Dataset Viewer (First 5GB)
Auto-converted to Parquet
blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
135
path
stringlengths
2
372
src_encoding
stringclasses
26 values
length_bytes
int64
55
3.18M
score
float64
2.52
5.19
int_score
int64
3
5
detected_licenses
sequencelengths
0
38
license_type
stringclasses
2 values
code
stringlengths
55
3.18M
used_libs
sequencelengths
1
5
ee92269ab11111536b7b926e909d4a4c4766270b
Python
PanditRohit/COVID-19-Data-Analysis
/COVID-19 Data Analysis.py
UTF-8
2,943
3.28125
3
[]
no_license
# Import Libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt #Import Covid-19 Dataset corona_dataset_csv = pd.read_csv("C:/Users/pandit/Downloads/covid19_Confirmed_dataset.csv") corona_dataset_csv.head() corona_dataset_csv.shape #Delete the useless columns after Exploratory Data Analysis corona_dataset_csv.drop(["Lat","Long"],axis=1,inplace=True) corona_dataset_csv.head(10) #Aggregating the rows by the country corona_dataset_aggregated=corona_dataset_csv.groupby("Country/Region").sum() corona_dataset_aggregated.head() corona_dataset_aggregated.shape #Visualizing Data related to Countries corona_dataset_aggregated.loc["China"].plot() corona_dataset_aggregated.loc["India"].plot() corona_dataset_aggregated.loc["Italy"].plot() plt.legend() #Calculating a good measure corona_dataset_aggregated.loc['China'][:3].plot() corona_dataset_aggregated.loc['China'].diff().plot() #Finding maximum infection rates for Selected countries corona_dataset_aggregated.loc['China'].diff().max() corona_dataset_aggregated.loc['India'].diff().max() corona_dataset_aggregated.loc['Italy'].diff().max() #Find maximum infection rate for all the countries countries = list(corona_dataset_aggregated.index) max_infection_rates=[] for c in countries : max_infection_rates.append(corona_dataset_aggregated.loc[c].diff().max()) corona_dataset_aggregated["max_infection_rates"] = max_infection_rates corona_dataset_aggregated.head() #Create a new dataframe with only needed column corona_data = pd.DataFrame(corona_dataset_aggregated["max_infection_rates"]) corona_data.head() #Now import world happiness report dataset happiness_report = pd.read_csv("C:/Users/pandit/Downloads/worldwide_happiness_report.csv") happiness_report.head() #Make a list of useless columns and drop the same useless_cols = ["Overall rank","Score","Generosity","Perceptions of corruption"] happiness_report.drop(useless_cols,axis=1,inplace=True) happiness_report.head() #Change the indices of the dataframe happiness_report.set_index("Country or region",inplace=True) happiness_report.head() #Check the shapes of both the dataframes corona_data.head() corona_data.shape happiness_report.shape #Join the two datasets using inner join as the shape of the datasets vary data=corona_data.join(happiness_report,how="inner") data.head() #Create a correlation matrix data.corr() #Visualization of the results data.head() #Plotting GDP vs maximum infection rates x = data["GDP per capita"] y = data["max_infection_rates"] sns.scatterplot(x,np.log(y)) sns.regplot(x,np.log(y)) #Plotting social support vs maximum infection rates x = data["Social support"] y = data["max_infection_rates"] sns.scatterplot(x,np.log(y)) sns.regplot(x,np.log(y)) #Plotting Healthy life expectancy vs maximum infection rates x = data["Healthy life expectancy"] y = data["max_infection_rates"] sns.scatterplot(x,np.log(y)) sns.regplot(x,np.log(y))
[ "matplotlib", "seaborn" ]
e435765339472ea9173527d546970d87a0d1c7fc
Python
elofamomo/btTTVT
/sampling.py
UTF-8
10,333
2.578125
3
[]
no_license
"""This file contains code used in "Think DSP", by Allen B. Downey, available from greenteapress.com Copyright 2015 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import thinkdsp import thinkplot import numpy as np import matplotlib.pyplot as plt PI2 = 2 * np.pi FORMATS = ['pdf', 'eps'] def plot_beeps(): wave = thinkdsp.read_wave('253887__themusicalnomad__positive-beeps.wav') wave.normalize() thinkplot.preplot(3) # top left ax1 = plt.subplot2grid((4, 2), (0, 0), rowspan=2) plt.setp(ax1.get_xticklabels(), visible=False) wave.plot() thinkplot.config(title='Input waves', legend=False) # bottom left imp_sig = thinkdsp.Impulses([0.01, 0.4, 0.8, 1.2], amps=[1, 0.5, 0.25, 0.1]) impulses = imp_sig.make_wave(start=0, duration=1.3, framerate=wave.framerate) ax2 = plt.subplot2grid((4, 2), (2, 0), rowspan=2, sharex=ax1) impulses.plot() thinkplot.config(xlabel='Time (s)') # center right convolved = wave.convolve(impulses) ax3 = plt.subplot2grid((4, 2), (1, 1), rowspan=2) plt.title('Convolution') convolved.plot() thinkplot.config(xlabel='Time (s)') thinkplot.save(root='sampling1', formats=FORMATS, legend=False) XLIM = [-22050, 22050] def plot_am(): wave = thinkdsp.read_wave('105977__wcfl10__favorite-station.wav') wave.unbias() wave.normalize() # top ax1 = thinkplot.preplot(6, rows=4) spectrum = wave.make_spectrum(full=True) spectrum.plot(label='spectrum') thinkplot.config(xlim=XLIM, xticklabels='invisible') #second carrier_sig = thinkdsp.CosSignal(freq=10000) carrier_wave = carrier_sig.make_wave(duration=wave.duration, framerate=wave.framerate) modulated = wave * carrier_wave ax2 = thinkplot.subplot(2, sharey=ax1) modulated.make_spectrum(full=True).plot(label='modulated') thinkplot.config(xlim=XLIM, xticklabels='invisible') # third demodulated = modulated * carrier_wave demodulated_spectrum = demodulated.make_spectrum(full=True) ax3 = thinkplot.subplot(3, sharey=ax1) demodulated_spectrum.plot(label='demodulated') thinkplot.config(xlim=XLIM, xticklabels='invisible') #fourth ax4 = thinkplot.subplot(4, sharey=ax1) demodulated_spectrum.low_pass(10000) demodulated_spectrum.plot(label='filtered') thinkplot.config(xlim=XLIM, xlabel='Frequency (Hz)') thinkplot.save(root='sampling2', formats=FORMATS) #carrier_spectrum = carrier_wave.make_spectrum(full=True) #carrier_spectrum.plot() #convolved = spectrum.convolve(carrier_spectrum) #convolved.plot() #reconvolved = convolved.convolve(carrier_spectrum) #reconvolved.plot() def sample(wave, factor): """Simulates sampling of a wave. wave: Wave object factor: ratio of the new framerate to the original """ ys = np.zeros(len(wave)) ys[::factor] = wave.ys[::factor] ts = wave.ts[:] return thinkdsp.Wave(ys, ts, wave.framerate) def make_impulses(wave, factor): ys = np.zeros(len(wave)) ys[::factor] = 1 ts = np.arange(len(wave)) / wave.framerate return thinkdsp.Wave(ys, ts, wave.framerate) def plot_segments(original, filtered): start = 1 duration = 0.01 original.segment(start=start, duration=duration).plot(color='gray') filtered.segment(start=start, duration=duration).plot() def plot_sampling(wave, root): ax1 = thinkplot.preplot(2, rows=2) wave.make_spectrum(full=True).plot(label='spectrum') thinkplot.config(xlim=XLIM, xticklabels='invisible') ax2 = thinkplot.subplot(2) sampled = sample(wave, 4) sampled.make_spectrum(full=True).plot(label='sampled') thinkplot.config(xlim=XLIM, xlabel='Frequency (Hz)') thinkplot.save(root=root, formats=FORMATS) def plot_sampling2(wave, root): ax1 = thinkplot.preplot(6, rows=4) wave.make_spectrum(full=True).plot(label='spectrum') thinkplot.config(xlim=XLIM, xticklabels='invisible') ax2 = thinkplot.subplot(2) impulses = make_impulses(wave, 4) impulses.make_spectrum(full=True).plot(label='impulses') thinkplot.config(xlim=XLIM, xticklabels='invisible') ax3 = thinkplot.subplot(3) sampled = wave * impulses spectrum = sampled.make_spectrum(full=True) spectrum.plot(label='sampled') thinkplot.config(xlim=XLIM, xticklabels='invisible') ax4 = thinkplot.subplot(4) spectrum.low_pass(5512.5) spectrum.plot(label='filtered') thinkplot.config(xlim=XLIM, xlabel='Frequency (Hz)') thinkplot.save(root=root, formats=FORMATS) def plot_sampling3(wave, root): ax1 = thinkplot.preplot(6, rows=3) wave.make_spectrum(full=True).plot(label='spectrum') thinkplot.config(xlim=XLIM, xticklabels='invisible') impulses = make_impulses(wave, 4) ax2 = thinkplot.subplot(2) sampled = wave * impulses spectrum = sampled.make_spectrum(full=True) spectrum.plot(label='sampled') thinkplot.config(xlim=XLIM, xticklabels='invisible') ax3 = thinkplot.subplot(3) spectrum.low_pass(5512.5) spectrum.plot(label='filtered') thinkplot.config(xlim=XLIM, xlabel='Frequency (Hz)') thinkplot.save(root=root, formats=FORMATS) #filtered = spectrum.make_wave() #plot_segments(wave, filtered) def make_boxcar(spectrum, factor): """Makes a boxcar filter for the given spectrum. spectrum: Spectrum to be filtered factor: sampling factor """ fs = np.copy(spectrum.fs) hs = np.zeros_like(spectrum.hs) cutoff = spectrum.framerate / 2 / factor for i, f in enumerate(fs): if abs(f) <= cutoff: hs[i] = 1 return thinkdsp.Spectrum(hs, fs, spectrum.framerate, full=spectrum.full) def plot_sinc_demo(wave, factor, start=None, duration=None): def make_sinc(t, i, y): """Makes a shifted, scaled copy of the sinc function.""" sinc = boxcar.make_wave() sinc.shift(t) sinc.roll(i) sinc.scale(y * factor) return sinc def plot_mini_sincs(wave): """Plots sinc functions for each sample in wave.""" t0 = wave.ts[0] for i in range(0, len(wave), factor): sinc = make_sinc(t0, i, wave.ys[i]) seg = sinc.segment(start, duration) seg.plot(color='green', linewidth=0.5, alpha=0.3) if i == 0: total = sinc else: total += sinc seg = total.segment(start, duration) seg.plot(color='blue', alpha=0.5) sampled = sample(wave, factor) spectrum = sampled.make_spectrum() boxcar = make_boxcar(spectrum, factor) start = wave.start if start is None else start duration = wave.duration if duration is None else duration sampled.segment(start, duration).plot_vlines(color='gray') wave.segment(start, duration).plot(color='gray') plot_mini_sincs(wave) def plot_sincs(wave): start = 1.0 duration = 0.01 factor = 4 short = wave.segment(start=start, duration=duration) #short.plot() sampled = sample(short, factor) #sampled.plot_vlines(color='gray') spectrum = sampled.make_spectrum(full=True) boxcar = make_boxcar(spectrum, factor) sinc = boxcar.make_wave() sinc.shift(sampled.ts[0]) sinc.roll(len(sinc)//2) thinkplot.preplot(2, cols=2) sinc.plot() thinkplot.config(xlabel='Time (s)') thinkplot.subplot(2) boxcar.plot() thinkplot.config(xlabel='Frequency (Hz)', ylim=[0, 1.05], xlim=[-boxcar.max_freq, boxcar.max_freq]) thinkplot.save(root='sampling6', formats=FORMATS) return # CAUTION: don't call plot_sinc_demo with a large wave or it will # fill memory and crash plot_sinc_demo(short, 4) thinkplot.config(xlabel='Time (s)') thinkplot.save(root='sampling7', formats=FORMATS) start = short.start + 0.004 duration = 0.00061 plot_sinc_demo(short, 4, start, duration) thinkplot.config(xlabel='Time (s)', xlim=[start, start+duration], ylim=[-0.06, 0.17], legend=False) thinkplot.save(root='sampling8', formats=FORMATS) def kill_yticklabels(): axis = plt.gca() plt.setp(axis.get_yticklabels(), visible=False) def show_impulses(wave, factor, i): thinkplot.subplot(i) thinkplot.preplot(2) impulses = make_impulses(wave, factor) impulses.segment(0, 0.001).plot_vlines(linewidth=2, xfactor=1000) if i == 1: thinkplot.config(title='Impulse train', ylim=[0, 1.05]) else: thinkplot.config(xlabel='Time (ms)', ylim=[0, 1.05]) thinkplot.subplot(i+1) impulses.make_spectrum(full=True).plot() kill_yticklabels() if i == 1: thinkplot.config(title='DFT of impulse train', xlim=[-22400, 22400]) else: thinkplot.config(xlabel='Frequency (Hz)', xlim=[-22400, 22400]) def plot_impulses(wave): thinkplot.preplot(rows=2, cols=2) show_impulses(wave, 4, 1) show_impulses(wave, 8, 3) thinkplot.save('sampling9', formats=FORMATS) def main(): wave = thinkdsp.read_wave('328878__tzurkan__guitar-phrase-tzu.wav') wave.normalize() plot_sampling3(wave, 'sampling5') plot_sincs(wave) plot_beeps() plot_am() wave = thinkdsp.read_wave('263868__kevcio__amen-break-a-160-bpm.wav') wave.normalize() plot_impulses(wave) plot_sampling(wave, 'sampling3') plot_sampling2(wave, 'sampling4') if __name__ == '__main__': main()
[ "matplotlib" ]
abc604ebfa2ec99d8d085881172baa783c2b5325
Python
haidaodao/sdc-term3-p4-capstone-carla
/graph_waypoints.py
UTF-8
2,608
3.15625
3
[]
no_license
