yahyaabd commited on
Commit
ccc8b62
·
verified ·
1 Parent(s): 047410e

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:967831
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: 'Penghasilan rata-rata pelaku usaha mandiri: Analisis berdasarkan
12
+ lokasi dan jenjang pendidikan, 2023'
13
+ sentences:
14
+ - Rata-rata Pendapatan bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
15
+ Ditamatkan, 2023
16
+ - Rata-Rata Pengeluaran per Kapita Sebulan Menurut Kelompok Barang (rupiah), 2013-2021
17
+ - Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
18
+ - source_sentence: Bagaimana traffic penerbangan internasional di Indonesia pada 2008?
19
+ sentences:
20
+ - Tingkat Inflasi Harga Konsumen Nasional Bulanan (M-to-M) 1 (2022=100)
21
+ - Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
22
+ - Lalu Lintas Penerbangan Luar Negeri Indonesia Tahun 2003-2022
23
+ - source_sentence: Data indeks daya penyebaran dan derajat kepekaan sektor ekonomi,
24
+ ambil contoh tahun 2005
25
+ sentences:
26
+ - Indeks Daya Penyebaran dan Indeks Derajat Kepekaan Menurut Sektor Ekonomi, 1995,
27
+ 2000, 2005, dan 2010
28
+ - Ekspor Kopi Menurut Negara Tujuan Utama, 2000-2023
29
+ - Anggaran Kesehatan dari Direktorat Penyusunan APBN - Direktorat Jenderal Anggaran,
30
+ Kementerian Keuangan
31
+ - source_sentence: Data aktivitas penduduk 15 tahun ke atas berdasarkan kelompok umur,
32
+ satu minggu ke belakang (periode 2002)
33
+ sentences:
34
+ - Ekspor Lada Putih menurut Negara Tujuan Utama, 2012-2023
35
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
36
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Selatan, 2018-2023
37
+ - Penduduk Berumur 15 Tahun Ke Atas Menurut Golongan Umur dan Jenis Kegiatan Selama
38
+ Seminggu yang Lalu, 1997 - 2007
39
+ - source_sentence: Laporan singkat arus kas Q2 2005, dalam miliar
40
+ sentences:
41
+ - Ringkasan Neraca Arus Dana, Triwulan Kedua, 2005, (Miliar Rupiah)
42
+ - Indikator Pendidikan, 1994-2023
43
+ - Rata-rata Upah/Gaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Pendidikan Tertinggi
44
+ dan Jumlah Jam Kerja Utama, 2020
45
+ datasets:
46
+ - yahyaabd/statictable-triplets-all
47
+ pipeline_tag: sentence-similarity
48
+ library_name: sentence-transformers
49
+ metrics:
50
+ - cosine_accuracy@1
51
+ - cosine_accuracy@5
52
+ - cosine_accuracy@10
53
+ - cosine_precision@1
54
+ - cosine_precision@5
55
+ - cosine_precision@10
56
+ - cosine_recall@1
57
+ - cosine_recall@5
58
+ - cosine_recall@10
59
+ - cosine_ndcg@1
60
+ - cosine_ndcg@5
61
+ - cosine_ndcg@10
62
+ - cosine_mrr@1
63
+ - cosine_mrr@5
64
+ - cosine_mrr@10
65
+ - cosine_map@1
66
+ - cosine_map@5
67
+ - cosine_map@10
68
+ model-index:
69
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
70
+ results:
71
+ - task:
72
+ type: information-retrieval
73
+ name: Information Retrieval
74
+ dataset:
75
+ name: bps statictable ir
76
+ type: bps-statictable-ir
77
+ metrics:
78
+ - type: cosine_accuracy@1
79
+ value: 0.8990228013029316
80
+ name: Cosine Accuracy@1
81
+ - type: cosine_accuracy@5
82
+ value: 0.9837133550488599
83
+ name: Cosine Accuracy@5
84
+ - type: cosine_accuracy@10
85
+ value: 1.0
86
+ name: Cosine Accuracy@10
87
+ - type: cosine_precision@1
88
+ value: 0.8990228013029316
89
+ name: Cosine Precision@1
90
+ - type: cosine_precision@5
91
+ value: 0.21889250814332245
92
+ name: Cosine Precision@5
93
+ - type: cosine_precision@10
94
+ value: 0.12605863192182412
95
+ name: Cosine Precision@10
96
+ - type: cosine_recall@1
97
