abdulrahman-nuzha's picture
End of training
4112c38 verified
metadata
library_name: transformers
license: mit
base_model: intfloat/e5-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: intfloat-e5-small-arabic-fp16-allagree
    results: []

intfloat-e5-small-arabic-fp16-allagree

This model is a fine-tuned version of intfloat/e5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5430
  • Accuracy: 0.7845
  • Precision: 0.7994
  • Recall: 0.7845
  • F1: 0.7886

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0961 0.7463 50 1.0715 0.3853 0.7241 0.3853 0.2241
1.0181 1.4925 100 0.9009 0.6875 0.7524 0.6875 0.6122
0.8328 2.2388 150 0.7633 0.7052 0.7815 0.7052 0.6315
0.7492 2.9851 200 0.6860 0.7295 0.6952 0.7295 0.6858
0.6931 3.7313 250 0.6982 0.7369 0.7275 0.7369 0.7209
0.6623 4.4776 300 0.6326 0.7705 0.7544 0.7705 0.7485
0.6107 5.2239 350 0.6350 0.7556 0.7696 0.7556 0.7530
0.5789 5.9701 400 0.5892 0.7649 0.7924 0.7649 0.7713
0.5593 6.7164 450 0.5449 0.7985 0.7946 0.7985 0.7963
0.5343 7.4627 500 0.5486 0.7845 0.8008 0.7845 0.7897
0.5177 8.2090 550 0.5373 0.8013 0.8038 0.8013 0.8016
0.5201 8.9552 600 0.5370 0.7882 0.7996 0.7882 0.7915
0.4962 9.7015 650 0.5357 0.7882 0.7994 0.7882 0.7917

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0