647887
          - name: Accuracy
            type: accuracy
            value: 0.8274946921443737

biogpt-ner-checkpoint

This model is a fine-tuned version of microsoft/biogpt on the ncbi_disease dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.5694
  • Recall: 0.5412
  • F1: 0.5549
  • Accuracy: 0.8275

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Framework versions

  • Transformers 4.51.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.0
  • Tokenizers 0.21.1