finetuned-bb / README.md
boooooook's picture
End of training
7cba3ed verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - boooooook/benben_demo
metrics:
  - accuracy
model-index:
  - name: boooooook/finetuned-bb
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: benben_demo
          type: boooooook/benben_demo
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8

boooooook/finetuned-bb

This model is a fine-tuned version of ntu-spml/distilhubert on the benben_demo dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4991
  • Accuracy: 0.8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8883 1.0 124 1.8304 0.5182
1.1287 2.0 248 1.1052 0.7
0.897 3.0 372 0.7974 0.8182
0.7703 4.0 496 0.6288 0.8
0.6084 5.0 620 0.5731 0.8364
0.2206 6.0 744 0.5133 0.8455
0.1527 7.0 868 0.5248 0.8182
0.128 8.0 992 0.4986 0.8364
0.1382 9.0 1116 0.4998 0.8273
0.0664 10.0 1240 0.4991 0.8

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1