|
--- |
|
license: mit |
|
language: |
|
- en |
|
tags: |
|
- conversations |
|
- tagging |
|
- embeddings |
|
- bittensor |
|
- dialog |
|
- social media |
|
- podcast |
|
pretty_name: 5,000 Podcast Conversations with Metadata and Embedding Dataset |
|
size_categories: |
|
- 1M<n<10M |
|
--- |
|
## 🗂️ ReadyAI - 5,000 Podcast Conversations with Metadata and Embedding Dataset |
|
|
|
ReadyAI, operating subnet 33 on the [Bittensor Network](https://bittensor.com/) is an open-source initiative focused on low-cost, resource-minimal pipelines for structuring raw data for AI applications. |
|
This dataset is part of the ReadyAI Conversational Genome Project, leveraging the Bittensor decentralized network. |
|
|
|
AI runs on structured data — and this dataset bridges the gap between raw conversation transcripts and structured, vectorized semantic tags. |
|
|
|
You can find more about our subnet on GitHub [here](https://github.com/afterpartyai/bittensor-conversation-genome-project). |
|
|
|
--- |
|
|
|
## Full Vectors Access |
|
|
|
➡️ **Download the full 45 GB conversation tags embeddings** from [here](https://huggingface.co/datasets/ReadyAi/5000-podcast-conversations-with-metadata-and-embedding-dataset/tree/main/data) |
|
|
|
For large-scale processing and fine-tuning. |
|
|
|
--- |
|
|
|
## 📦 Dataset Versions |
|
|
|
In addition to the full dataset, two smaller versions are available: |
|
|
|
- **Small version** |
|
- Located in the `small_dataset` folder. |
|
- Contains 1,000 conversations with the same file structure as the full dataset. |
|
- All filenames are prefixed with `small_`. |
|
|
|
- **Medium version** |
|
- Located in the `medium_dataset` folder. |
|
- Contains 2,500 conversations |
|
- Also using the same structure and `medium_` prefix for all files. |
|
|
|
These subsets are ideal for lightweight experimentation, prototyping, or benchmarking. |
|
|
|
--- |
|
|
|
## 📋 Dataset Overview |
|
|
|
This dataset contains **annotated conversation transcripts** with: |
|
- Human-readable semantic tags |
|
- **Embedding vectors** contextualized to each conversation |
|
- Participant metadata |
|
|
|
It is ideal for: |
|
- Semantic search over conversations |
|
- AI assistant training (OpenAI models, fine-tuning) |
|
- Vector search implementations using **pg_vector** and **Pinecone** |
|
- Metadata analysis and tag retrieval for LLMs |
|
|
|
The embeddings were generated with the [text-embedding-ada-002](https://huggingface.co/Xenova/text-embedding-ada-002) model and have 1536 dimensions per tag. |
|
--- |
|
|
|
## 📂 Dataset Structure |
|
|
|
The dataset consists of four main components: |
|
|
|
### 1. **data/bittensor-conversational-tags-and-embeddings-part-*.parquet** — Tag Embeddings and Metadata |
|
|
|
Each Parquet file contains rows with: |
|
|
|
|
|
| Column | Type | Description | |
|
|:-------|:-----|:------------| |
|
| c_guid | int64 | Unique conversation group ID | |
|
| tag_id | int64 | Unique identifier for the tag | |
|
| tag | string | Semantic tag (e.g., "climate change") | |
|
| vector | list of float32 | Embedding vector representing the tag's meaning **in the conversation's context** | |
|
|
|
|
|
✅ Files split into ~1GB chunks for efficient loading and streaming. |
|
|
|
--- |
|
|
|
### 2. **tag_to_id.parquet** — Tag Mapping |
|
|
|
Mapping between tag IDs and human-readable tags. |
|
|
|
| Column | Type | Description | |
|
|:-------|:-----|:------------| |
|
| tag_id | int64 | Unique tag ID | |
|
| tag | string | Semantic tag text | |
|
|
|
✅ Useful for reverse-mapping tags from models or outputs. |
|
|
|
--- |
|
|
|
### 3. **conversations_to_tags.parquet** — Conversation-to-Tag Mappings |
|
|
|
Links conversations to their associated semantic tags. |
|
|
|
| Column | Type | Description | |
|
|:-------|:-----|:------------| |