#!/usr/bin/env python import matplotlib.pyplot as plt import csv from math import cos, sin wp_x = [] wp_y = [] path = './data/wp_yaw_const.csv' def closest_waypoint(waypoints, pos): best_distance = float('inf') best_wp_index = 0 best_wp = None for i, wp in enumerate(waypoints): dist = ((pos[0] - wp[0]) ** 2 + (pos[1] - wp[1]) ** 2) ** 0.5 if dist < best_distance: best_distance = dist best_wp, best_wp_index = wp, i yaw = waypoints[best_wp_index][2] nx = pos[0] - waypoints[best_wp_index][0] ny = pos[1] - waypoints[best_wp_index][1] # Check if waypoint is ahead of stop line ahead = nx * cos(0 - yaw) - ny * sin(0 - yaw) if ahead < 0: best_wp_index -= 1 print (best_wp_index) return best_wp_index def all_stop_line_closest_wp(waypoints, traffic_light_posts): stop_wp = [] stop_x = [] stop_y = [] for pos in traffic_light_posts: print (pos) best_index = closest_waypoint(waypoints, pos) # print (best_index) stop_x.append(waypoints[best_index][0]) stop_y.append(waypoints[best_index][1]) return stop_x, stop_y traffic_light_pos = [[1148.56, 1184.65], \ [1559.2, 1158.43], \ [2122.14, 1526.79], \ [2175.237, 1795.71], \ [1493.29, 2947.67], \ [821.96, 2905.8], \ [161.76, 2303.82], \ [351.84, 1574.65]] # IMPORT WAYPOINTS waypoints = [] with open(path, 'r') as file: reader = csv.reader(file, delimiter=',') for i in reader: # print (i) x, y, yaw = float(i[0]), \ float(i[1]), \ float(i[3]) waypoints.append([x, y, yaw]) wp_x.append(x) wp_y.append(y) # print (waypoints) # IMPORT TRAFFIC LIGHT POSITIONS light_x = [] light_y = [] for pos in traffic_light_pos: light_x.append(pos[0]) light_y.append(pos[1]) # FIND CLOSET WAYPOINT TO TRAFFIC LIGHT stop_x, stop_y = all_stop_line_closest_wp(waypoints, traffic_light_pos) # print ("X stops", stop_x) # print ("Y stops", stop_y) # print ("Waypoint Index: ", closest_waypoint(waypoints, traffic_light_pos[0])) # print ("Waypoint Index: ", closest_waypoint(waypoints, traffic_light_pos[1])) plt.plot(wp_x, wp_y, label='Waypoints Path') plt.plot(light_x, light_y, 'ro', label='Traffic Light Posts') plt.plot(stop_x, stop_y, 'g^', label='Stopping Waypoints') plt.plot plt.xlabel('x') plt.ylabel('y') plt.title('Simulator path') plt.legend() plt.show()
[ "matplotlib" ]
d138ddaab06030d1555161e0e06144546ced464c
Python
jhadhiraj1/predictive_analytics
/predictive_analytics.py
UTF-8
4,706
2.984375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Jul 22 14:36:01 2021 @author: RUDRA """ import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.svm import SVR from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor data=pd.read_csv("insurance.csv") count_nan=data.isnull().sum() print(count_nan[count_nan>0]) data['bmi'].fillna(data['bmi'].mean(),inplace=True) count_nan=data.isnull().sum() print(count_nan) print(data['smoker']) print(data) sex=data.iloc[:,1:2].values smoker=data.iloc[:,4:5].values le=LabelEncoder() sex[:,0]=le.fit_transform(sex[:,0]) sex=pd.DataFrame(sex) sex.columns=['sex'] le_sex_mapping=dict(zip(le.classes_,le.transform(le.classes_))) print(le_sex_mapping) le=LabelEncoder() smoker[:,0]=le.fit_transform(smoker[:,0]) smoker=pd.DataFrame(smoker) smoker.coulumn=['smoker'] le_smoker_mapping=dict(zip(le.classes_,le.transform(le.classes_))) print(le_smoker_mapping) print(data['smoker']) region=data.iloc[:,5:6].values ohe=OneHotEncoder() region=ohe.fit_transform(region).toarray() region=pd.DataFrame(region) region.columns=['northeast','northwest','southeast','southwest'] print(region[:10]) X_num=data[['age','bmi','children']] X_final=pd.concat([X_num,sex,smoker,region],axis=1) y_final=data[['expenses']].copy() X_train,X_test,y_train,y_test=train_test_split(X_final,y_final,test_size=0.33,random_state=0) ##NOrmalization using MinMax n_scaler=MinMaxScaler() X_train=n_scaler.fit_transform(X_train.astype(np.float)) X_test=n_scaler.transform(X_test.astype(np.float)) ##Normalization using Standardization s_scaler=StandardScaler() X_train=s_scaler.fit_transform(X_train.astype(np.float)) X_test=s_scaler.transform(X_test.astype(np.float)) lr=LinearRegression().fit(X_train,y_train) y_train_pred=lr.predict(X_train) y_test_pred=lr.predict(X_test) print("lr co-efficient is {}".format(lr.coef_)) print("Intercep {}".format(lr.intercept_)) print("y_train Score: %.3f and y_test score: %.3f" % (lr.score(X_train,y_train),lr.score(X_test,y_test))) ##Applying Polynomial Features to the datas poly_f=PolynomialFeatures(degree=2) poly_X=poly_f.fit_transform(X_final) X_train,X_test,y_train,y_test=train_test_split(poly_X,y_final,test_size=0.33,random_state=0) s_scaler=StandardScaler() X_train=s_scaler.fit_transform(X_train.astype(np.float)) X_test=s_scaler.transform(X_test.astype(np.float)) poly_lr=LinearRegression().fit(X_train,y_train) poly_y_train_pred=poly_lr.predict(X_train) poly_y_test_pred=poly_lr.predict(X_test) print("Polynomoial lr Co-efficient:{}".format(poly_lr.coef_)) print("Y-intercept is :{}".format(poly_lr.intercept_)) print("y_train score: %.3f and y_test score:%.3f" % (poly_lr.score(X_train,y_train),poly_lr.score(X_test,y_test))) ## SVR Modelling svr=SVR(kernel='linear',C=300) X_train,X_test,y_train,y_test=train_test_split(X_final,y_final,test_size=0.33,random_state=0) s_scaler=StandardScaler() X_train=s_scaler.fit_transform(X_train.astype(np.float)) X_test=s_scaler.transform(X_test.astype(np.float)) svr=svr.fit(X_train,y_train.values.ravel()) y_train_pred=svr.predict(X_train) y_test_pred=svr.predict(X_test) print("y_train score: %.3f and y_test score: %.3f" %(svr.score(X_train,y_train),svr.score(X_test,y_test))) dt=DecisionTreeRegressor(random_state=0); dt=dt.fit(X_train,y_train.values.ravel()) y_train_pred=dt.predict(X_train) y_test_pred=dt.predict(X_test) print("y_train Score : %.3f and y_test score :%.3f" %(dt.score(X_train,y_train),dt.score(X_test,y_test))) ## Random Forest Regressor rf=RandomForestRegressor(n_estimators=100, criterion='mse', random_state=1, n_jobs=-1) X_train,X_test,y_train,y_test=train_test_split(X_final,y_final,test_size=0.33,random_state=0) n_scaler=StandardScaler() X_train=n_scaler.fit_transform(X_train.astype(np.float)) X_test=n_scaler.transform(X_test.astype(np.float)) rf=rf.fit(X_train,y_train.values.ravel()) y_train_pred=rf.predict(X_train) y_test_pred=rf.predict(X_test) print("y_train score :%.3f and y_test score: %.3f"%(rf.score(X_train,y_train),rf.score(X_test,y_test)))
[ "matplotlib" ]
f2f3772d22c33ab225566c39dd12a142ee862bf9
Python
Combustion-Zhen/OpenFOAM_py
/SFD/python2.7/plot_scat.py
UTF-8
3,049
