Datasets:
Tasks:
Question Answering
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
math
License:
license: apache-2.0 | |
task_categories: | |
- question-answering | |
language: | |
- en | |
tags: | |
- math | |
## Overview | |
VCBench provides a standardized framework for evaluating vision-language models. This document outlines the procedures for both standard evaluation and GPT-assisted evaluation of your model's outputs. | |
## 1. Standard Evaluation | |
### 1.1 Output Format Requirements | |
Models must produce outputs in JSONL format with the following structure: | |
``` | |
{"id": <int>, "pred_answer": "<answer_letter>"} | |
{"id": <int>, "pred_answer": "<answer_letter>"} | |
... | |
``` | |
**Example File (`submit.jsonl`):** | |
```json | |
{"id": 1, "pred_answer": "A"} | |
{"id": 2, "pred_answer": "B"} | |
{"id": 3, "pred_answer": "C"} | |
``` | |
### 1.2 Evaluation Procedure | |
1. Ensure your predictions file follows the specified format | |
2. Run the evaluation script: | |
```bash | |
python evaluate_vcbench.py -p ./path/to/predictions.jsonl -g ./path/to/VCBench_with_answer.json | |
``` | |
`VCBench_with_answer.json` is the ground truth file which can be downloaded from [here](https://huggingface.co/datasets/cloudcatcher2/VCBench/resolve/main/VCBench_with_answer.json). | |
## 2. GPT-Assisted Evaluation | |
### 2.1 Output Format Requirements | |
For natural language responses, use this JSONL format: | |
``` | |
{"id": <int>, "pred_answer": "<natural_language_response>"} | |
{"id": <int>, "pred_answer": "<natural_language_response>"} | |
... | |
``` | |
**Example File (`nl_predictions.jsonl`):** | |
```json | |
{"id": 1, "pred_answer": "The correct answer is A"} | |
{"id": 2, "pred_answer": "After careful analysis, option B appears correct"} | |
{"id": 3, "pred_answer": "C is the right choice"} | |
``` | |
### 2.2 Environment Setup | |
Set your Dashscope API key: | |
```bash | |
export DASHSCOPE_KEY="your_api_key_here" | |
``` | |
### 2.3 Evaluation Procedure | |
```bash | |
python evaluate_vcbench_by_gpt.py -p ./path/to/nl_predictions.jsonl -g ./path/to/VCBench_with_answer.json | |
``` | |
## 3. Expected Output | |
Both evaluation scripts will provide: | |
- Overall accuracy percentage | |
- Per-question-type accuracy breakdown | |
- Progress updates during evaluation | |
## Citation | |
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> | |
**BibTeX:** | |
```bibtex | |
@misc{wong2025vcbench | |
author = {Zhikai Wang and Jiashuo Sun and Wenqi Zhang and Zhiqiang Hu and Xin Li and Fan Wang and Deli Zhao}, | |
title = {Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency}, | |
year = {2025}, | |
eprint = {2504.18589}, | |
archivePrefix = {arxiv}, | |
primaryClass = {cs.CV}, | |
url = {https://arxiv.org/abs/2504.18589} | |
} | |
``` | |
## Dataset Card Authors | |
- [Zhikai Wang](https://cloudcatcher888.github.io/): [email protected] | |
- [Jiashuo Sun](https://gasolsun36.github.io/): [email protected] | |