boooooook/finetuned-bb
This model is a fine-tuned version of ntu-spml/distilhubert on the benben_demo dataset. It achieves the following results on the evaluation set:
- Loss: 0.4991
- Accuracy: 0.8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.8883 | 1.0 | 124 | 1.8304 | 0.5182 |
1.1287 | 2.0 | 248 | 1.1052 | 0.7 |
0.897 | 3.0 | 372 | 0.7974 | 0.8182 |
0.7703 | 4.0 | 496 | 0.6288 | 0.8 |
0.6084 | 5.0 | 620 | 0.5731 | 0.8364 |
0.2206 | 6.0 | 744 | 0.5133 | 0.8455 |
0.1527 | 7.0 | 868 | 0.5248 | 0.8182 |
0.128 | 8.0 | 992 | 0.4986 | 0.8364 |
0.1382 | 9.0 | 1116 | 0.4998 | 0.8273 |
0.0664 | 10.0 | 1240 | 0.4991 | 0.8 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for boooooook/finetuned-bb
Base model
ntu-spml/distilhubert