Feature Extraction
Transformers
Safetensors
English
Chinese
emova
Omni-modal-LLM
Multi-modal-LLM
Emotional-spoken-dialogue
custom_code
Eval Results
KaiChen1998's picture
Update README.md
e422d88 verified
metadata
library_name: transformers
tags:
  - Omni-modal-LLM
  - Multi-modal-LLM
  - Emotional-spoken-dialogue
license: apache-2.0
datasets:
  - Emova-ollm/emova-alignment-7m
  - Emova-ollm/emova-sft-4m
  - Emova-ollm/emova-sft-speech-231k
language:
  - en
  - zh
base_model:
  - Emova-ollm/qwen2vit600m
  - Emova-ollm/Qwen2.5-72B-Instruct_add_speech_token_4096_nostrip
model-index:
  - name: emova-qwen-2-5-72b-hf
    results:
      - task:
          type: multimodal
        dataset:
          name: AI2D
          type: ai2d
        metrics:
          - type: accuracy
            value: 85.8
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: ChartQA
          type: chartqa
        metrics:
          - type: accuracy
            value: 88.7
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: DocVQA
          type: docvqa
        metrics:
          - type: accuracy
            value: 95.9
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: InfoVQA
          type: infovqa
        metrics:
          - type: accuracy
            value: 83.2
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MathVerse
          type: mathverse
        metrics:
          - type: accuracy
            value: 50
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MathVista
          type: mathvista
        metrics:
          - type: accuracy
            value: 69.9
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MMBench
          type: mmbench
        metrics:
          - type: accuracy
            value: 86.4
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MME
          type: mme
        metrics:
          - type: score
            value: 2402
            name: score
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MMVet
          type: mmvet
        metrics:
          - type: accuracy
            value: 64.8
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: OCRBench
          type: ocrbench
        metrics:
          - type: accuracy
            value: 843
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: RealWorldQA
          type: realworldqa
        metrics:
          - type: accuracy
            value: 71
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: Seed-Bench-Image
          type: seed-bench-image
        metrics:
          - type: accuracy
            value: 76.6
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: Science-QA
          type: science-qa
        metrics:
          - type: accuracy
            value: 98.2
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: TextVQA
          type: textvqa
        metrics:
          - type: accuracy
            value: 81.4
            name: accuracy
            verified: true
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: LibriSpeech (clean)
          type: librispeech_asr
          config: clean
          split: test
          args:
            language: en
        metrics:
          - name: Test WER
            type: wer
            value: 2.9

EMOVA-Qwen-2.5-72B-HF

πŸ€— EMOVA-Models | πŸ€— EMOVA-Datasets | πŸ€— EMOVA-Demo
πŸ“„ Paper | 🌐 Project-Page | πŸ’» Github | πŸ’» EMOVA-Speech-Tokenizer-Github

Model Summary

EMOVA (EMotionally Omni-present Voice Assistant) is a novel end-to-end omni-modal LLM that can see, hear and speak without relying on external models. Given the omni-modal (i.e., textual, visual and speech) inputs, EMOVA can generate both textual and speech responses with vivid emotional controls by utilizing the speech decoder together with a style encoder. EMOVA possesses general omni-modal understanding and generation capabilities, featuring its superiority in advanced vision-language understanding, emotional spoken dialogue, and spoken dialogue with structural data understanding. We summarize its key advantages as:

  • State-of-the-art omni-modality performance: EMOVA achieves state-of-the-art comparable results on both vision-language and speech benchmarks simultaneously. Our best performing model, EMOVA-72B, even surpasses commercial models including GPT-4o and Gemini Pro 1.5.
  • Emotional spoken dialogue: A semantic-acoustic disentangled speech tokenizer and a lightweight style control module are adopted for seamless omni-modal alignment and diverse speech style controllability. EMOVA supports bilingual (Chinese and English) spoken dialogue with 24 speech style controls (i.e., 2 speakers, 3 pitches and 4 emotions).
  • Diverse configurations: We open-source 3 configurations, EMOVA-3B/7B/72B, to support omni-modal usage under different computational budgets. Check our Model Zoo and find the best fit model for your computational devices!