+ value: 0.7029638149674847
98
+ name: Cosine Recall@1
99
+ - type: cosine_recall@5
100
+ value: 0.789022126091837
101
+ name: Cosine Recall@5
102
+ - type: cosine_recall@10
103
+ value: 0.8116078533769628
104
+ name: Cosine Recall@10
105
+ - type: cosine_ndcg@1
106
+ value: 0.8990228013029316
107
+ name: Cosine Ndcg@1
108
+ - type: cosine_ndcg@5
109
+ value: 0.8178579787978988
110
+ name: Cosine Ndcg@5
111
+ - type: cosine_ndcg@10
112
+ value: 0.8156444177517035
113
+ name: Cosine Ndcg@10
114
+ - type: cosine_mrr@1
115
+ value: 0.8990228013029316
116
+ name: Cosine Mrr@1
117
+ - type: cosine_mrr@5
118
+ value: 0.9347991313789358
119
+ name: Cosine Mrr@5
120
+ - type: cosine_mrr@10
121
+ value: 0.9368827878599865
122
+ name: Cosine Mrr@10
123
+ - type: cosine_map@1
124
+ value: 0.8990228013029316
125
+ name: Cosine Map@1
126
+ - type: cosine_map@5
127
+ value: 0.772128121606949
128
+ name: Cosine Map@5
129
+ - type: cosine_map@10
130
+ value: 0.7635855701310564
131
+ name: Cosine Map@10
132
+ ---
133
+
134
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
135
+
136
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [statictable-triplets-all](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
137
+
138
+ ## Model Details
139
+
140
+ ### Model Description
141
+ - **Model Type:** Sentence Transformer
142
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
143
+ - **Maximum Sequence Length:** 128 tokens
144
+ - **Output Dimensionality:** 384 dimensions
145
+ - **Similarity Function:** Cosine Similarity
146
+ - **Training Dataset:**
147
+ - [statictable-triplets-all](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all)
148
+ <!-- - **Language:** Unknown -->
149
+ <!-- - **License:** Unknown -->
150
+
151
+ ### Model Sources
152
+
153
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
154
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
155
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
156
+
157
+ ### Full Model Architecture
158
+
159
+ ```
160
+ SentenceTransformer(
161
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
162
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
163
+ )
164
+ ```
165
+
166
+ ## Usage
167
+
168
+ ### Direct Usage (Sentence Transformers)
169
+
170
+ First install the Sentence Transformers library:
171
+
172
+ ```bash
173
+ pip install -U sentence-transformers
174
+ ```
175
+
176
+ Then you can load this model and run inference.
177
+ ```python
178
+ from sentence_transformers import SentenceTransformer
179
+
180
+ # Download from the 🤗 Hub
181
+ model = SentenceTransformer("yahyaabd/paraphrase-multilingual-miniLM-L12-v2-mnrl-beir-2")
182
+ # Run inference
183
+ sentences = [
184
+ 'Laporan singkat arus kas Q2 2005, dalam miliar',
185
+ 'Ringkasan Neraca Arus Dana, Triwulan Kedua, 2005, (Miliar Rupiah)',
186
+ 'Rata-rata Upah/Gaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Pendidikan Tertinggi dan Jumlah Jam Kerja Utama, 2020',
187
+ ]
188
+ embeddings = model.encode(sentences)
189
+ print(embeddings.shape)
190
+ # [3, 384]
191
+
192
+ # Get the similarity scores for the embeddings
193
+ similarities = model.similarity(embeddings, embeddings)
194
+ print(similarities.shape)
195
+ # [3, 3]
196
+ ```
197
+
198
+ <!--
199
+ ### Direct Usage (Transformers)
200
+
201
+ <details><summary>Click to see the direct usage in Transformers</summary>
202
+
203
+ </details>
204
+ -->
205
+
206
+ <!--
207
+ ### Downstream Usage (Sentence Transformers)
208
+
209
+ You can finetune this model on your own dataset.