2.828125
3
[]
no_license
#Zhen Lu, 03/04/2017 <[email protected]> # plot Sandia Flame results, as title, the scatter at different x/D import glob from file_read import csv_read, cm2inch, SF_read # suppress the display of matplotlib.pyplot import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt # data to plot # only one var, two columns, left: exp., right: sim. rows for x/D var = 'T' # import data xD=[] data={} expr={} for filename in glob.glob('scat*.csv'): pos = filename.find('.csv') z = float('{0}.{1}'.format(filename[7:9],filename[9:pos])) xD.append(z) data.update({z:csv_read(filename)}) expr.update({z:SF_read('D.scat',filename[7:pos],'all')}) xD.sort() # plot # use TEX for interpreter plt.rc('text',usetex=True) # use serif font plt.rc('font',family='serif') # figure and axes parameters # total width is fixed plot_width =19.0 subplot_h =4.0 margin_left =2.0 margin_right =0.3 margin_bottom =1.5 margin_top =1.0 space_width =0.0 space_height =1.0 ftsize =12 # total height determined by the number of vars plot_height =(subplot_h+space_height)*float(len(xD)) \ -space_height+margin_top+margin_bottom # min and max of axis xmin = 0.0 xmax = 1.0 xtick= (0.0,0.2,0.4,0.6,0.8) # generate the figure fig, axes = plt.subplots(len(xD),2, sharex='col',sharey='all', figsize=cm2inch(plot_width, plot_height)) # generate the axis for x in xD: axes[xD.index(x),0].scatter(expr[x]['Z'],expr[x][var], marker='.',c='k',edgecolor='none') axes[xD.index(x),1].scatter(data[x]['Z'],data[x][var], marker='.',c='k',edgecolor='none') # ylabel, temperature has a unit if var == 'T': axes[xD.index(x),0].set_ylabel(r"$\tilde {0}\;(\mathrm{{K}})$".format(var), fontsize=ftsize) else: axes[xD.index(x),0].set_ylabel(r"$\tilde Y\;{0}$".format(var), fontsize=ftsize) # location note # the text position determined by axes axis axes[xD.index(x),1].text(0.7,2000,'$x/D={0:.2g}$'.format(x), fontsize=ftsize) # ylabel, temperature has a unit # title and xlabel axes[0,0].set_title('Exp.',fontsize=ftsize) axes[0,1].set_title('Sim.',fontsize=ftsize) for i in range(2): axes[len(xD)-1,i].set_xlim(xmin,xmax) axes[len(xD)-1,i].set_xticks(xtick) axes[len(xD)-1,i].set_xlabel(r'$\tilde Z$',fontsize=ftsize) axes[len(xD)-1,1].set_xticks(xtick+(xmax,)) # legend # set margins plt.subplots_adjust(left =margin_left/plot_width, bottom =margin_bottom/plot_height, right =1.0-margin_right/plot_width, top =1.0-margin_top/plot_height, wspace =space_width/plot_width, hspace =space_height/plot_height) # save plot plt.savefig('radial_scat.png',dpi=400) plt.savefig('radial_scat.pdf') plt.savefig('radial_scat.eps')
[ "matplotlib" ]
98c417d6de736140ac9bfe9d0bdf19b56028ec4a
Python
Domdoug/LSTM_Mortality_Table_Actuarial
/4-expectativa_vida_lstm-Bidirecional.py
UTF-8
13,592
2.984375
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[1]: # importar bibliotecas import pandas as pd from pandas.tseries.offsets import DateOffset import numpy as np import os import matplotlib.pyplot as plt # get_ipython().run_line_magic('matplotlib', 'inline') #from sklearn.metrics import mean_squared_error from statsmodels.tools.eval_measures import rmse from sklearn.preprocessing import MinMaxScaler from keras.preprocessing.sequence import TimeseriesGenerator from keras.callbacks import CSVLogger from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout from keras.layers import Bidirectional import time import warnings warnings.filterwarnings("ignore") # ### Modelagem com a utilização do pacote embeding para Bi-direcional # ##### # Os humanos não começam a pensar do zero a cada segundo. Ao ler este ensaio, você entende cada palavra com base na sua compreensão das palavras anteriores. Você não joga tudo fora e começa a pensar do zero novamente. Seus pensamentos têm persistência. # # As redes neurais tradicionais não podem fazer isso, e isso parece uma grande falha. Por exemplo, imagine que você queira classificar que tipo de evento está acontecendo em todos os momentos do filme. Não está claro como uma rede neural tradicional poderia usar seu raciocínio sobre eventos anteriores do filme para informar os posteriores. # # Redes neurais recorrentes abordam esse problema. São redes com loops, permitindo que as informações persistam. # # Em comparação com o LSTM, BLSTMou BiLSTMpossui duas redes, uma pastinformação de acesso na forwarddireção e outro acesso futurena reversedireção. # # LSTMse suas variantes bidirecionais são populares porque tentaram aprender como e quando esquecer e quando não usar portas em sua arquitetura. Em RNNarquiteturas anteriores , o desaparecimento de gradientes era um grande problema e fazia com que essas redes não aprendessem muito. # # Usando Bidirecional LSTMs, você alimenta o algoritmo de aprendizado com os dados originais uma vez do começo ao fim e uma vez do fim ao começo. Existem debates aqui, mas geralmente ele aprende mais rápido que a abordagem unidirecional, embora dependa da tarefa. # # #### 1 - carregar base tratada # In[2]: # Verifica a pasta corrente pasta = os.getcwd() # In[3]: pasta_resultados = os.path.join(pasta, "resultados") pasta_graficos = os.path.join(pasta, "graficos1") # In[ ]: # Regex notation by "\s+". This means a single space, or multiple spaces are all to be treated as a single separator. # df_dados = pd.read_csv('bltper_1x1.txt', skiprows=2, sep = '\s+') df_dados = pd.read_csv(os.path.join(pasta, "dados") + "/" + 'bltper_1x1.txt', skiprows=2, sep = '\s+') # In[ ]: df_dados.head().append(df_dados.tail()) # #### 2 - criar features, entre elas a logqx, que corresponde já convertido a escala logarítma da probabilidade de morte # # In[ ]: # Tratamento da idade 110+ para os anos. # DataFrame.loc[condition, column_name] = new_value df_dados.loc[(df_dados.Age == '110+'),'Age'] = 110 # In[ ]: # Criar a feature log qx df_dados['logqx'] = np.log(df_dados['qx']) # Aproveitar e corrigir a tipagem da feature Age df_dados["Age"] = df_dados["Age"].astype(int) # In[ ]: df_dados.head().append(df_dados.tail()) # In[ ]: df_dados.shape # #### 3 - Criar a feature tempo t, com base na feature ano, que corresponde ao elemento temporal da série # In[8]: # Preparar dataset #serie = {'t': ano, 