Performance

Benchmarks EMOVA-3B EMOVA-7B EMOVA-72B GPT-4o VITA 8x7B VITA 1.5 Baichuan-Omni
MME 2175 2317 2402 2310 2097 2311 2187
MMBench 79.2 83.0 86.4 83.4 71.8 76.6 76.2
SEED-Image 74.9 75.5 76.6 77.1 72.6 74.2 74.1
MM-Vet 57.3 59.4 64.8 - 41.6 51.1 65.4
RealWorldQA 62.6 67.5 71.0 75.4 59.0 66.8 62.6
TextVQA 77.2 78.0 81.4 - 71.8 74.9 74.3
ChartQA 81.5 84.9 88.7 85.7 76.6 79.6 79.6
DocVQA 93.5 94.2 95.9 92.8 - - -
InfoVQA 71.2 75.1 83.2 - - - -
OCRBench 803 814 843 736 678 752 700
ScienceQA-Img 92.7 96.4 98.2 - - - -
AI2D 78.6 81.7 85.8 84.6 73.1 79.3 -
MathVista 62.6 65.5 69.9 63.8 44.9 66.2 51.9
Mathverse 31.4 40.9 50.0 - - - -
Librispeech (WER↓) 5.4 4.1 2.9 - 3.4 8.1 -

Usage

This repo contains the EMOVA-Qwen2.5-72B checkpoint organized in the HuggingFace format, and thus, can be directly loaded with transformers Auto APIs.

from transformers import AutoModel, AutoProcessor
from PIL import Image
import torch

### Uncomment if you want to use Ascend NPUs
# import torch_npu
# from torch_npu.contrib import transfer_to_npu

# prepare models and processors
model = AutoModel.from_pretrained(
    "Emova-ollm/emova-qwen-2-5-72b-hf",
    torch_dtype=torch.bfloat16,
    attn_implementation='flash_attention_2', # OR 'sdpa' for Ascend NPUs
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
processor = AutoProcessor.from_pretrained("Emova-ollm/emova-qwen-2-5-72b-hf", trust_remote_code=True)

# only necessary for spoken dialogue
# Note to inference with speech inputs/outputs, **emova_speech_tokenizer** is still a necessary dependency (https://huggingface.co/Emova-ollm/emova_speech_tokenizer_hf#install).
speeck_tokenizer = AutoModel.from_pretrained("Emova-ollm/emova_speech_tokenizer_hf", torch_dtype=torch.float32, trust_remote_code=True).eval().cuda()
processor.set_speech_tokenizer(speeck_tokenizer)

# Example 1: image-text
inputs = dict(
    text=[
        {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
        {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What's shown in this image?"}]},
        {"role": "assistant", "content": [{"type": "text", "text": "This image shows a red stop sign."}]},
        {"role": "user", "content": [{"type": "text", "text": "Describe the image in more details."}]},
    ],
    images=Image.open('path/to/image')
)

# Example 2: text-audio
inputs = dict(
    text=[{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}],
    audios='path/to/audio'
)

# Example 3: image-text-audio
inputs = dict(
    text=[{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}],
    images=Image.open('path/to/image'),
    audios='path/to/audio'
)

# run processors
has_speech = 'audios' in inputs.keys()
inputs = processor(**inputs, return_tensors="pt")
inputs = inputs.to(model.device)

# prepare generation arguments
gen_kwargs = {"max_new_tokens": 4096, "do_sample": False} # add if necessary
speech_kwargs = {"speaker": "female", "output_wav_prefix": "output"} if has_speech else {}

# run generation
# for speech outputs, we will return the saved wav paths (c.f., output_wav_prefix)
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(processor.batch_decode(outputs, skip_special_tokens=True, **speech_kwargs))

Citation

@article{chen2024emova,
  title={Emova: Empowering language models to see, hear and speak with vivid emotions},
  author={Chen, Kai and Gou, Yunhao and Huang, Runhui and Liu, Zhili and Tan, Daxin and Xu, Jing and Wang, Chunwei and Zhu, Yi and Zeng, Yihan and Yang, Kuo and others},
  journal={arXiv preprint arXiv:2409.18042},
  year={2024}
}