210
+
211
+ <details><summary>Click to expand</summary>
212
+
213
+ </details>
214
+ -->
215
+
216
+ <!--
217
+ ### Out-of-Scope Use
218
+
219
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
220
+ -->
221
+
222
+ ## Evaluation
223
+
224
+ ### Metrics
225
+
226
+ #### Information Retrieval
227
+
228
+ * Dataset: `bps-statictable-ir`
229
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
230
+
231
+ | Metric | Value |
232
+ |:--------------------|:-----------|
233
+ | cosine_accuracy@1 | 0.899 |
234
+ | cosine_accuracy@5 | 0.9837 |
235
+ | cosine_accuracy@10 | 1.0 |
236
+ | cosine_precision@1 | 0.899 |
237
+ | cosine_precision@5 | 0.2189 |
238
+ | cosine_precision@10 | 0.1261 |
239
+ | cosine_recall@1 | 0.703 |
240
+ | cosine_recall@5 | 0.789 |
241
+ | cosine_recall@10 | 0.8116 |
242
+ | cosine_ndcg@1 | 0.899 |
243
+ | cosine_ndcg@5 | 0.8179 |
244
+ | **cosine_ndcg@10** | **0.8156** |
245
+ | cosine_mrr@1 | 0.899 |
246
+ | cosine_mrr@5 | 0.9348 |
247
+ | cosine_mrr@10 | 0.9369 |
248
+ | cosine_map@1 | 0.899 |
249
+ | cosine_map@5 | 0.7721 |
250
+ | cosine_map@10 | 0.7636 |
251
+
252
+ <!--
253
+ ## Bias, Risks and Limitations
254
+
255
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
256
+ -->
257
+
258
+ <!--
259
+ ### Recommendations
260
+
261
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
262
+ -->
263
+
264
+ ## Training Details
265
+
266
+ ### Training Dataset
267
+
268
+ #### statictable-triplets-all
269
+
270
+ * Dataset: [statictable-triplets-all](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all) at [24979b4](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all/tree/24979b4f0d8269377aca975e20d52e69c3b5a030)
271
+ * Size: 967,831 training samples
272
+ * Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
273
+ * Approximate statistics based on the first 1000 samples:
274
+ | | query | pos | neg |
275
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
276
+ | type | string | string | string |
277
+ | details | <ul><li>min: 4 tokens</li><li>mean: 18.55 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.6 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.7 tokens</li><li>max: 58 tokens</li></ul> |
278
+ * Samples:
279
+ | query | pos | neg |
280
+ |:-------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------|
281
+ | <code>Indeks harga petani (diterima & dibayar) dan NTP per provinsi, 2012</code> | <code>Indeks Harga yang Diterima Petani (It), Indeks Harga yang Dibayar Petani (Ib), dan Nilai Tukar Petani (NTP) Menurut Provinsi, 2008-2016</code> | <code>Persentase Rumah Tangga Menurut Provinsi dan KebiasaanMemanfaatkan Air Bekas untuk Keperluan Lain, 2013, 2014, 2017, 2021</code> |
282
+ | <code>Data rumah tangga perikanan budidaya Indonesia, detail per provinsi dan jenis budidaya, di tahun 2008</code> | <code>Jumlah Rumah Tangga Perikanan Budidaya Menurut Provinsi dan Jenis Budidaya, 2000-2016</code> | <code>Ringkasan Neraca Arus Dana, 2005, (Miliar Rupiah)</code> |
283
