SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the statictable-triplets-all dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/paraphrase-multilingual-miniLM-L12-v2-mnrl-beir-2")
# Run inference
sentences = [
'Laporan singkat arus kas Q2 2005, dalam miliar',
'Ringkasan Neraca Arus Dana, Triwulan Kedua, 2005, (Miliar Rupiah)',
'Rata-rata Upah/Gaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Pendidikan Tertinggi dan Jumlah Jam Kerja Utama, 2020',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
bps-statictable-ir
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.899 |
cosine_accuracy@5 | 0.9837 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.899 |
cosine_precision@5 | 0.2189 |
cosine_precision@10 | 0.1261 |
cosine_recall@1 | 0.703 |
cosine_recall@5 | 0.789 |
cosine_recall@10 | 0.8116 |
cosine_ndcg@1 | 0.899 |
cosine_ndcg@5 | 0.8179 |
cosine_ndcg@10 | 0.8156 |
cosine_mrr@1 | 0.899 |
cosine_mrr@5 | 0.9348 |
cosine_mrr@10 | 0.9369 |
cosine_map@1 | 0.899 |
cosine_map@5 | 0.7721 |
cosine_map@10 | 0.7636 |
Training Details
Training Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 24979b4
- Size: 967,831 training samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 4 tokens
- mean: 18.55 tokens
- max: 37 tokens
- min: 4 tokens
- mean: 25.6 tokens
- max: 58 tokens
- min: 4 tokens
- mean: 25.7 tokens
- max: 58 tokens
- Samples:
query pos neg Indeks harga petani (diterima & dibayar) dan NTP per provinsi, 2012
Indeks Harga yang Diterima Petani (It), Indeks Harga yang Dibayar Petani (Ib), dan Nilai Tukar Petani (NTP) Menurut Provinsi, 2008-2016
Persentase Rumah Tangga Menurut Provinsi dan KebiasaanMemanfaatkan Air Bekas untuk Keperluan Lain, 2013, 2014, 2017, 2021
Data rumah tangga perikanan budidaya Indonesia, detail per provinsi dan jenis budidaya, di tahun 2008
Jumlah Rumah Tangga Perikanan Budidaya Menurut Provinsi dan Jenis Budidaya, 2000-2016
Ringkasan Neraca Arus Dana, 2005, (Miliar Rupiah)
Lapangan pekerjaan vs pendidikan pekerja (15 tahun ke atas), 1986 hingga 1996
Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu Menurut Lapangan Pekerjaan Utama dan Pendidikan Tertinggi yang Ditamatkan, 1986 -1996
Tabel Input-Output Indonesia Transaksi Domestik Atas Dasar Harga Produsen (17 Lapangan Usaha), 2016 (Juta Rupiah)
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 24979b4
- Size: 967,831 evaluation samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 5 tokens
- mean: 18.38 tokens
- max: 37 tokens
- min: 4 tokens
- mean: 25.28 tokens
- max: 58 tokens
- min: 5 tokens
- mean: 25.65 tokens
- max: 58 tokens
- Samples:
query pos neg Bagaimana hubungan IHK dan rata-rata upah buruh industri (bukan supervisor) bulanan tahun 2010, acuan 1996?
IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 1996-2014 (1996=100)
Rata-rata Harga Valuta Asing Terpilih menurut Provinsi, 2014
Berapa rata-rata gaji bulanan pekerja Indonesia berdasarkan ijazah terakhir dan sektor pekerjaannya (2017)?
Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi yang Ditamatkan dan Lapangan Pekerjaan Utama di 9 Sektor (rupiah), 2017
Rata-Rata Pengeluaran per Kapita Sebulan Menurut Kelompok Barang (rupiah), 2013-2021
Data luas lahan (hektar) yang dipakai untuk jenis budidaya perikanan di tiap provinsi tahun 2009
Luas Area Usaha Budidaya Perikanan Menurut Provinsi dan Jenis Budidaya (ha), 2005-2016
Ringkasan Neraca Arus Dana, Triwulan I, 2008, (Miliar Rupiah)
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16weight_decay
: 0.01num_train_epochs
: 2lr_scheduler_type
: reduce_lr_on_plateaulr_scheduler_kwargs
: {'factor': 0.5, 'patience': 2}warmup_steps
: 10000save_on_each_node
: Truefp16
: Truedataloader_num_workers
: 2load_best_model_at_end
