|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- object-detection |
|
language: |
|
- en |
|
--- |
|
|
|
|
|
# 8-Calves Dataset |
|
|
|
[](https://arxiv.org/abs/2503.13777) |
|
|
|
A benchmark dataset for occlusion-rich object detection, identity classification, and multi-object tracking. Features 8 Holstein Friesian calves with unique coat patterns in a 1-hour video with temporal annotations. |
|
|
|
--- |
|
|
|
## Overview |
|
This dataset provides: |
|
- 🕒 **1-hour video** (67,760 frames @20 fps, 600x800 resolution) |
|
- 🎯 **537,908 verified bounding boxes** with calf identities (1-8) |
|
- 🖼️ **900 hand-labeled static frames** for detection tasks |
|
- Designed to evaluate robustness in occlusion handling, identity preservation, and temporal consistency. |
|
|
|
|
|
<img src="dataset_screenshot.png" alt="Dataset Example Frame" width="50%" /> |
|
*Example frame with bounding boxes (green) and calf identities. Challenges include occlusion, motion blur, and pose variation.* |
|
|
|
--- |
|
|
|
## Key Features |
|
- **Temporal Richness**: 1-hour continuous recording (vs. 10-minute benchmarks like 3D-POP) |
|
- **High-Quality Labels**: |
|
- Generated via **ByteTrack + YOLOv8m** pipeline with manual correction |
|
- <0.56% annotation error rate |
|
- **Unique Challenges**: Motion blur, pose variation, and frequent occlusions |
|
- **Efficiency Testing**: Compare lightweight (e.g., YOLOv9t) vs. large models (e.g., ConvNextV2) |
|
|
|
--- |
|
|
|
## Dataset Structure |
|
|
|
|
|
hand_labelled_frames/ # 900 manually annotated frames and labels in YOLO format, class=0 for cows |
|
|
|
pmfeed_4_3_16.avi # 1-hour video (4th March 2016) |
|
|
|
pmfeed_4_3_16_bboxes_and_labels.pkl # Temporal annotations |
|
|
|
|
|
### Annotation Details |
|
**PKL File Columns**: |
|
| Column | Description | |
|
|--------|-------------| |
|
| `class` | Always `0` (cow detection) | |
|
| `x`, `y`, `w`, `h` | YOLO-format bounding boxes | |
|
| `conf` | Ignore (detections manually verified) | |
|
| `tracklet_id` | Calf identity (1-8) | |
|
| `frame_id` | Temporal index matching video | |
|
|
|
**Load annotations**: |
|
```python |
|
import pandas as pd |
|
df = pd.read_pickle("pmfeed_4_3_16_bboxes_and_labels.pkl") |
|
``` |
|
|
|
## Usage |
|
### Dataset Download: |
|
|
|
Step 1: install git-lfs: |
|
`git lfs install` |
|
|
|
Step 2: |
|
`git clone [email protected]:datasets/tonyFang04/8-calves` |
|
|
|
Step 3: install conda and pip environments: |
|
``` |
|
conda create --name new_env --file conda_requirements.txt |
|
pip install -r pip_requirements.txt |
|
``` |
|
### Object Detection |
|
- **Training/Validation**: Use the first 600 frames from `hand_labelled_frames/` (chronological split). |
|
- **Testing**: Evaluate on the full video (`pmfeed_4_3_16.avi`) using the provided PKL annotations. |
|
- ⚠️ **Avoid Data Leakage**: Do not use all 900 frames for training - they are temporally linked to the test video. |
|
|
|
**Recommended Split**: |
|
| Split | Frames | Purpose | |
|
|------------|--------|------------------| |
|
| Training | 500 | Model training | |
|
| Validation | 100 | Hyperparameter tuning | |
|
| Test | 67,760 | Final evaluation | |
|
|
|
### Benchmarking YOLO Models: |
|
|
|
Step 1: |
|
`cd 8-calves/object_detector_benchmark`. Run |
|
`./create_yolo_dataset.sh` and |
|
`create_yolo_testset.py`. This creates a YOLO dataset with the 500/100/67760 train/val/test split recommended above. |
|
|
|
Step 2: find the `Albumentations` class in the `data/augment.py` file in ultralytics source code. And replace the default transforms to: |
|
|
|
``` |
|
# Transforms |
|
T = [ |
|
