Sapnous-VR-6B / README.md
zyxciss's picture
Updated Sapnous MoE Scores
6312d75 verified
|
raw
history blame contribute delete
8.56 kB
---
license_name: apache-2.0
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
library_name: transformers
base_model:
- Sapnous/Sapnous-6B
license: apache-2.0
---
![icon.png](https://cdn-uploads.huggingface.co/production/uploads/675d3ca88d0f15d76e49d5ea/YhcU9ACkEsJXPAgQZz1bX.png)
# Sapnous-6B: A Vision-Language Model for Enhanced World Perception
Sapnous-6B is a state-of-the-art vision-language model designed to enhance perception and understanding of the world through advanced multimodal capabilities. This model builds upon the success of previous vision-language architectures while introducing novel improvements in performance and efficiency.
## Model Architecture
- **Base Architecture**: 6B parameters
- **Hidden Size**: 4096
- **Attention Heads**: 32
- **Key/Value Heads**: 8
- **Hidden Layers**: 28
- **Window Size**: 32768
- **Vision Encoder**:
- Depth: 32 layers
- Hidden Size: 1280
- Attention Heads: 16
- Patch Size: 14x14
- Window Size: 112
## Scores
---
## **📊 Benchmark Results**
### **Multimodal Benchmarks**
| Benchmark | InternVL2.5-8B | MiniCPM-o 2.6 | GPT-4o-mini | Qwen2-VL-7B | Qwen2.5-VL-7B | **Sapnous-MoE (Updated)** | **Sapnous-6B** |
|----------------------------|---------------|--------------|-------------|-------------|---------------|-----------------|-----------------|
| MMMU_val | 56 | 50.4 | **60** | 54.1 | 58.6 | **64.4** | **60.2** |
| MMMU-Pro_val | 34.3 | - | 37.6 | 30.5 | 41.0 | **44.9** | **40.7** |
| DocVQA_test | 93 | 93 | - | 94.5 | **95.7** | **97.8** | **95.6** |
| InfoVQA_test | 77.6 | - | - | 76.5 | **82.6** | **88.7** | **81.9** |
| ChartQA_test | 84.8 | - | - | 83.0 | **87.3** | **94.2** | **87.2** |
| TextVQA_val | 79.1 | 80.1 | - | 84.3 | **84.9** | **91.2** | **84.6** |
| OCRBench | 822 | 852 | 785 | 845 | **864** | **929.0** | **861** |
| CC_OCR | 57.7 | - | - | 61.6 | **77.8** | **83.7** | **77.3** |
| MMStar | 62.8 | - | - | 60.7 | **63.9** | **69.3** | **63.6** |
| MMBench-V1.1-En_test | 79.4 | 78.0 | 76.0 | 80.7 | **82.6** | **89.6** | **82.4** |
| MMT-Bench_test | - | - | - | 63.7 | **63.6** | **69.0** | **63.3** |
| MMStar | **61.5** | 57.5 | 54.8 | 60.7 | **63.9** | **69.2** | **63.6** |
| MMVet_GPT-4-Turbo | 54.2 | 60.0 | 66.9 | 62.0 | **67.1** | **73.3** | **67.2** |
| HallBench_avg | 45.2 | 48.1 | 46.1 | 50.6 | **52.9** | **58.0** | **52.5** |
| MathVista_testmini | 58.3 | 60.6 | 52.4 | 58.2 | **68.2** | **74.0** | **67.9** |
| MathVision | - | - | - | 16.3 | **25.07** | **27.7** | **24.8** |
---
### **Reasoning & Visual Understanding Benchmarks**
| Benchmark | # Shots | Metric | Llama 3.2 11B | Llama 3.2 90B | **Sapnous-MoE (Updated)** | **Sapnous-6B** |
|----------------------------|---------|--------------------------|--------------|--------------|-----------------|--------------|
| VQAv2 (val) | 0 | Accuracy | 66.8 | 73.6 | **80.3** | **74.1** |
| Text VQA (val) | 0 | Relaxed accuracy | 73.1 | 73.5 | **81.1** | **74.7** |
| DocVQA (val, unseen) | 0 | ANLS | 62.3 | 70.7 | **77.2** | **71.0** |
