metadata
library_name: transformers
license: mit
base_model: microsoft/biogpt
tags:
- generated_from_trainer
datasets:
- ncbi_disease
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: biogpt-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ncbi_disease
type: ncbi_disease
config: ncbi_disease
split: validation
args: ncbi_disease
metrics:
- name: Precision
type: precision
value: 0.38144329896907214
- name: Recall
type: recall
value: 0.4239583333333333
- name: F1
type: f1
value: 0.40157868771583616
- name: Accuracy
type: accuracy
value: 0.9519533004041311
biogpt-ner
This model is a fine-tuned version of microsoft/biogpt on the ncbi_disease dataset. It achieves the following results on the evaluation set:
- Loss: 0.1530
- Precision: 0.3814
- Recall: 0.4240
- F1: 0.4016
- Accuracy: 0.9520
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.51.2
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1