+ | <code>Lapangan pekerjaan vs pendidikan pekerja (15 tahun ke atas), 1986 hingga 1996</code> | <code>Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu Menurut Lapangan Pekerjaan Utama dan Pendidikan Tertinggi yang Ditamatkan, 1986 -1996</code> | <code>Tabel Input-Output Indonesia Transaksi Domestik Atas Dasar Harga Produsen (17 Lapangan Usaha), 2016 (Juta Rupiah)</code> |
284
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
285
+ ```json
286
+ {
287
+ "scale": 20.0,
288
+ "similarity_fct": "cos_sim"
289
+ }
290
+ ```
291
+
292
+ ### Evaluation Dataset
293
+
294
+ #### statictable-triplets-all
295
+
296
+ * Dataset: [statictable-triplets-all](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all) at [24979b4](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all/tree/24979b4f0d8269377aca975e20d52e69c3b5a030)
297
+ * Size: 967,831 evaluation samples
298
+ * Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
299
+ * Approximate statistics based on the first 1000 samples:
300
+ | | query | pos | neg |
301
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
302
+ | type | string | string | string |
303
+ | details | <ul><li>min: 5 tokens</li><li>mean: 18.38 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.28 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 25.65 tokens</li><li>max: 58 tokens</li></ul> |
304
+ * Samples:
305
+ | query | pos | neg |
306
+ |:-------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
307
+ | <code>Bagaimana hubungan IHK dan rata-rata upah buruh industri (bukan supervisor) bulanan tahun 2010, acuan 1996?</code> | <code>IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 1996-2014 (1996=100)</code> | <code>Rata-rata Harga Valuta Asing Terpilih menurut Provinsi, 2014</code> |
308
+ | <code>Berapa rata-rata gaji bulanan pekerja Indonesia berdasarkan ijazah terakhir dan sektor pekerjaannya (2017)?</code> | <code>Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi yang Ditamatkan dan Lapangan Pekerjaan Utama di 9 Sektor (rupiah), 2017</code> | <code>Rata-Rata Pengeluaran per Kapita Sebulan Menurut Kelompok Barang (rupiah), 2013-2021</code> |
309
+ | <code>Data luas lahan (hektar) yang dipakai untuk jenis budidaya perikanan di tiap provinsi tahun 2009</code> | <code>Luas Area Usaha Budidaya Perikanan Menurut Provinsi dan Jenis Budidaya (ha), 2005-2016</code> | <code>Ringkasan Neraca Arus Dana, Triwulan I, 2008, (Miliar Rupiah)</code> |
310
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
311
+ ```json
312
+ {
313
+ "scale": 20.0,
314
+ "similarity_fct": "cos_sim"
315
+ }
316
+ ```
317
+
318
+ ### Training Hyperparameters
319
+ #### Non-Default Hyperparameters
320
+
321
+ - `eval_strategy`: steps
322
+ - `per_device_train_batch_size`: 16
323
+ - `per_device_eval_batch_size`: 16
324
+ - `weight_decay`: 0.01
325
+ - `num_train_epochs`: 2
326
+ - `lr_scheduler_type`: reduce_lr_on_plateau
327
+ - `lr_scheduler_kwargs`: {'factor': 0.5, 'patience': 2}
328
+ - `warmup_steps`: 10000
329
+ - `save_on_each_node`: True
330
+ - `fp16`: True
331
+ - `dataloader_num_workers`: 2
332
+ - `load_best_model_at_end`: True
333
+ - `eval_on_start`: True