: Trueeval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: reduce_lr_on_plateaulr_scheduler_kwargs
: {'factor': 0.5, 'patience': 2}warmup_ratio
: 0.0warmup_steps
: 10000log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Truesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 2dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | bps-statictable-ir_cosine_ndcg@10 |
---|---|---|---|---|
0 | 0 | - | 1.0819 | 0.4643 |
0.0334 | 200 | 0.1373 | - | - |
0.0668 | 400 | 0.0354 | - | - |
0.0835 | 500 | - | 0.0132 | 0.8252 |
0.1002 | 600 | 0.028 | - | - |
0.1336 | 800 | 0.018 | - | - |
0.1670 | 1000 | 0.0145 | 0.0096 | 0.8286 |
0.2004 | 1200 | 0.0089 | - | - |
0.2338 | 1400 | 0.0103 | - | - |
0.2505 | 1500 | - | 0.0067 | 0.8312 |
0.2672 | 1600 | 0.0098 | - | - |
0.3006 | 1800 | 0.0086 | - | - |
0.3339 | 2000 | 0.0086 | 0.0044 | 0.8246 |
0.3673 | 2200 | 0.0088 | - | - |
0.4007 | 2400 | 0.0075 | - | - |
0.4174 | 2500 | - | 0.0051 | 0.8295 |
0.4341 | 2600 | 0.0066 | - | - |
0.4675 | 2800 | 0.0054 | - | - |
0.5009 | 3000 | 0.0051 | 0.0059 | 0.8294 |
0.5343 | 3200 | 0.0052 | - | - |
0.5677 | 3400 | 0.0037 | - | - |
0.5844 | 3500 | - | 0.0041 | 0.8126 |
0.6011 | 3600 | 0.0078 | - | - |
0.6345 | 3800 | 0.005 | - | - |
0.6679 | 4000 | 0.0045 | 0.0050 | 0.8308 |
0.7013 | 4200 | 0.0047 | - | - |
0.7347 | 4400 | 0.0066 | - | - |
0.7514 | 4500 | - | 0.0033 | 0.8233 |
0.7681 | 4600 | 0.0043 | - | - |
0.8015 | 4800 | 0.003 | - | - |
0.8349 | 5000 | 0.0029 | 0.0036 | 0.8224 |
0.8683 | 5200 | 0.0014 | - | - |
0.9017 | 5400 | 0.0058 | - | - |
0.9184 | 5500 | - | 0.0020 | 0.8169 |
0.9350 | 5600 | 0.0045 | - | - |
0.9684 | 5800 | 0.0036 | - | - |
1.0018 | 6000 | 0.0053 | 0.0018 | 0.8152 |
1.0352 | 6200 | 0.0035 | - | - |
1.0686 | 6400 | 0.0017 | - | - |
1.0853 | 6500 | - | 0.0024 | 0.8231 |
1.1020 | 6600 | 0.0037 | - | - |
1.1354 | 6800 | 0.0044 | - | - |
1.1688 | 7000 | 0.0011 | 0.0113 | 0.8153 |
1.2022 | 7200 | 0.0042 | - | - |
1.2356 | 7400 | 0.0028 | - | - |
1.2523 | 7500 | - | 0.0046 | 0.8253 |
1.2690 | 7600 | 0.0005 | - | - |
1.3024 | 7800 | 0.001 | - | - |
1.3358 | 8000 | 0.0011 | 0.0017 | 0.8216 |
1.3692 | 8200 | 0.0007 | - | - |
1.4026 | 8400 | 0.0014 | - | - |
1.4193 | 8500 | - | 0.0014 | 0.8253 |
1.4360 | 8600 | 0.0003 | - | - |
1.4694 | 8800 | 0.0005 | - | - |
1.5028 | 9000 | 0.002 | 0.0012 | 0.8250 |
1.5361 | 9200 | 0.0013 | - | - |
1.5695 | 9400 | 0.0009 | - | - |
1.5862 | 9500 | - | 0.0003 | 0.8162 |
1.6029 | 9600 | 0.0021 | - | - |
1.6363 | 9800 | 0.0013 | - | - |
1.6697 | 10000 | 0.0005 | 0.0003 | 0.8234 |
1.7031 | 10200 | 0.0004 | - | - |
1.7365 | 10400 | 0.0004 | - | - |
1.7532 | 10500 | - | 0.0001 | 0.8225 |
1.7699 | 10600 | 0.0011 | - | - |
1.8033 | 10800 | 0.0004 | - | - |
1.8367 | 11000 | 0.0009 | 0.0008 | 0.8259 |
1.8701 | 11200 | 0.0024 | - | - |
1.9035 | 11400 | 0.0002 | - | - |
1.9202 | 11500 | - | 0.0008 | 0.8156 |
1.9369 | 11600 | 0.0007 | - | - |
1.9703 | 11800 | 0.0007 | - | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for yahyaabd/paraphrase-multilingual-miniLM-L12-v2-mnrl-beir-2
Dataset used to train yahyaabd/paraphrase-multilingual-miniLM-L12-v2-mnrl-beir-2
Evaluation results
- Cosine Accuracy@1 on bps statictable irself-reported0.899
- Cosine Accuracy@5 on bps statictable irself-reported0.984
- Cosine Accuracy@10 on bps statictable irself-reported1.000
- Cosine Precision@1 on bps statictable irself-reported0.899
- Cosine Precision@5 on bps statictable irself-reported0.219
- Cosine Precision@10 on bps statictable irself-reported0.126
- Cosine Recall@1 on bps statictable irself-reported0.703
- Cosine Recall@5 on bps statictable irself-reported0.789
- Cosine Recall@10 on bps statictable irself-reported0.812
- Cosine Ndcg@1 on bps statictable irself-reported0.899