'logqx_prob': logqx_prob} df_lstm = pd.DataFrame(df_dados, columns=['Age','Year','logqx']) df_lstm['t'] = pd.to_datetime(df_lstm['Year'], format='%Y') #df_lstm.drop(['ano'], axis=1, inplace=True) df_lstm.set_index('t', inplace=True) # In[9]: #df_lstm[df_lstm['t'].dt.year == 1998] df_lstm.head() # In[10]: df_lstm[df_lstm['Age']==0] # #### 4 - Separar a base em base de treino e base de teste para cada idade x ao longo dos anos t, ou seja, para a idade 0, entre os anos 1998 a 2018, para a idade 1, no mesmo período e assim por diante. # ##### Rotina LSTM, métricas e gráficos # In[12]: # proximos testes: n_epochs = 1000 e base teste de 3 anos. Sugestão. No programa em script. # Usar, também, o código para salvar o log do compilie predict_res = [] pred_actual_rmse_res = [] w_max = max(df_dados['Age']) # definir maior idade nas tábuas. testes: 3 # inicio do cronometro do processamento start = time.time() n_input = 30 # 10 # Length of the output sequences (in number of timesteps). Corresponde ao número de dados # que usaremos para a rede. No caso, 10 anos na idade = 0, 10 anos na idade=1, etc.Vamos testar com 3 anos?? n_features = 1 # Número de features, variáveis. O modelo é univariavel (qx) para cada idade. n_epochs = 500 # 1000 #500 n_batch = 2 # Number of timeseries samples in each batch (except maybe the last one). n_neurons = 50 t_projecao = 30 # (#batch_size,#inputs,#features) 3D for x in range(0, w_max+1): # Série para cada idade ao longo dos anos de 1998 a 2018 #serie = df_lstm[df_lstm['idade']==x]['logqx_prob'] serie = df_lstm[df_lstm['Age']==x] serie.drop(['Age', 'Year'], axis=1, inplace=True) # Separar base de treino e teste === preparar dados treino, teste = serie[:-30], serie[-30:] # Padronizar dados: Normalizar entre 0 e 1 scaler = MinMaxScaler() scaler.fit(treino) treino = scaler.transform(treino) teste = scaler.transform(teste) #generator = TimeseriesGenerator(treino, treino, length=n_input, batch_size=n_batch) # length: The number of lag observations to use in the input portion of each sample (e.g. 3) # That is the desired number of lag observations to use as input = VAmos tentar 21: 2018-1998 # batch_size: The number of samples to return on each iteration (e.g. 32) # The samples are not shuffled by default. This is useful for some recurrent neural networks # like LSTMs that maintain state across samples within a batch. # both the data and target for this generator is “treino”. generator = TimeseriesGenerator(treino, treino, length=n_input, batch_size=n_batch) # ============================ CAMADAS =========== CAMADAS ================================= # A camada LSTM já possui, em sua construção, funções default de ativação: # activation="tanh",recurrent_activation="sigmoid", # três funções sigmoide e 1 tangente hiperbólica # Modelo bidirecional model = Sequential() model.add(Bidirectional(LSTM(n_neurons, return_sequences=True), input_shape=(n_input, n_features))) model.add(Bidirectional(LSTM(n_neurons))) model.add(Dropout(0.20)) model.add(Dense(1)) #model.add(Activation('softmax')) #model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.compile(optimizer='adam', loss='mse', metrics=["mae"]) #model = Sequential() # #reshape the data into LSTM required (#batch,#timesteps,#features) #Adding the first LSTM layer and some Dropout regularisation #model.add(LSTM(n_neurons, activation='relu', input_shape=(n_input, n_features), return_sequences=True)) #model.add(LSTM(n_neurons, activation='relu', input_shape=(n_input, n_features))) #model.add(Dropout(0.20)) # Adding a second LSTM layer and some Dropout regularisation #model.add(LSTM(n_neurons)) #model.add(Dropout(0.20)) # Adding a third LSTM layer and some Dropout regularisation #model.add(LSTM(n_neurons, return_sequences=True)) #model.add(Dropout(0.20)) # Adding a fourth LSTM layer and some Dropout regularisation #model.add(LSTM(n_neurons)) #model.add(Dropout(0.20)) # Adding the output layer #model.add(Dense(1)) # ============================ CAMADAS =========== CAMADAS ================================= #model.add(Dense(y.shape[1], activation='sigmoid')) #model.compile(optimizer='adam', loss='mse', metrics=["mae"]) # fit model #model.fit_generator(generator, epochs=n_epochs) # ADAPTADO PARA A ATUALIZAÇÃO DO KERAS (28/11/2020) csv_logger = CSVLogger('log_modelo_demography_bidirecional.csv', append=True, separator=';') model.fit(generator, epochs=n_epochs, callbacks=[csv_logger]) # model.fit(X_train, Y_train, callbacks=[csv_logger]) #Previsão pred_list = [] batch = treino[-n_input:].reshape((1, n_input, n_features)) for i in range(n_input): # n_input pred_list.append(model.predict(batch)[0]) batch = np.append(batch[:,1:,:], [[pred_list[i]]], axis=1) #inverse transform forecasts and test. Need to scale them back so we can compare the final results df_predict = pd.DataFrame(scaler.inverse_transform(pred_list), index=serie[-n_input:].index, columns=['Prediction']) df_teste = pd.concat([serie, df_predict], axis=1) # Gráfico da estimativa, com a base de teste #plt.figure(figsize=(10,5)) ''' fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot(111) ax.plot(df_teste.index, df_teste['logqx']) ax.plot(df_teste.index, df_teste['Prediction'], color='r') ax.legend(loc='best', fontsize='xx-large', labels=['logqx', 'Estimativa']) fig.suptitle('logqx Bi-Direcional LSTM dataset teste na idade = %i' %x, fontweight="bold") plt.savefig(pasta_graficos + '/' + 'prev_Bi_Direcional_LSTM_test_idade'+str(x)+'.png') ''' pred_actual_rmse = rmse(df_teste.iloc[-n_input:, [0]], df_teste.iloc[-n_input:, [1]]) print("idade:", x, "rmse: ", pred_actual_rmse) pred_actual_rmse_res.append(pred_actual_rmse) treino = serie scaler.fit(treino) treino = scaler.transform(treino) #generator = TimeseriesGenerator(treino, treino, length=n_input, batch_size=n_batch) #model.fit_generator(generator,epochs=n_epochs) # ADAPTADO PARA A ATUALIZAÇÃO DO KERAS (28/11/2020) # length: The number of lag observations to use in the input portion of each sample (e.g. 3) # batch_size: The number of samples to return on each iteration (e.g. 32) generator = TimeseriesGenerator(treino, treino, length=n_input, batch_size=n_batch) #model.fit(generator, epochs=n_epochs, batch_size=n_batch) model.fit(generator, epochs=n_epochs) pred_list = [] batch = treino[-n_input:].reshape((1, n_input, n_features)) for i in range(n_input): pred_list.append(model.predict(batch)[0]) batch = np.append(batch[:,1:,:],[[pred_list[i]]],axis=1) # prever para t_projecao anos add_dates = [serie.index[-1] + DateOffset(years=x) for x in range(0, t_projecao + 1)] #add_dates = [serie.index[-1] + pd.offsets.YearBegin(x) for x in range(0,6)] future_dates = pd.DataFrame(index=add_dates[1:],columns=serie.columns) #inverse transform forecasts and test. Need to scale them back so we can compare the final results df_predict = pd.DataFrame(scaler.inverse_transform(pred_list), index=future_dates[-n_input:].index, columns=['Prediction']) predict_res.append(df_predict.values.tolist()) df_proj = pd.concat([serie,df_predict], axis=1) ''' fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot(111) # "111" means "1x1 grid, first subplot" ax.plot(df_proj.index, df_proj['logqx']) ax.plot(df_proj.index, df_proj['Prediction'], color='r') ax.legend(loc='best', fontsize='xx-large', labels=['logqx', 'Predição']) plt.xticks(fontsize=18) plt.yticks(fontsize=16) fig.suptitle('Logqx Bi-Direcional LSTM projetado na idade = %i' %x, fontweight = "bold") # Título parametrizado com a idade plt.savefig(pasta_graficos + '/' + 'proj_Bi_Direcional_LSTM_log_qx'+str(x)+'.png') ''' # fim do cronometro do processamento end = time.time() hours, rem = divmod(end-start, 3600) minutes, seconds = divmod(rem, 60) print() print('Tempo de processamento:') print('{:0>2}:{:0>2}:{:05.2f}'.format(int(hours), int(minutes), seconds)) print() #Tempo de processamento: 22:32:14.93 # Tempo de processamento sem imprimir os gráficos: 18:35:29.37 # #### 5 - Valores de RMSE por idade # In[13]: pd.DataFrame(pred_actual_rmse_res) # RMSE para cada idade # In[52]: #### 5 - Base resultante dos anos de 2019 a 2028, por idade # In[14]: df_lstm_res = pd.DataFrame(predict_res) # In[15]: df_lstm_res.head() # In[16]: df_lstm_res[0][0][0] # In[17]: df_lstm_res.info() # In[18]: # Função para unir as listas em linha def unirSeries(df, explode): idx = df.index.repeat(df[explode[0]].str.len()) df1 = pd.concat([ pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1) df1.index = idx return df1.join(df.drop(explode, 1), how='left') # In[19]: colunas = np.arange(2020, 2050) df_temp = pd.DataFrame(predict_res, columns=colunas) df_lstm_res = unirSeries(df_temp,colunas) df_lstm_res = df_lstm_res.reset_index(drop=True) # In[20]: df_lstm_res.head() # In[21]: df_forecast_res_exp = pd.DataFrame(np.exp(df_lstm_res)) # In[22]: df_forecast_res_exp.head() # In[ ]: # Gravar resultados # In[23]: df_forecast_res_exp.to_csv(pasta_resultados + '/' + 'lstm_previsao_qx_500_Bi_Direcional_demography.csv') # In[24]: pd.DataFrame(pred_actual_rmse_res).to_csv(pasta_resultados + '/' + 'pred_actual_rmse_res_500_Bi_Direcional_demography.csv', header=['RMSE']) # In[ ]:
[ "matplotlib" ]
a8e6c9b155b7fea2843ab234592911ffd5c20076
Python
ideProject/tribo
/matplot_test.py
UTF-8
116
2.515625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt data = np.random.randn(1000) plt.hist(data, bins=30) plt.show()
[ "matplotlib" ]
c5ccdd97c16a369006efa97019f42fc8d3c7c709
Python
terdenan/cs102
/homework04/getHistory.py
UTF-8
712
2.5625
3
[]
no_license
import requests import plotly.plotly as py import plotly.graph_objs as go from datetime import datetime from vk_api import get_messages_history from pprint import pprint as pp from collections import Counter def count_dates_from_messages(messages): def parse(d): return datetime.fromtimestamp(d).strftime("%Y-%m-%d") msg_list = [parse(c.get('date')) for c in messages] counted = Counter(msg_list) x = [] y = [] for key in counted: x.append(key) y.append(counted[key]) return x, y if __name__ == '__main__': messages = get_messages_history(223703977) x, y = count_dates_from_messages(messages) data = [go.Scatter(x=x, y=y)] py.plot(data)
[ "plotly" ]
a61509497f4b666c0c079910c969cf52ab1dda71
Python
wubonian/ADSAlgo
/PathPlan/InterpolatingCurve/CubicSpline.py
UTF-8
2,337
3.40625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt class cubic_spline: def __init__(self, x, y): self.x = x self.y = y self.n = len(x) self.a = [] self.b = [] self.c = [] self.d = [] self.d_mtx = [] def calc_d_mtx(self): A = np.zeros((self.n, self.n)) for i in range(self.n): if i == 0: A[i][i] = 2 A[i][i+1] = 1 elif i == self.n - 1: A[i][i] = 2 A[i-1][i] = 1 else: A[i-1][i] = 1 A[i][i] = 2 A[i][i+1] = 1 Y = np.zeros((self.n, 1)) for i in range(self.n): if i == 0: Y[i] = 3*(self.y[i+1] - self.y[0]) elif i == self.n-1: Y[i] = 3*(self.y[i] - self.y[i-1]) else: Y[i] = 3*(self.y[i+1] - self.y[i-1]) IA = np.linalg.inv(A) self.d_mtx = np.dot(IA, Y) def calc_coef(self): for i in range(self.n-1): self.a.append(self.y[i]) self.b.append(self.d_mtx[i]) c_tmp = 3*(self.y[i+1] - self.y[i]) - 2*self.d_mtx[i] - self.d_mtx[i+1] self.c.append(c_tmp) d_tmp = 2*(self.y[i] - self.y[i+1]) + self.d_mtx[i] + self.d_mtx[i+1] self.d.append(d_tmp) def find_index(self, u): i = 0 while self.x[i] < u: i = i+1 if u > self.x[0]: return i - 1 else: return 0 def calc_prop(self, i, u): return (u - self.x[i]) / (self.x[i+1] - self.x[i]) def eval_val(self, u): i = self.find_index(u) p = self.calc_prop(i, u) y = self.a[i] + self.b[i]*p + self.c[i]*p*p + self.d[i]*p*p*p return y def main(): x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y = [2, 3, 5, 4, 8, 9, 4, 2, 3, 5, 7] cubic = cubic_spline(x, y) cubic.calc_d_mtx() cubic.calc_coef() xs = np.linspace(0, 10, 1000) ys = [] for x_tmp in xs: y_tmp = cubic.eval_val(x_tmp) ys.append(y_tmp) plt.figure(figsize=(5, 5)) ax = plt.gca() ax.set_xlim([-5, 20]) ax.set_ylim([-5, 20]) plt.plot(x, y, '-g') plt.plot(xs, ys, '-y') plt.show() if __name__ == "__main__": main()
[ "matplotlib" ]
750dbfa49f1c96652db147d30fbfceb7005fc2fa
Python
geckotian96/qbb2019-answers
/day4-morning/01-histogram.py
UTF-8
1,664
3.203125
3
[]
no_license