334
+ - `batch_sampler`: no_duplicates
335
+
336
+ #### All Hyperparameters
337
+ <details><summary>Click to expand</summary>
338
+
339
+ - `overwrite_output_dir`: False
340
+ - `do_predict`: False
341
+ - `eval_strategy`: steps
342
+ - `prediction_loss_only`: True
343
+ - `per_device_train_batch_size`: 16
344
+ - `per_device_eval_batch_size`: 16
345
+ - `per_gpu_train_batch_size`: None
346
+ - `per_gpu_eval_batch_size`: None
347
+ - `gradient_accumulation_steps`: 1
348
+ - `eval_accumulation_steps`: None
349
+ - `torch_empty_cache_steps`: None
350
+ - `learning_rate`: 5e-05
351
+ - `weight_decay`: 0.01
352
+ - `adam_beta1`: 0.9
353
+ - `adam_beta2`: 0.999
354
+ - `adam_epsilon`: 1e-08
355
+ - `max_grad_norm`: 1.0
356
+ - `num_train_epochs`: 2
357
+ - `max_steps`: -1
358
+ - `lr_scheduler_type`: reduce_lr_on_plateau
359
+ - `lr_scheduler_kwargs`: {'factor': 0.5, 'patience': 2}
360
+ - `warmup_ratio`: 0.0
361
+ - `warmup_steps`: 10000
362
+ - `log_level`: passive
363
+ - `log_level_replica`: warning
364
+ - `log_on_each_node`: True
365
+ - `logging_nan_inf_filter`: True
366
+ - `save_safetensors`: True
367
+ - `save_on_each_node`: True
368
+ - `save_only_model`: False
369
+ - `restore_callback_states_from_checkpoint`: False
370
+ - `no_cuda`: False
371
+ - `use_cpu`: False
372
+ - `use_mps_device`: False
373
+ - `seed`: 42
374
+ - `data_seed`: None
375
+ - `jit_mode_eval`: False
376
+ - `use_ipex`: False
377
+ - `bf16`: False
378
+ - `fp16`: True
379
+ - `fp16_opt_level`: O1
380
+ - `half_precision_backend`: auto
381
+ - `bf16_full_eval`: False
382
+ - `fp16_full_eval`: False
383
+ - `tf32`: None
384
+ - `local_rank`: 0
385
+ - `ddp_backend`: None
386
+ - `tpu_num_cores`: None
387
+ - `tpu_metrics_debug`: False
388
+ - `debug`: []
389
+ - `dataloader_drop_last`: False
390
+ - `dataloader_num_workers`: 2
391
+ - `dataloader_prefetch_factor`: None
392
+ - `past_index`: -1
393
+ - `disable_tqdm`: False
394
+ - `remove_unused_columns`: True
395
+ - `label_names`: None
396
+ - `load_best_model_at_end`: True
397
+ - `ignore_data_skip`: False
398
+ - `fsdp`: []
399
+ - `fsdp_min_num_params`: 0
400
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
401
+ - `fsdp_transformer_layer_cls_to_wrap`: None
402
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
403
+ - `deepspeed`: None
404
+ - `label_smoothing_factor`: 0.0
405
+ - `optim`: adamw_torch
406
+ - `optim_args`: None
407
+ - `adafactor`: False
408
+ - `group_by_length`: False
409
+ - `length_column_name`: length
410
+ - `ddp_find_unused_parameters`: None
411
+ - `ddp_bucket_cap_mb`: None
412
+ - `ddp_broadcast_buffers`: False
413
+ - `dataloader_pin_memory`: True
414
+ - `dataloader_persistent_workers`: False
415
+ - `skip_memory_metrics`: True
416
+ - `use_legacy_prediction_loop`: False
417
+ - `push_to_hub`: False
418
+ - `resume_from_checkpoint`: None
419
+ - `hub_model_id`: None
420
+ - `hub_strategy`: every_save
421
+ - `hub_private_repo`: None
422
+ - `hub_always_push`: False
423
+ - `gradient_checkpointing`: False
424
+ - `gradient_checkpointing_kwargs`: None