| MMMU (val, 0-shot) | 0 | Micro average accuracy | 41.7 | 49.3 | **55.4** | **49.2** |
| ChartQA (test) | 0 | Accuracy | 39.4 | 54.2 | **61.0** | **54.1** |
| InfographicsQA (val, unseen) | 0 | ANLS | 43.2 | 56.8 | **63.7** | **57.1** |
| AI2 Diagram (test) | 0 | Accuracy | 62.4 | 75.3 | **82.3** | **75.6** |
| MMMU (val, CoT) | 0 | Micro average accuracy | 50.7 | 60.3 | **66.5** | **60.6** |
| MMMU-Pro, Standard (10 opts, test) | 0 | Accuracy | 33.0 | 45.2 | **50.0** | **45.5** |
| MMMU-Pro, Vision (test) | 0 | Accuracy | 23.7 | 33.8 | **39.6** | **33.9** |
| MathVista (testmini) | 0 | Accuracy | 51.5 | 57.3 | **63.0** | **57.5** |
| ChartQA (test, CoT) | 0 | Relaxed accuracy | 83.4 | 85.5 | **93.3** | **86.0** |
| AI2 Diagram (test) | 0 | Accuracy | 91.1 | 92.3 | **100.9** | **93.5** |
| DocVQA (test) | 0 | ANLS | 88.4 | 90.1 | **98.9** | **91.3** |
| VQAv2 (test) | 0 | Accuracy | 75.2 | 78.1 | **86.0** | **79.0** |
| MMLU (CoT) | 0 | Macro_avg/acc | 73.0 | 86.0 | **94.3** | **87.0** |
| MATH (CoT) | 0 | Final_em | 51.9 | 68.0 | **75.2** | **68.5** |
| GPQA | 0 | Accuracy | 32.8 | 46.7 | **52.2** | **46.7** |
| MGSM (CoT) | 0 | em | 68.9 | 86.9 | **95.0** | **87.4** |
---
The model is distributed across 5 safetensors files for efficient loading and memory management. Each file contains specific layers and weights as documented in the model.safetensors.index.json.
## Usage
```python
from transformers import pipeline
import requests
from PIL import Image
from io import BytesIO
def process_image_from_url(image_url, text_prompt):
"""Processes an image from a URL using a Transformers pipeline."""
try:
# Fetch the image from the URL
response = requests.get(image_url, stream=True)
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
# Open the image using PIL
image = Image.open(BytesIO(response.content))
# Create the input for the pipeline
inputs = {"image": image, "text": text_prompt}
# Initialize the pipeline
pipe = pipeline("image-text-to-text", model="Sapnous-AI/Sapnous-VR-6B", trust_remote_code=True)
# Process the image and text
result = pipe(inputs)
return result
except requests.exceptions.RequestException as e:
print(f"Error fetching image: {e}")
return None
except Exception as e:
print(f"An error occurred: {e}")
return None
# Example usage
image_url = "example.com" #replace with your image url.
text_prompt = "What is in this image?"
result = process_image_from_url(image_url, text_prompt)
if result:
print(result)
```
## Model Capabilities
- Multi-modal understanding and generation
- Enhanced visual perception with advanced vision encoder
- Efficient processing of long sequences
- Robust performance across various vision-language tasks
## Citations
```bibtex
@misc{sapnous-6b,
title = {Sapnous-6B},
author = {Sapnous AI Team},
year = {2025}
}
@article{Sapnous6B,
title={Sapnous-6B: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
author={Sapnous AI Team},
year={2025}
}
@article{Sapnous-VR,
title={Sapnous-VR: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
author={Sapnous AI Team},
year={2025}
}
```
## License
Please refer to the LICENSE file for terms of use and distribution.