#!/usr/bin/env python3 """ USAGE: ./00-scatter.py <ctab> plot fpkm """ #../results/stringtie/SRR072893/t_data.ctab import sys import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats fpkms=[] for i, line in enumerate (open(sys.argv[1])): if i ==0: continue fields = line.rstrip("\n").split("\t") if float(fields[-1]) > 0: fpkms.append(float(fields[-1])) #notice that fpkms field is a string. you need to convert to float first #the reason to use log is becuase most of the data gather in the 10000, so need to take log to further visualize the sub columns my_data = np.log2(fpkms) # mu = 0 # sigma =1 # x = np.linspace (-15, 15, 100) #range of the normal distribution with how many groups # y = stats.norm.pdf (x, mu, sigma) #a=-2.1, mu=5.8, signma = 2.8 mu1=0 sigma1=1 x1 = np.linspace (-15, 15, 100) #range of the normal distribution with how many groups y1= stats.norm.pdf (x1, mu1, sigma1) a=-2.1 mu=5.8 sigma=2.8 x2 = np.linspace(-15, 15, 100) y2= stats.skewnorm.pdf(x2, a, mu, sigma) fig, ax = plt.subplots() ax.hist(my_data, bins=100, density=True) #bin=100 can divide the range into 100 columns, default is 10. Density?? ax.plot(x1, y1, label="Normal distribution") ax.legend() ax.plot(x2, y2, label="Skew curve") ax.legend() ax.set_xlabel ("Log2(FPKM)") ax.set_ylabel ("Probability") fig.suptitle("Distribution Curve of FPKM") plt.text(-15, 0.20, "a=-2.1, mu=5.8, signma=2.8") fig.savefig("fpkms.png") plt.close(fig) #x = np.linspace(norm.ppf(0.01), --> x coordinace #norm.ppf(0.99), 100) #ax.plot(x, norm.pdf(x), #'r-', lw=5, alpha=0.6, label='norm pdf')
[ "matplotlib" ]
f3f40c5c36a301d20d65a1524362502ed6aa564d
Python
hbates00/12.009-Nonlinear-Dynamics-in-the-Natural-Environment
/PSET 1/PSET4_1.py
UTF-8
1,725
3.75
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Mar 16 16:43:08 2017 @author: Haley """ #numpy random, generate list of random 1 or neg 1 and sum to get a number -- this is position import numpy as np import matplotlib.pyplot as plt # Gets location after number of steps n and returns a location def get_location(t): choice = np.array([-1, 1]) moves = np.random.choice(choice, t) return np.sum(moves) # Builds a vector of walker position def do_the_thing(n, t): a = map(lambda p: get_location(t), range(n)) return a # Creates and populates an rxr A matrix def matrix(r): mat = np.zeros((r, r)) for i in xrange(r): for j in xrange(r): if j == (i + 1) or j == (i - 1): mat[i][j] = .5 else: pass return mat # Advances a given number of time steps, returns a vector of probabilities def do_it(r, t): t_0 = np.array([0] * r) t_0[len(t_0)/2.0] = 1 A = np.linalg.matrix_power(matrix(r), t) b = np.dot(A, np.transpose(t_0)) return b # Plots a histagram of walker locations def plot(n, t, b): pos = do_the_thing(n, t) plt.hist(pos, bins = b, color = 'white', label = 'Simulated Values') # Plots the probability histogram def plot_probabilities(n, t, r): probs = do_it(r, t) * 2 * n x = range((-r/2), (r/2)) plt.plot(x, probs, label = 'Predicted Values') plot(50000, 50, 15) plot_probabilities(50000, 50, 50) plt.xlabel('Position') plt.ylabel('Number of Walkers at Position') plt.title('Number of Random Walkers at Position After 50 Steps') plt.legend() plt.show()
[ "matplotlib" ]
66a94bfb126ee8ae2c5afe9d7fc4956e7e3617e9
Python
samithaj/COPDGene
/feature_selection/aim1_redraw_figure.py
UTF-8
849
3
3
[]
no_license
""" Draw plots from data in gap_4/features_sel_backward_gap_run_1.csv Label Y axis """ import csv import matplotlib.pyplot as plt import numpy as np # Load GAP values file_csv = open("gap_4/features_sel_backward_gap_run_1.csv","rb") reader = csv.reader(file_csv) lines = [line for line in reader] file_csv.close() gap_value = [] fs_index = [55] fs_name = ['pre_FVC'] for i in range(61): gap_value.append(lines[62-i][1]) fs_index.append(lines[62-i][2]) fs_name.append(lines[62-i][3]) gap_value.append(lines[1][1]) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(range(1,63),gap_value) ax.plot((13,13),(-0.05,gap_value[12]),'r--') ax.annotate('MAX(13, 0.2658)',xy=(13,gap_value[12])) plt.xlabel("The Number of Features") plt.ylabel("GAP statistic(Clustering Quality)") plt.title("Backward Search with GAP statistic") plt.show()
[ "matplotlib" ]
82d86634717983bd6aa6c5fa3c596263ec6996cd
Python
seanwayland/matplotlibpractice
/pymaceuticals_starter.py
UTF-8
3,244
3.3125
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # ## Observations and Insights # # ## Dependencies and starter code # In[1]: # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st # Study data files mouse_metadata = "data/Mouse_metadata.csv" study_results = "data/Study_results.csv" # Read the mouse data and the study results mouse_metadata = pd.read_csv(mouse_metadata) study_results = pd.read_csv(study_results) print(mouse_metadata.groupby('Mouse ID').count()) # Combine the data into a single dataset ds = pd.merge(mouse_metadata, study_results, how="left", on=["Mouse ID"]) print(fourFive) #print(ds) # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen dsMean = pd.DataFrame(ds.groupby("Drug Regimen").mean()) dsMean = dsMean['Tumor Volume (mm3)'] dsMedian = pd.DataFrame(ds.groupby("Drug Regimen").median()) dsMedian = dsMedian['Tumor Volume (mm3)'] dsVar = pd.DataFrame(ds.groupby("Drug Regimen").var()) dsVar = dsVar['Tumor Volume (mm3)'] dsStd = pd.DataFrame(ds.groupby("Drug Regimen").std()) dsStd = dsStd['Tumor Volume (mm3)'] dsSem = pd.DataFrame(ds.groupby("Drug Regimen").sem()) dsSem = dsSem['Tumor Volume (mm3)'] dsStats = pd.DataFrame([dsMean,dsMedian,dsVar,dsStd,dsSem],index=['mean','Median','Var','Std','SEM']) #print(dsStats) # ## Summary statistics # In[2]: # ## Bar plots # In[3]: # Generate a bar plot showing number of data points for each treatment regimen using pandas dsCount = ds.groupby("Drug Regimen").count() dsCount['data points'] = dsCount['Mouse ID'] ax = dsCount.plot.bar(y = "data points") # In[4]: # Generate a bar plot showing number of data points for each treatment regimen using pyplot #plt.bar(dsCount, x = 'Drug Regimen', y = 'data points', align='center', alpha=0.5) labels = dsCount.index.tolist() #print(labels) plt.bar(labels, dsCount['Mouse ID']) plt.title('Data Points by Drug Regimen') #plt.show() # ## Pie plots # In[5]: # Generate a pie plot showing the distribution of female versus male mice using pandas SexCount = mouse_metadata.groupby("Sex").count() SexCount['sex'] = SexCount['Mouse