425
+ - `include_inputs_for_metrics`: False
426
+ - `include_for_metrics`: []
427
+ - `eval_do_concat_batches`: True
428
+ - `fp16_backend`: auto
429
+ - `push_to_hub_model_id`: None
430
+ - `push_to_hub_organization`: None
431
+ - `mp_parameters`:
432
+ - `auto_find_batch_size`: False
433
+ - `full_determinism`: False
434
+ - `torchdynamo`: None
435
+ - `ray_scope`: last
436
+ - `ddp_timeout`: 1800
437
+ - `torch_compile`: False
438
+ - `torch_compile_backend`: None
439
+ - `torch_compile_mode`: None
440
+ - `dispatch_batches`: None
441
+ - `split_batches`: None
442
+ - `include_tokens_per_second`: False
443
+ - `include_num_input_tokens_seen`: False
444
+ - `neftune_noise_alpha`: None
445
+ - `optim_target_modules`: None
446
+ - `batch_eval_metrics`: False
447
+ - `eval_on_start`: True
448
+ - `use_liger_kernel`: False
449
+ - `eval_use_gather_object`: False
450
+ - `average_tokens_across_devices`: False
451
+ - `prompts`: None
452
+ - `batch_sampler`: no_duplicates
453
+ - `multi_dataset_batch_sampler`: proportional
454
+
455
+ </details>
456
+
457
+ ### Training Logs
458
+ | Epoch | Step | Training Loss | Validation Loss | bps-statictable-ir_cosine_ndcg@10 |
459
+ |:----------:|:---------:|:-------------:|:---------------:|:---------------------------------:|
460
+ | 0 | 0 | - | 1.0819 | 0.4643 |
461
+ | 0.0334 | 200 | 0.1373 | - | - |
462
+ | 0.0668 | 400 | 0.0354 | - | - |
463
+ | 0.0835 | 500 | - | 0.0132 | 0.8252 |
464
+ | 0.1002 | 600 | 0.028 | - | - |
465
+ | 0.1336 | 800 | 0.018 | - | - |
466
+ | 0.1670 | 1000 | 0.0145 | 0.0096 | 0.8286 |
467
+ | 0.2004 | 1200 | 0.0089 | - | - |
468
+ | 0.2338 | 1400 | 0.0103 | - | - |
469
+ | 0.2505 | 1500 | - | 0.0067 | 0.8312 |
470
+ | 0.2672 | 1600 | 0.0098 | - | - |
471
+ | 0.3006 | 1800 | 0.0086 | - | - |
472
+ | 0.3339 | 2000 | 0.0086 | 0.0044 | 0.8246 |
473
+ | 0.3673 | 2200 | 0.0088 | - | - |
474
+ | 0.4007 | 2400 | 0.0075 | - | - |
475
+ | 0.4174 | 2500 | - | 0.0051 | 0.8295 |
476
+ | 0.4341 | 2600 | 0.0066 | - | - |
477
+ | 0.4675 | 2800 | 0.0054 | - | - |
478
+ | 0.5009 | 3000 | 0.0051 | 0.0059 | 0.8294 |
479
+ | 0.5343 | 3200 | 0.0052 | - | - |
480
+ | 0.5677 | 3400 | 0.0037 | - | - |
481
+ | 0.5844 | 3500 | - | 0.0041 | 0.8126 |
482
+ | 0.6011 | 3600 | 0.0078 | - | - |
483
+ | 0.6345 | 3800 | 0.005 | - | - |
484
+ | 0.6679 | 4000 | 0.0045 | 0.0050 | 0.8308 |
485
+ | 0.7013 | 4200 | 0.0047 | - | - |
486
+ | 0.7347 | 4400 | 0.0066 | - | - |
487
+ | 0.7514 | 4500 | - | 0.0033 | 0.8233 |
488
+ | 0.7681 | 4600 | 0.0043 | - | - |
489
+ | 0.8015 | 4800 | 0.003 | - | - |
490
+ | 0.8349 | 5000 | 0.0029 | 0.0036 | 0.8224 |
491
+ | 0.8683 | 5200 | 0.0014 | - | - |
492
+ | 0.9017 | 5400 | 0.0058 | - | - |
493
+ | 0.9184 | 5500 | - | 0.0020 | 0.8169 |
494
+ | 0.9350 | 5600 | 0.0045 | - | - |
495
+ | 0.9684 | 5800 | 0.0036 | - | - |
496
+ | 1.0018 | 6000 | 0.0053 | 0.0018 | 0.8152 |
497
+ | 1.0352 | 6200 | 0.0035 | - | - |
498
+ | 1.0686 | 6400 | 0.0017 | - | - |
499
+ | 1.0853 | 6500 | - | 0.0024 | 0.8231 |
500
+ | 1.1020 | 6600 | 0.0037 | - | - |
501
