|
--- |
|
pipeline_tag: video-text-to-text |
|
library_name: transformers |
|
--- |
|
|
|
# TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM |
|
|
|
<div style='display:flex; gap: 0.25rem; '> |
|
<a href='./TimeZero_TechReport.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a> |
|
<a href='https://huggingface.co/wwwyyy/TimeZero-Charades-7B'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Checkpoint-blue'></a> |
|
</div> |
|
|
|
### Updates |
|
|
|
- 2025-03-17: TimeZero initial release! Code and evaluation scripts are now available. |
|
- 2025-03-17: TimeZero achieves SOTA performance on Charades-STA! |
|
|
|
### Overview |
|
|
|
TimeZero is a reasoning-guided Large Vision-Language Model (LVLM) for Temporal Video Grounding (TVG). It excels at identifying temporal segments within videos that correspond to a given natural language query. TimeZero achieves this entirely through a reinforcement learning approach that allows the model to reason about video-language relationships *during inference*. |
|
|
|
Key Features: |
|
|
|
* **Reinforcement Learning Training:** TimeZero is trained *entirely* using reinforcement learning, enhancing its ability to generate accurate temporal boundaries. |
|
* **Test-Time Reasoning:** The model exhibits emergent reasoning capabilities during inference, generating a chain of thought to justify its segment predictions. |
|
* **SOTA Performance:** TimeZero sets a new SOTA on the Charades-STA benchmark. |
|
|
|
|
|
This README provides an overview of TimeZero, including setup instructions, the training process, and evaluation guidelines. |
|
|
|
**Example:** |
|
|
|
 |
|
|
|
|
|
**Training Visualization:** |
|
|
|
 |
|
|
|
## Setup |
|
|
|
```bash |
|
conda create -n timezero python=3.11 |
|
conda env create -f environment.yml |
|
conda activate timezero |
|
``` |
|
|
|
## Training |
|
|
|
TimeZero training involves the following steps: |
|
|
|
1. **Data Preprocessing:** |
|
|
|
Download the dataset [Charades-STA](https://github.com/jiyanggao/TALL#charades-sta-anno-download), [ActivityNet](https://cs.stanford.edu/people/ranjaykrishna/densevid/) |
|
|
|
Before training, you need to preprocess the video data. |
|
|
|
```bash |
|
bash preprocess_video.sh |
|
``` |
|
Specify the path to the Charades-STA dataset (video files, annotations, etc.). |
|
|
|
2. **GRPO Training:** |
|
|
|
```bash |
|
cd scripts |
|
bash run_grpo_video.sh |
|
``` |
|
|
|
**`run_grpo_video.sh`** |
|
|
|
```bash |
|
#!/bin/bash |
|
|
|
export DEBUG_MODE="false" # Set to "true" for verbose logging during training. |
|
export LOG_PATH="./debug_log.txt" |
|
|
|
torchrun --nproc_per_node="4" \ |
|
--nnodes="1" \ |
|
--node_rank="0" \ |
|
--master_addr="127.0.0.1" \ |
|
--master_port="12361" \ |
|
src/open_r1/grpo_video.py \ |
|
--deepspeed scripts/zero3_offload.json \ |
|
--output_dir $OUTDIR \ |
|
--model_name_or_path mllm/Qwen2.5-VL-7B-Instruct \ |
|
--preprocessed_data_path ./Charades_preprocessed_data_maxpix_3584 \ |
|
--train_data_path ./Charades/charades_annotation/train.json \ |
|
--eval_data_path ./Charades/charades_annotation/val.json \ |
|
--video_folder ./Charades/Charades_v1 \ |
|
--dataset_name xxx \ |
|
--max_prompt_length 8192 \ |
|
--max_completion_length 1024 \ |
|
--num_generations 8 \ |
|
--per_device_train_batch_size 1 \ |
|
--gradient_accumulation_steps 2 \ |
|
--logging_steps 1 \ |
|
--bf16 \ |
|
--torch_dtype bfloat16 \ |
|
--data_seed 42 \ |
|
--gradient_checkpointing true \ |
|
--attn_implementation flash_attention_2 \ |
|
--num_train_epochs 2 \ |
|
--run_name $WANDB_NAME \ |
|
--report_to wandb \ |
|
--save_steps 50 \ |
|
--save_only_model true |
|
``` |
|
|
|
## Evaluation |
|
|
|
After training, evaluate your model's performance: |
|
|
|
```bash |
|
bash scripts/evaluate.sh # Use evaluate.sh for evaluation. |
|
``` |
|
**`evaluate.sh`** |
|
``` |
|
python evaluate.py --model_base <path_to_your_trained_model> --dataset <charades or activitynet> |
|
``` |
|
|
|
> The evaluation script (`evaluate.py`) needs to be implemented to load your model, process the test data, and calculate the relevant metrics ([email protected], [email protected], [email protected], etc.). |
|
|
|
## Results |
|
|
|
- **Charades-STA (Finetuned)** |
|
|
|
TimeZero outperforms previous state-of-the-art methods by a large margin. |
|
|
|
| Method | Type | [email protected] | [email protected] | [email protected] | |
|
| --------------------- | ---- | ------ | ------ | ------ | |
|
| EaTR (VLP sota) | VLP | - | 68.4 | 44.9 | |
|
| TimeSuite (LVLM sota) | SFT | 79.4 | 67.1 | 43.0 | |
|
| TimeZero (ours) | RL | 83.3 | 72.5 | 47.9 | |
|
|
|
- **ActivityNet (Finetuned)** |
|
|
|
TimeZero surpasses previous state-of-the-art LVLMs. |
|
|
|
| Method | Type | [email protected] | [email protected] | [email protected] | |
|
| ----------------- | ---- | ------ | ------ | ------ | |
|
| EaTR (VLP sota) | VLP | - | 58.18 | 37.64 | |
|
| TRACE (LVLM sota) | SFT | 54.0 | 37.7 | 24.0 | |
|
| TimeZero (ours) | RL | 68.6 | 47.3 | 26.9 | |
|
|
|
## Acknowledgements |
|
|
|
We thank the authors of the following projects for their contributions: |
|
|
|
* [TRACE](https://github.com/gyxxyg/TRACE) |
|
* [R1-V](https://github.com/Deep-Agent/R1-V) |
|
* [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) |
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
@article{wang2025timezero, |
|
title={TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM}, |
|
author={Wang, Ye and Xu, Boshen and Yue, Zihao and Xiao, Zihan and Wang, Ziheng and Zhang, Liang and Yang, Dingyi and Wang, Wenxuan and Jin, Qin}, |
|
booktitle={arxiv}, |
|
year={2025} |
|
} |
|
``` |
|
|