AI Source Detector (ViT-Base)
Detects and classifies the source of AI-generated images into five classes
(stable_diffusion
, midjourney
, dalle
, real
, other_ai
).
Model Details
- Architecture: ViT-Base Patch-16 ร 224
- Parameters: 86 M
- Fine-tuning epochs: 10
- Optimizer: AdamW (lr = 3e-5, wd = 0.01)
- Hardware: 1ร NVIDIA RTX 4090 (24 GB)
Training Data
Class | Images |
---|---|
Stable Diffusion | 12 000 |
Midjourney | 10 500 |
DALL-E 3 | 9 400 |
Real | 11 800 |
Other AI | 8 200 |
Total โ 52 k images - 80 % train / 10 % val / 10 % test.
Evaluation
Metric | Top-1 | Macro F1 |
---|---|---|
Validation | 92.8 % | 0.928 |
Test | 91.6 % | 0.914 |
Confusion Matrix (click to open)

Usage
from transformers import ViTImageProcessor, ViTForImageClassification, pipeline
classifier = pipeline(
task="image-classification",
model="yaya36095/ai-source-detector",
top_k=1
)
classifier("demo.jpg")
# โ [{'label': 'stable_diffusion', 'score': 0.97}]
- Downloads last month
- 522
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
1
Ask for provider support