A.RandomRotate90(p=1.0), |
|
A.HorizontalFlip(p=0.5), |
|
A.RandomBrightnessContrast(p=0.4), |
|
A.ElasticTransform( |
|
alpha=100.0, |
|
sigma=5.0, |
|
p=0.5 |
|
), |
|
] |
|
``` |
|
|
|
Step 3: |
|
run the yolo detectors following the following commands: |
|
|
|
``` |
|
cd yolo_benchmark |
|
|
|
Model_Name=yolov9t |
|
|
|
yolo cfg=experiment.yaml model=$Model_Name.yaml name=$Model_Name |
|
``` |
|
|
|
### Benchmark Transformer Based Models: |
|
|
|
Step 1: run the following commands to load the data into yolo format, then into coco, then into arrow: |
|
``` |
|
cd 8-calves/object_detector_benchmark |
|
./create_yolo_dataset.sh |
|
python create_yolo_testset.py |
|
python yolo_to_coco.py |
|
python data_wrangling.py |
|
``` |
|
|
|
Step 2: run the following commands to train: |
|
``` |
|
cd transformer_benchmark |
|
python train.py --config Configs/conditional_detr.yaml |
|
``` |
|
|
|
### Temporal Classification |
|
- Use `tracklet_id` (1-8) from the PKL file as labels. |
|
- **Temporal Split**: 30% train / 30% val / 40% test (chronological order). |
|
|
|
### Benchmark vision models for temporal classification: |
|
|
|
Step 1: cropping the bounding boxes from `pmfeed_4_3_16.mp4` using the correct labels in `pmfeed_4_3_16_bboxes_and_labels.pkl`. Then convert the folder of images cropped from `pmfeed_4_3_16.mp4` into lmdb dataset for fast loading: |
|
``` |
|
cd identification_benchmark |
|
python crop_pmfeed_4_3_16.py |
|
python construct_lmdb.py |
|
``` |
|
|
|
Step 2: get embeddings from vision model: |
|
``` |
|
cd big_model_inference |
|
``` |
|
Use `inference_resnet.py` to get embeddings from resnet and `inference_transformers.py` to get embeddings from transformer weights available on Huggingface: |
|
``` |
|
python inference_resnet.py --resnet_type resnet18 |
|
python inference_transformers.py --model_name facebook/convnextv2-nano-1k-224 |
|
``` |
|
|
|
Step 3: use the embeddings and labels obtained from step 2 to conduct knn evaluation and linear classification: |
|
|
|
``` |
|
cd ../classification |
|
python train.py |
|
python knn_evaluation.py |
|
``` |
|
|
|
## Key Results |
|
|
|
### Object Detection (YOLO Models) |
|
| Model | Parameters (M) | mAP50:95 (%) | Inference Speed (ms/sample) | |
|
|-------------|----------------|--------------|-----------------------------| |
|
| **YOLOv9c** | 25.6 | **68.4** | 2.8 | |
|
| YOLOv8x | 68.2 | 68.2 | 4.4 | |
|
| YOLOv10n | 2.8 | 64.6 | 0.7 | |
|
|
|
--- |
|
|
|
### Identity Classification (Top Models) |
|
| Model | Accuracy (%) | KNN Top-1 (%) | Parameters (M) | |
|
|----------------|--------------|---------------|----------------| |
|
| **ConvNextV2-Nano** | 73.1 | 50.8 | 15.6 | |
|
| Swin-Tiny | 68.7 | 43.9 | 28.3 | |
|
| ResNet50 | 63.7 | 38.3 | 25.6 | |
|
|
|
--- |
|
|
|
**Notes**: |
|
- **mAP50:95**: Mean Average Precision at IoU thresholds 0.5–0.95. |
|
- **KNN Top-1**: Nearest-neighbor accuracy using embeddings. |
|
- Full results and methodology: [arXiv paper](https://arxiv.org/abs/2503.13777). |
|
|
|
|
|
## License |
|
This dataset is released under [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/). |
|
*Modifications/redistribution must include attribution.* |
|
|
|
## Citation |
|
```bibtex |
|
@article{fang20248calves, |
|
title={8-Calves: A Benchmark for Object Detection and Identity Classification in Occlusion-Rich Environments}, |
|
author={Fang, Xuyang and Hannuna, Sion and Campbell, Neill}, |
|
journal={arXiv preprint arXiv:2503.13777}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## Contact |
|
**Dataset Maintainer**: |
|
Xuyang Fang |
|
Email: [[email protected]](mailto:[email protected]) |