+ | 1.1354 | 6800 | 0.0044 | - | - |
502
+ | 1.1688 | 7000 | 0.0011 | 0.0113 | 0.8153 |
503
+ | 1.2022 | 7200 | 0.0042 | - | - |
504
+ | 1.2356 | 7400 | 0.0028 | - | - |
505
+ | 1.2523 | 7500 | - | 0.0046 | 0.8253 |
506
+ | 1.2690 | 7600 | 0.0005 | - | - |
507
+ | 1.3024 | 7800 | 0.001 | - | - |
508
+ | 1.3358 | 8000 | 0.0011 | 0.0017 | 0.8216 |
509
+ | 1.3692 | 8200 | 0.0007 | - | - |
510
+ | 1.4026 | 8400 | 0.0014 | - | - |
511
+ | 1.4193 | 8500 | - | 0.0014 | 0.8253 |
512
+ | 1.4360 | 8600 | 0.0003 | - | - |
513
+ | 1.4694 | 8800 | 0.0005 | - | - |
514
+ | 1.5028 | 9000 | 0.002 | 0.0012 | 0.8250 |
515
+ | 1.5361 | 9200 | 0.0013 | - | - |
516
+ | 1.5695 | 9400 | 0.0009 | - | - |
517
+ | 1.5862 | 9500 | - | 0.0003 | 0.8162 |
518
+ | 1.6029 | 9600 | 0.0021 | - | - |
519
+ | 1.6363 | 9800 | 0.0013 | - | - |
520
+ | 1.6697 | 10000 | 0.0005 | 0.0003 | 0.8234 |
521
+ | 1.7031 | 10200 | 0.0004 | - | - |
522
+ | 1.7365 | 10400 | 0.0004 | - | - |
523
+ | **1.7532** | **10500** | **-** | **0.0001** | **0.8225** |
524
+ | 1.7699 | 10600 | 0.0011 | - | - |
525
+ | 1.8033 | 10800 | 0.0004 | - | - |
526
+ | 1.8367 | 11000 | 0.0009 | 0.0008 | 0.8259 |
527
+ | 1.8701 | 11200 | 0.0024 | - | - |
528
+ | 1.9035 | 11400 | 0.0002 | - | - |
529
+ | 1.9202 | 11500 | - | 0.0008 | 0.8156 |
530
+ | 1.9369 | 11600 | 0.0007 | - | - |
531
+ | 1.9703 | 11800 | 0.0007 | - | - |
532
+
533
+ * The bold row denotes the saved checkpoint.
534
+
535
+ ### Framework Versions
536
+ - Python: 3.11.11
537
+ - Sentence Transformers: 3.4.1
538
+ - Transformers: 4.48.3
539
+ - PyTorch: 2.6.0+cu124
540
+ - Accelerate: 1.3.0
541
+ - Datasets: 3.4.1
542
+ - Tokenizers: 0.21.1
543
+
544
+ ## Citation
545
+
546
+ ### BibTeX
547
+
548
+ #### Sentence Transformers
549
+ ```bibtex
550
+ @inproceedings{reimers-2019-sentence-bert,
551
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
552
+ author = "Reimers, Nils and Gurevych, Iryna",
553
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
554
+ month = "11",
555
+ year = "2019",
556
+ publisher = "Association for Computational Linguistics",
557
+ url = "https://arxiv.org/abs/1908.10084",
558
+ }
559
+ ```
560
+
561
+ #### MultipleNegativesRankingLoss
562
+ ```bibtex
563
+ @misc{henderson2017efficient,
564
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
565
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
566
+ year={2017},
567
+ eprint={1705.00652},
568
+ archivePrefix={arXiv},
569
+ primaryClass={cs.CL}
570
+ }
571
+ ```
572
+
573
+ <!--
574
+ ## Glossary
575
+
576
+ *Clearly define terms in order to be accessible across audiences.*
577
+ -->
578
+
579
+ <!--
580
+ ## Model Card Authors
581
+
582
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
583
+ -->
584
+
585
+ <!--
586
+ ## Model Card Contact
587
+
588
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
589
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-miniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a078e89c48f3b3b7024334d73fa73c7755add45e88a0ea58e4ac81210981e417
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260