UI-TARS-1.5-7B / README.md
JjjFangg's picture
Upload folder using huggingface_hub
683d002 verified
|
raw
history blame contribute delete
8.37 kB
---
license: apache-2.0
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
- gui
library_name: transformers
---
# UI-TARS-1.5 Model
We shared the latest progress of the UI-TARS-1.5 model in [our blog](https://seed-tars.com/1.5/), which excels in playing games and performing GUI tasks.
## Introduction
UI-TARS-1.5, an open-source multimodal agent built upon a powerful vision-language model. It is capable of effectively performing diverse tasks within virtual worlds.
Leveraging the foundational architecture introduced in [our recent paper](https://arxiv.org/abs/2501.12326), UI-TARS-1.5 integrates advanced reasoning enabled by reinforcement learning. This allows the model to reason through its thoughts before taking action, significantly enhancing its performance and adaptability, particularly in inference-time scaling. Our new 1.5 version achieves state-of-the-art results across a variety of standard benchmarks, demonstrating strong reasoning capabilities and notable improvements over prior models.
<!-- ![Local Image](figures/UI-TARS.png) -->
<p align="center">
<video controls width="480">
<source src="https://huggingface.co/datasets/JjjFangg/Demo_video/resolve/main/GUI_demo.mp4" type="video/mp4">
</video>
<p>
<p align="center">
<video controls width="480">
<source src="https://huggingface.co/datasets/JjjFangg/Demo_video/resolve/main/Game_demo.mp4" type="video/mp4">
</video>
<p>
<!-- ![Local Image](figures/UI-TARS-vs-Previous-SOTA.png) -->
Code: https://github.com/bytedance/UI-TARS
Application: https://github.com/bytedance/UI-TARS-desktop
## Performance
**Online Benchmark Evaluation**
| Benchmark type | Benchmark | UI-TARS-1.5 | OpenAI CUA | Claude 3.7 | Previous SOTA |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------------|
| **Computer Use** | [OSworld](https://arxiv.org/abs/2404.07972) (100 steps) | **42.5** | 36.4 | 28 | 38.1 (200 step) |
| | [Windows Agent Arena](https://arxiv.org/abs/2409.08264) (50 steps) | **42.1** | - | - | 29.8 |
| **Browser Use** | [WebVoyager](https://arxiv.org/abs/2401.13919) | 84.8 | **87** | 84.1 | 87 |
| | [Online-Mind2web](https://arxiv.org/abs/2504.01382) | **75.8** | 71 | 62.9 | 71 |
| **Phone Use** | [Android World](https://arxiv.org/abs/2405.14573) | **64.2** | - | - | 59.5 |
**Grounding Capability Evaluation**
| Benchmark | UI-TARS-1.5 | OpenAI CUA | Claude 3.7 | Previous SOTA |
|-----------|-------------|------------|------------|----------------|
| [ScreensSpot-V2](https://arxiv.org/pdf/2410.23218) | **94.2** | 87.9 | 87.6 | 91.6 |
| [ScreenSpotPro](https://arxiv.org/pdf/2504.07981v1) | **61.6** | 23.4 | 27.7 | 43.6 |
**Poki Game**
| Model | [2048](https://poki.com/en/g/2048) | [cubinko](https://poki.com/en/g/cubinko) | [energy](https://poki.com/en/g/energy) | [free-the-key](https://poki.com/en/g/free-the-key) | [Gem-11](https://poki.com/en/g/gem-11) | [hex-frvr](https://poki.com/en/g/hex-frvr) | [Infinity-Loop](https://poki.com/en/g/infinity-loop) | [Maze:Path-of-Light](https://poki.com/en/g/maze-path-of-light) | [shapes](https://poki.com/en/g/shapes) | [snake-solver](https://poki.com/en/g/snake-solver) | [wood-blocks-3d](https://poki.com/en/g/wood-blocks-3d) | [yarn-untangle](https://poki.com/en/g/yarn-untangle) | [laser-maze-puzzle](https://poki.com/en/g/laser-maze-puzzle) | [tiles-master](https://poki.com/en/g/tiles-master) |
|-------------|-----------|--------------|-------------|-------------------|-------------|---------------|---------------------|--------------------------|-------------|--------------------|----------------------|---------------------|------------------------|---------------------|
| OpenAI CUA | 31.04 | 0.00 | 32.80 | 0.00 | 46.27 | 92.25 | 23.08 | 35.00 | 52.18 | 42.86 | 2.02 | 44.56 | 80.00 | 78.27 |
| Claude 3.7 | 43.05 | 0.00 | 41.60 | 0.00 | 0.00 | 30.76 | 2.31 | 82.00 | 6.26 | 42.86 | 0.00 | 13.77 | 28.00 | 52.18 |
| UI-TARS-1.5 | 100.00 | 0.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
**Minecraft**
| Task Type | Task Name | [VPT](https://openai.com/index/vpt/) | [DreamerV3](https://www.nature.com/articles/s41586-025-08744-2) | Previous SOTA | UI-TARS-1.5 w/o Thought | UI-TARS-1.5 w/ Thought |
|-------------|---------------------|----------|----------------|--------------------|------------------|-----------------|
| Mine Blocks | (oak_log) | 0.8 | 1.0 | 1.0 | 1.0 | 1.0 |
| | (obsidian) | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 |
| | (white_bed) | 0.0 | 0.0 | 0.1 | 0.4 | 0.6 |
| | **200 Tasks Avg.** | 0.06 | 0.03 | 0.32 | 0.35 | 0.42 |
| Kill Mobs | (mooshroom) | 0.0 | 0.0 | 0.1 | 0.3 | 0.4 |
| | (zombie) | 0.4 | 0.1 | 0.6 | 0.7 | 0.9 |
| | (chicken) | 0.1 | 0.0 | 0.4 | 0.5 | 0.6 |
| | **100 Tasks Avg.** | 0.04 | 0.03 | 0.18 | 0.25 | 0.31 |
## Model Scale Comparison
This table compares performance across different model scales of UI-TARS on the OSworld benchmark.
| **Benchmark Type** | **Benchmark** | **UI-TARS-72B-DPO** | **UI-TARS-1.5-7B** | **UI-TARS-1.5** |
|--------------------|------------------------------------|---------------------|--------------------|-----------------|
| Computer Use | [OSWorld](https://arxiv.org/abs/2404.07972) | 24.6 | 27.5 | **42.5** |
| GUI Grounding | [ScreenSpotPro](https://arxiv.org/pdf/2504.07981v1) | 38.1 | 49.6 | **61.6** |
The released UI-TARS-1.5-7B focuses primarily on enhancing general computer use capabilities and is not specifically optimized for game-based scenarios, where the UI-TARS-1.5 still holds a significant advantage.
## What's next
We are providing early research access to our top-performing UI-TARS-1.5 model to facilitate collaborative research. Interested researchers can contact us at [email protected].
## Citation
If you find our paper and model useful in your research, feel free to give us a cite.
```BibTeX
@article{qin2025ui,
title={UI-TARS: Pioneering Automated GUI Interaction with Native Agents},
author={Qin, Yujia and Ye, Yining and Fang, Junjie and Wang, Haoming and Liang, Shihao and Tian, Shizuo and Zhang, Junda and Li, Jiahao and Li, Yunxin and Huang, Shijue and others},
journal={arXiv preprint arXiv:2501.12326},
year={2025}
}
```