YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Usage
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor, set_seed
from qwen_vl_utils import process_vision_info
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"yuki-imajuku/Qwen2.5-VL-3B-Instruct-FT-Manga109-OCR-Cropped",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2", # "sdpa" or "flash_attention_2"
device_map="auto",
)
processor = Qwen2_5_VLProcessor.from_pretrained("yuki-imajuku/Qwen2.5-VL-3B-Instruct-FT-Manga109-OCR-Cropped")
# processor = Qwen2_5_VLProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct") # If you failed the above
messages = [
{"role": "user", "content": [
{"type": "image", "image": f"file://{/abs/path/to/text_image.jpg}"},
{"type": "text", "text": "With this image, please output the result of OCR."}
]}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support