|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- bigcode/the-stack |
|
- bigcode/the-stack-v2 |
|
- bigcode/starcoderdata |
|
- bigcode/commitpack |
|
library_name: transformers |
|
tags: |
|
- code |
|
base_model: |
|
- JetBrains/Mellum-4b-base |
|
model-index: |
|
- name: Mellum-4b-sft-python |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: tianyang/repobench_python_v1.1 |
|
name: RepoBench 1.1 (Python) |
|
metrics: |
|
- name: EM |
|
type: exact_match |
|
value: 0.2837 |
|
verified: false |
|
- name: EM ≤ 8k |
|
type: exact_match |
|
value: 0.2987 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: tianyang/repobench_python_v1.1 |
|
name: RepoBench 1.1 (Python, 2k) |
|
metrics: |
|
- name: EM |
|
type: exact_match |
|
value: 0.2924 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: tianyang/repobench_python_v1.1 |
|
name: RepoBench 1.1 (Python, 4k) |
|
metrics: |
|
- name: EM |
|
type: exact_match |
|
value: 0.3060 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: tianyang/repobench_python_v1.1 |
|
name: RepoBench 1.1 (Python, 8k) |
|
metrics: |
|
- name: EM |
|
type: exact_match |
|
value: 0.2977 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: tianyang/repobench_python_v1.1 |
|
name: RepoBench 1.1 (Python, 12k) |
|
metrics: |
|
- name: EM |
|
type: exact_match |
|
value: 0.2680 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: tianyang/repobench_python_v1.1 |
|
name: RepoBench 1.1 (Python, 16k) |
|
metrics: |
|
- name: EM |
|
type: exact_match |
|
value: 0.2543 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: gonglinyuan/safim |
|
name: SAFIM |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.4212 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: gonglinyuan/safim |
|
name: SAFIM (Algorithmic) |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.3316 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: gonglinyuan/safim |
|
name: SAFIM (Control) |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.3611 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: gonglinyuan/safim |
|
name: SAFIM (API) |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.5710 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: loubnabnl/humaneval_infilling |
|
name: HumanEval Infilling (Single-Line) |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.8045 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: loubnabnl/humaneval_infilling |
|
name: HumanEval Infilling (Multi-Line) |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.4819 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: loubnabnl/humaneval_infilling |
|
name: HumanEval Infilling (Random Span) |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.3768 |
|
verified: false |
|
--- |
|
|
|
# Model Description |
|
Mellum-4b-sft-python is a fine-tuned version of JetBrains' first open-source large language model (LLM) optimized for code-related tasks. |
|
|
|
Pre-trained on over 4 trillion tokens with a context window of 8192 tokens across multiple programming languages, and then fine-tuned, Mellum-4b-sft-python is tailored specifically for code completion in Python. |
|
The model follows a LLaMA-style architecture with 4 billion parameters, making it efficient for both cloud inference (e.g., via vLLM) and local deployment (e.g., using llama.cpp or Ollama). |
|
|
|
Mellum was trained using Automatic Mixed Precision (AMP) with bf16 precision. |
|
The uploaded version on Hugging Face retains the bf16 format for public use. |
|
|
|
Designed for integration into professional developer tooling (e.g., intelligent code suggestions in IDEs), AI-powered coding assistants, and research on code understanding and generation, Mellum is also well-suited for educational applications and fine-tuning experiments. |
|
|
|
# Limitations |
|
- Biases: May reflect biases present in public codebases. For example it will likely produce code which is similar in style to the open-source repositories. |
|
- Security: Code suggestions should not be assumed to be secure or free of vulnerabilities. |
|
|
|
# Sample Usage |
|
Here are examples of how to run and sample from the model. |
|
|
|
## Generic generaion |
|
```python |
|
import json |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
example = """ |
|
import sys |
|
import os |
|
import time |
|
|
|
sys.path.append(os.getcwd()) |
|
|
|
from cluster.prepare_data import get_headers_pairs_list, write_dist_matrix |
|
from cluster.token_edit_distance import get_distance_matrix |
|
|
|
if len(sys.argv) < 3: |
|
print( |
|
"Too few arguments. You should provide: \n1. dataset_filename" + |
|
"\n2. output_data_filename" |
|
) |
|
sys.exit() |
|
|
|
start = time.perf_counter() |
|
dataset_filename_ = sys.argv[1] |
|
output_data_filename_ = sys.argv[2] |
|
|
|
headers_pairs = get_headers_pairs_list(dataset_filename_, verbose=True) |
|
|
|
dist_matrix, max_dist = get_distance_matrix( |
|
list(map(lambda x: x[1], headers_pairs)), |
|
verbose=True |
|
) |
|
|
|
write_dist_matrix(dist_matrix, max_dist, output_data_filename_, verbose=True) |
|
|
|
end = time.perf_counter() |
|
""" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('JetBrains/Mellum-4b-sft-python') |
|
model = AutoModelForCausalLM.from_pretrained('JetBrains/Mellum-4b-sft-python') |
|
encoded_input = tokenizer(example, return_tensors='pt', return_token_type_ids=False) |
|
input_len = len(encoded_input["input_ids"][0]) |
|
out = model.generate( |
|
**encoded_input, |
|
max_new_tokens=100, |
|
) |
|
print("### Context") |
|
print(tokenizer.decode(out[0][:input_len])) |
|
print("### Prediction") |
|
print(tokenizer.decode(out[0][input_len:])) |
|
``` |
|
|
|
## Fill in the middle with additional files as context generation |
|
```python |
|
example = """<filename>utils.py |
|
def multiply(x, y): |
|
return x * y |
|
<filename>config.py |
|
DEBUG = True |
|
MAX_VALUE = 100 |
|
<filename>example.py |
|
<fim_suffix> |
|
|
|
# Test the function |
|
result = calculate_sum(5, 10) |
|
print(result)<fim_prefix>def calculate_sum(a, b): |
|
<fim_middle>""" |
|
|
|
encoded_input = tokenizer(example, return_tensors='pt', return_token_type_ids=False) |
|
out = model.generate( |
|
**encoded_input, |
|
max_new_tokens=100, |
|
) |
|
``` |
|
|
|
# Citation |
|
If you use this model, please cite: |
|
|
|
```bibtex |
|
@misc{Mellum-4b-base, |
|
title = {Mellum-4b-base}, |
|
author = {Pavlichenko, Nikita and Nazarov, Iurii and Dolgov, Ivan and Garanina, Ekaterina and Lasocki, Karol and Reshetnikova, Julia and Boitsov, Sergei and Bondyrev, Ivan and Karaeva, Dariia and Sheptyakov, Maksim and Ustalov, Dmitry and Abramov, Nikita and Kolomyttseva, Olga and Lysaniuk, Kseniia and Zavidnyi, Ilia and Semenkin, Anton and Tankov, Vladislav and Sazanovich, Uladzislau}, |
|
year = {2025}, |
|
} |
|
``` |
|
|
|
# Contact |
|
For questions, collaborations and requests reach us out via [email protected] |