g-ronimo's picture
Update README.md
fd574b1 verified
metadata
dataset_info:
  features:
    - name: label
      dtype: string
    - name: latent
      sequence:
        sequence:
          sequence:
            sequence: float32
  splits:
    - name: train
      num_bytes: 10743176571
      num_examples: 1281167
    - name: test
      num_bytes: 419229818
      num_examples: 50000
  download_size: 2961362265
  dataset_size: 11162406389
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train.*
      - split: test
        path: data/validation.*
class ImageNet96Dataset(torch.utils.data.Dataset):
    
    def __init__(
        self, hf_ds, text_enc, tokenizer, bs, ddp, col_label="label", col_latent="latent"
    ):
        self.hf_ds=hf_ds
        self.col_label, self.col_latent = col_label, col_latent
        self.text_enc, self.tokenizer =  text_enc, tokenizer
        self.tokenizer.padding_side = "right"
        self.prompt_len = 50
        
        if ddp: 
            self.sampler = DistributedSampler(hf_ds, shuffle = True, seed = seed)
        else: 
            self.sampler = RandomSampler(hf_ds, generator = torch.manual_seed(seed))
        self.dataloader = DataLoader(
            hf_ds, sampler=self.sampler, collate_fn=self.collate, batch_size=bs, num_workers=4, prefetch_factor=2
        )
    
    def collate(self, items):
        labels = [i[self.col_label] for i in items]
        # latents shape [B, num_aug, 32, 3, 3]
        latents = torch.Tensor([i[self.col_latent] for i in items])
        B, num_aug, _, _, _ = latents.shape

        # pick random augmentation -> latents shape [B, 32, 3, 3]
        aug_idx = torch.randint(0, num_aug, (B,))  # Random int between 0-4 for each batch item
        batch_idx = torch.arange(B)
        latents = latents[batch_idx, aug_idx] 

        return labels, latents
        
    def __iter__(self):
        for labels, latents in self.dataloader:
            label_embs, label_atnmasks = self.encode_prompts(labels)
            latents = latents.to(dtype).to(device)
            yield labels, latents, label_embs, label_atnmasks
    
    def encode_prompts(self, prompts):
        prompts_tok = self.tokenizer(
            prompts, padding="max_length", truncation=True, max_length=self.prompt_len, return_tensors="pt"
        )
        with torch.no_grad():
            prompts_encoded = self.text_enc(**prompts_tok.to(self.text_enc.device))
        return prompts_encoded.last_hidden_state, prompts_tok.attention_mask

    def __len__(self):
        return len(self.dataloader)