|
| c_guid | int64 | Conversation group ID | |
|
| tag_ids | list of int64 | List of tag IDs relevant to the conversation | |
|
|
|
✅ For supervised training, retrieval tasks, or semantic labeling. |
|
|
|
--- |
|
|
|
### 4. **conversations_train.parquet** — Full Conversation Text and Participants |
|
|
|
Contains the raw multi-turn dialogue and metadata. |
|
|
|
| Column | Type | Description | |
|
|:-------|:-----|:------------| |
|
| c_guid | int64 | Conversation group ID | |
|
| transcript | string | Full conversation text | |
|
| participants | list of strings | List of speaker identifiers | |
|
|
|
✅ Useful for dialogue modeling, multi-speaker AI, or fine-tuning. |
|
|
|
--- |
|
|
|
## 🚀 How to Use |
|
|
|
**Install dependencies** |
|
|
|
```python |
|
pip install pandas pyarrow datasets |
|
``` |
|
|
|
**Download the dataset** |
|
```python |
|
import datasets |
|
|
|
path = "ReadyAi/5000-podcast-conversations-with-metadata-and-embedding-dataset" |
|
dataset = datasets.load_dataset(path) |
|
|
|
print(dataset['train'].column_names) |
|
``` |
|
|
|
**Load a single Parquet split** |
|
|
|
```python |
|
import pandas as pd |
|
|
|
df = pd.read_parquet("data/bittensor-conversational-tags-and-embeddings-part-0000.parquet") |
|
print(df.head()) |
|
``` |
|
|
|
**Load all tag splits** |
|
|
|
```python |
|
import pandas as pd |
|
import glob |
|
|
|
files = sorted(glob.glob("data/bittensor-conversational-tags-and-embeddings-part-*.parquet")) |
|
df_tags = pd.concat((pd.read_parquet(f) for f in files), ignore_index=True) |
|
|
|
print(f"Loaded {len(df_tags)} tag records.") |
|
``` |
|
|
|
**Load tag dictionary** |
|
|
|
```python |
|
tag_dict = pd.read_parquet("tag_to_id.parquet") |
|
print(tag_dict.head()) |
|
``` |
|
|
|
**Load conversation to tags mapping** |
|
|
|
```python |
|
df_mapping = pd.read_parquet("conversations_to_tags.parquet") |
|
print(df_mapping.head()) |
|
``` |
|
|
|
**Load full conversations dialog and metadata** |
|
|
|
```python |
|
df_conversations = pd.read_parquet("conversations_train.parquet") |
|
print(df_conversations.head()) |
|
``` |
|
|
|
--- |
|
|
|
## 🔥 Example: Reconstruct Tags for a Conversation |
|
|
|
```python |
|
# Build tag lookup |
|
tag_lookup = dict(zip(tag_dict['tag_id'], tag_dict['tag'])) |
|
|
|
# Pick a conversation |
|
sample = df_mapping.iloc[0] |
|
c_guid = sample['c_guid'] |
|
tag_ids = sample['tag_ids'] |
|
|
|
# Translate tag IDs to human-readable tags |
|
tags = [tag_lookup.get(tid, "Unknown") for tid in tag_ids] |
|
|
|
print(f"Conversation {c_guid} has tags: {tags}") |
|
``` |
|
|
|
--- |
|
|
|
## 📦 Handling Split Files |
|
|
|
| Situation | Strategy | |
|
|:----------|:---------| |
|
| Enough RAM | Use `pd.concat()` to merge splits | |
|
| Low memory | Process each split one-by-one | |
|
| Hugging Face datasets | Use streaming mode | |
|
|
|
**Example (streaming with Hugging Face `datasets`)** |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset( |
|
"ReadyAi/5000-podcast-conversations-with-metadata-and-embedding-dataset", |
|
split="train", |
|
streaming=True |
|
) |
|
|
|
for example in dataset: |
|
print(example) |
|
break |
|
``` |
|
|
|
--- |
|
|
|
## 📜 License |
|
|
|
MIT License |
|
✅ Free to use and modify |
|
|
|
--- |
|
|
|
## ✨ Credits |
|
|
|
Built using contributions from Bittensor conversational miners and the ReadyAI open-source community. |
|
|
|
--- |
|
|
|
## 🎯 Summary |
|
|
|
| Component | Description | |
|
|:----------|:------------| |
|
| parquets/part_*.parquet | Semantic tags and their contextual embeddings | |
|
| tag_to_id.parquet | Dictionary mapping of tag IDs to text | |
|
| conversations_to_tags.parquet | Links conversations to tags | |
|
| conversations_train.parquet | Full multi-turn dialogue with participant metadata | |
|
|