Junyou03's picture
Update README.md
67d171a verified
|
raw
history blame contribute delete
4.03 kB
---
pretty_name: Stability-Landscape
license: cc-by-4.0
language:
- en
tags:
- graph-neural-networks
- kuramoto-oscillators
- basin-stability
- power-grids
- physics
- long-range-dependencies
size_categories:
- 100M<n<1B
datasets:
- name: KSL
annotation_type: synthetic
source_datasets: []
task_categories:
- graph-ml
- other
---
# πŸ“š Overview: Kuramoto-Stability-Landscape (KSL)
The dataset contains synthetic oscillator network topologies generated from the **second-order Kuramoto model**, widely used to analyze synchronization dynamics in complex systems like power grids and neuronal networks.
Two ensembles are included, each containing **10,000 unique network topologies**:
- **`dataset20`**: Networks consisting of **20 nodes** each.
- **`dataset100`**: Networks consisting of **100 nodes** each.
Each topology is associated with SNBS heatmaps, providing detailed spatial stability information per node.
---
## πŸ—ƒοΈ Data Structure and Content
The archive **`num_sections_20.tar`** contains two main directories within a single compressed `.tar` file:
```text
num_sections_20/
β”œβ”€β”€ ds20/
β”‚ β”œβ”€β”€ heatmap_grid_00001.h5
β”‚ β”œβ”€β”€ heatmap_grid_00002.h5
β”‚ └── ...
└── ds100/
β”œβ”€β”€ heatmap_grid_00001.h5
β”œβ”€β”€ heatmap_grid_00002.h5
└── ...
```
| Sub-dataset | # Graphs | Nodes / graph | Files | Heat-maps / file | Resolution |
|-------------|---------:|--------------:|------:|-----------------:|-----------:|
| `dataset20` | 10 000 | 20 | 10 000 **HDF5** | 40 (20Γ—`basin_heatmap_i` + 20Γ—`samples_heatmap_i`) | 20 Γ— 20 |
| `dataset100`| 10 000 | 100 | 10 000 **HDF5** | 200 (100Γ—`basin_heatmap_i` + 100Γ—`samples_heatmap_i`) | 20 Γ— 20 |
Each `.h5` file represents one unique oscillator network and includes:
- **`basin_heatmap_i`** (target variable):
- Continuous stability landscape representing dynamic stability intensity (values in [0, 1]).
- Shape: `(20, 20)` per node.
- **`samples_heatmap_i`** (auxiliary information):
- Number of Monte-Carlo perturbation samples per heatmap cell.
- Shape: `(20, 20)` per node.
- `i` corresponds to node indices:
- Nodes 1 to 20 for **dataset20**.
- Nodes 1 to 100 for **dataset100**.
### Examples:
- **`dataset20`**:
Each file contains **40 heatmaps** (`20 basin_heatmap_X` + `20 samples_heatmap_X`).
- **`dataset100`**:
Each file contains **200 heatmaps** (`100 basin_heatmap_X` + `100 samples_heatmap_X`).
---
## πŸš€ Intended Tasks
This dataset introduces a novel machine-learning task:
- **Graph-to-Image Regression**:
Predicting detailed SNBS heatmap landscapes directly from graph topology and nodal attributes.
### Downstream Application
- Single-node basin stability (SNBS) probability prediction.
- Stability analysis and robustness assessment of dynamical networks.
---
## πŸ§ͺ Data Splits
Each ensemble in our submission is pre-split into:
- **Training set**: 70%
- **Validation set**: 15%
- **Test set**: 15%
These splits enable consistent benchmarking and out-of-distribution evaluation.
---
## βš™οΈ Generation Methodology
- **Underlying Dynamical Model**: Second-order Kuramoto oscillators.
- **Perturbations**: Monte Carlo sampled perturbations `(Ο†, Ο†Μ‡)` applied per node.
- **Heatmap Computation**: Stability status (continuous stability value) and perturbation density computed per 20x20 spatial bins from raw simulation outcomes.
The dataset was generated using extensive computational resources (>500,000 CPU hours).
---
## πŸ“– Usage and Loading
To load and access data conveniently, first unpack the provided `.tar` file:
```bash
tar -xvf num_sections_20.tar
```
Then, for example, load .h5 files in Python:
```python
import h5py
import numpy as np
with h5py.File('num_sections_20/ds20/heatmap_grid_00001.h5', 'r') as f:
basin_heatmap_node1 = np.array(f['basin_heatmap_1'])
samples_heatmap_node1 = np.array(f['samples_heatmap_1'])
print(basin_heatmap_node1.shape) # (20, 20)
```