abdulrahman-nuzha's picture
End of training
4813a42 verified
metadata
library_name: transformers
license: mit
base_model: intfloat/e5-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: intfloat-e5-base-v2-english-fp16
    results: []

intfloat-e5-base-v2-english-fp16

This model is a fine-tuned version of intfloat/e5-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3221
  • Accuracy: 0.8870
  • Precision: 0.8870
  • Recall: 0.8870
  • F1: 0.8857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0595 0.3922 50 0.9726 0.4848 0.6053 0.4848 0.3207
0.8926 0.7843 100 0.7673 0.6464 0.7131 0.6464 0.5740
0.6469 1.1725 150 0.5323 0.8355 0.8342 0.8355 0.8318
0.439 1.5647 200 0.4221 0.8644 0.8670 0.8644 0.8614
0.3651 1.9569 250 0.3502 0.8703 0.8726 0.8703 0.8674
0.2839 2.3451 300 0.3221 0.8870 0.8870 0.8870 0.8857
0.2728 2.7373 350 0.3246 0.8831 0.8834 0.8831 0.8815
0.2459 3.1255 400 0.3564 0.8787 0.8807 0.8787 0.8768
0.1875 3.5176 450 0.3339 0.8846 0.8838 0.8846 0.8838

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1