wwwyyy's picture
Update README.md
4df3a2a verified
|
raw
history blame contribute delete
5.48 kB
---
pipeline_tag: video-text-to-text
library_name: transformers
---
# TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM
<div style='display:flex; gap: 0.25rem; '>
<a href='./TimeZero_TechReport.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
<a href='https://huggingface.co/wwwyyy/TimeZero-Charades-7B'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Checkpoint-blue'></a>
</div>
### Updates
- 2025-03-17: TimeZero initial release! Code and evaluation scripts are now available.
- 2025-03-17: TimeZero achieves SOTA performance on Charades-STA!
### Overview
TimeZero is a reasoning-guided Large Vision-Language Model (LVLM) for Temporal Video Grounding (TVG). It excels at identifying temporal segments within videos that correspond to a given natural language query. TimeZero achieves this entirely through a reinforcement learning approach that allows the model to reason about video-language relationships *during inference*.
Key Features:
* **Reinforcement Learning Training:** TimeZero is trained *entirely* using reinforcement learning, enhancing its ability to generate accurate temporal boundaries.
* **Test-Time Reasoning:** The model exhibits emergent reasoning capabilities during inference, generating a chain of thought to justify its segment predictions.
* **SOTA Performance:** TimeZero sets a new SOTA on the Charades-STA benchmark.
This README provides an overview of TimeZero, including setup instructions, the training process, and evaluation guidelines.
**Example:**
![image](https://github.com/user-attachments/assets/f5ac9e6b-58f5-41e9-878d-a5ae5045b155)
**Training Visualization:**
![0a466a4bca3bb8d9b2a2af0f15890b4](https://github.com/user-attachments/assets/df1c35f5-8c30-400b-bce6-14e1f766752c)
## Setup
```bash
conda create -n timezero python=3.11
conda env create -f environment.yml
conda activate timezero
```
## Training
TimeZero training involves the following steps:
1. **Data Preprocessing:**
Download the dataset [Charades-STA](https://github.com/jiyanggao/TALL#charades-sta-anno-download), [ActivityNet](https://cs.stanford.edu/people/ranjaykrishna/densevid/)
Before training, you need to preprocess the video data.
```bash
bash preprocess_video.sh
```
Specify the path to the Charades-STA dataset (video files, annotations, etc.).
2. **GRPO Training:**
```bash
cd scripts
bash run_grpo_video.sh
```
**`run_grpo_video.sh`**
```bash
#!/bin/bash
export DEBUG_MODE="false" # Set to "true" for verbose logging during training.
export LOG_PATH="./debug_log.txt"
torchrun --nproc_per_node="4" \
--nnodes="1" \
--node_rank="0" \
--master_addr="127.0.0.1" \
--master_port="12361" \
src/open_r1/grpo_video.py \
--deepspeed scripts/zero3_offload.json \
--output_dir $OUTDIR \
--model_name_or_path mllm/Qwen2.5-VL-7B-Instruct \
--preprocessed_data_path ./Charades_preprocessed_data_maxpix_3584 \
--train_data_path ./Charades/charades_annotation/train.json \
--eval_data_path ./Charades/charades_annotation/val.json \
--video_folder ./Charades/Charades_v1 \
--dataset_name xxx \
--max_prompt_length 8192 \
--max_completion_length 1024 \
--num_generations 8 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 2 \
--logging_steps 1 \
--bf16 \
--torch_dtype bfloat16 \
--data_seed 42 \
--gradient_checkpointing true \
--attn_implementation flash_attention_2 \
--num_train_epochs 2 \
--run_name $WANDB_NAME \
--report_to wandb \
--save_steps 50 \
--save_only_model true
```
## Evaluation
After training, evaluate your model's performance:
```bash
bash scripts/evaluate.sh # Use evaluate.sh for evaluation.
```
**`evaluate.sh`**
```
python evaluate.py --model_base <path_to_your_trained_model> --dataset <charades or activitynet>
```
> The evaluation script (`evaluate.py`) needs to be implemented to load your model, process the test data, and calculate the relevant metrics ([email protected], [email protected], [email protected], etc.).
## Results
- **Charades-STA (Finetuned)**
TimeZero outperforms previous state-of-the-art methods by a large margin.
| Method | Type | [email protected] | [email protected] | [email protected] |
| --------------------- | ---- | ------ | ------ | ------ |
| EaTR (VLP sota) | VLP | - | 68.4 | 44.9 |
| TimeSuite (LVLM sota) | SFT | 79.4 | 67.1 | 43.0 |
| TimeZero (ours) | RL | 83.3 | 72.5 | 47.9 |
- **ActivityNet (Finetuned)**
TimeZero surpasses previous state-of-the-art LVLMs.
| Method | Type | [email protected] | [email protected] | [email protected] |
| ----------------- | ---- | ------ | ------ | ------ |
| EaTR (VLP sota) | VLP | - | 58.18 | 37.64 |
| TRACE (LVLM sota) | SFT | 54.0 | 37.7 | 24.0 |
| TimeZero (ours) | RL | 68.6 | 47.3 | 26.9 |
## Acknowledgements
We thank the authors of the following projects for their contributions:
* [TRACE](https://github.com/gyxxyg/TRACE)
* [R1-V](https://github.com/Deep-Agent/R1-V)
* [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL)
## Citation
```bibtex
@article{wang2025timezero,
title={TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM},
author={Wang, Ye and Xu, Boshen and Yue, Zihao and Xiao, Zihan and Wang, Ziheng and Zhang, Liang and Yang, Dingyi and Wang, Wenxuan and Jin, Qin},
booktitle={arxiv},
year={2025}
}
```