ID'] print(SexCount) #plot = SexCount.plot.pie(y='sex') # In[6]: # Generate a pie plot showing the distribution of female versus male mice using pyplot pie = plt.pie(SexCount['sex']) plt.show() # ## Quartiles, outliers and boxplots # In[7]: # Calculate the final tumor volume of each mouse across four of the most promising treatment regimens. Calculate the IQR and quantitatively determine if there are any potential outliers. fourFive = ds[ds['Timepoint']==45] # get all mice for each drug # Capomulin, Ramicane, Infubinol, and Ceftamin # In[8]: # Generate a box plot of the final tumor volume of each mouse across four regimens of interest # ## Line and scatter plots # In[9]: # Generate a line plot of time point versus tumor volume for a mouse treated with Capomulin # In[10]: # Generate a scatter plot of mouse weight versus average tumor volume for the Capomulin regimen # In[11]: # Calculate the correlation coefficient and linear regression model for mouse weight and average tumor volume for the Capomulin regimen # In[ ]:
[ "matplotlib" ]
b0ef290ef16eb0c5e793da6db635d312939f0499
Python
meck93/UU_ML_Project
/dqn/environment.py
UTF-8
4,315
2.671875
3
[ "MIT" ]
permissive
import gym import numpy as np import retro from baselines.common.atari_wrappers import FrameStack import cv2 from config import HEIGHT, N_FRAMES, WIDTH # hyperparameters cv2.ocl.setUseOpenCL(False) class PreprocessFrames(gym.ObservationWrapper): def __init__(self, env): """Preprocess and wrap frames to HEIGHTxWIDTH.""" gym.ObservationWrapper.__init__(self, env) self.width = WIDTH self.height = HEIGHT self.observation_space = gym.spaces.Box(low=0, high=255, shape=(self.height, self.width, 1), dtype=np.uint8) def observation(self, frame): # transform color to grayscale frame_gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) # crop the image top and bottom since it's static frame_cropped = frame_gray[9:-35, :] # normalize the values to range [0,1] frame_normalized = frame_cropped / 255.0 # resize the cropped image to WIDTHxHEIGHT frame = cv2.resize(frame_normalized, (self.width, self.height), interpolation=cv2.INTER_AREA) return frame[:, :, None] class MarioDiscretizer(gym.ActionWrapper): """ Wrap a gym-retro environment and make it use discrete actions for the SuperMarioBros game. """ def __init__(self, env): super(MarioDiscretizer, self).__init__(env) # All buttons of the NES buttons = ['B', None, 'SELECT', 'START', 'UP', 'DOWN', 'LEFT', 'RIGHT', 'A'] # Custom discrete actions defined by ourselves # Limits the number of possible actions and should improve training time # actions = [[None], ['LEFT'], ['RIGHT'], ['RIGHT', 'A'], ['RIGHT', 'B'], ['RIGHT', 'A', 'B'], ['A'], ['A', 'A']] actions = [[None], ['LEFT'], ['RIGHT'], ['RIGHT', 'A'], ['A'], ['A', 'A']] self._actions = [] for action in actions: arr = np.array([False] * len(buttons)) for button in action: arr[buttons.index(button)] = True self._actions.append(arr) # maps each action to a discrete number self.action_space = gym.spaces.Discrete(len(self._actions)) def action(self, a): # pylint: disable=W0221 return self._actions[a].copy() def make_custom_env(disc_acts=True): """ Create an environment with some standard wrappers. """ env = retro.make(game='SuperMarioBros3-Nes', state="1Player.World1.Level1.state", scenario="./data/scenario.json", record="./recordings/") if disc_acts: # Build the actions array env = MarioDiscretizer(env) # PreprocessFrame env = PreprocessFrames(env) # Stack N_FRAMES number of frames env = FrameStack(env, N_FRAMES) return env # TODO: code that can be used to plot the preprocessing # import matplotlib.pyplot as plt # f, axs = plt.subplots(2, 2, figsize=(15, 15)) # axs[0, 0].set_title("Raw Input Image") # axs[0, 0].imshow(frame) # axs[0, 0].set_ylim((224, 0)) # axs[0, 0].set_yticks(np.arange(0, 225, 224//16)) # axs[0, 0].set_xlim((0, 240)) # axs[0, 0].set_xticks(np.arange(0, 241, 240//16)) # # transform color to grayscale # frame_gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) # axs[0, 1].set_title("Gray-Scale Image") # axs[0, 1].imshow(frame_gray, cmap="gray", vmin=0, vmax=255) # axs[0, 1].set_ylim((224, 0)) # axs[0, 1].set_yticks(np.arange(0, 225, 224//16)) # axs[0, 1].set_xlim((0, 240)) # axs[0, 1].set_xticks(np.arange(0, 241, 240//16)) # # crop the image top and bottom since it's static # frame_cropped = frame_gray[9:-35, :] # axs[1, 0].set_title("Cropped Image") # axs[1, 0].imshow(frame_cropped, cmap="gray", vmin=0, vmax=255) # axs[1, 0].set_ylim((224, 0)) # axs[1, 0].set_yticks(np.arange(0, 225, 224//16)) # axs[1, 0].set_xlim((0, 240)) # axs[1, 0].set_xticks(np.arange(0, 241, 240//16)) # # normalize the values to range [0,1] # frame_normalized = frame_cropped / 255.0 # # resize the cropped image to WIDTHxHEIGHT # frame = cv2.resize(frame_normalized, (self.width, self.height), interpolation=cv2.INTER_AREA) # axs[1, 1].set_title("Downsized Image") # axs[1, 1].imshow(frame, cmap="gray", vmin=0, vmax=1) # axs[1, 1].set_ylim((84, 0)) # axs[1, 1].set_yticks(np.arange(0, 85, 84//7)) # axs[1, 1].set_xlim((0, 84)) # axs[1, 1].set_xticks(np.arange(0, 85, 84//7)) # plt.show()
[ "matplotlib" ]
b90f4f9d02871e5847d5fc4503074a99cdb46566
Python
NishanthMHegde/Pandas-practice
/pandasgraphs.py
UTF-8
1,042
3.421875
3
[]
no_license
import numpy as np import pandas as pd import matplotlib.pyplot as plt df1 = pd.read_csv('df1.csv', index_col=0) df2 = pd.read_csv('df2.csv') #df1 print("df1") print(df1.head()) print("\n\n") #plotting a histogram print("plotting a histogram") df1['A'].hist(bins=50) plt.show() print("\n\n") #another way of plotting a histogram print("another way of plotting a histogram") df1['B'].plot(kind='hist', bins=50) plt.show() print("\n\n") #yet another way of plotting a histogram print("yet another way of plotting a histogram") df1['C'].plot.hist(bins=60) plt.show() print("\n\n") #bar graph print("bar graph") df2.plot.bar() plt.show() print("\n\n") #stacked bar graph print("stacked bar graph") df2.plot.bar(stacked=True) plt.show() print("\n\n") #line graph print("line graph") df2.plot.line(figsize=(10,5)) plt.show() print("\n\n") #area graph print("area graph") df2.plot.area(alpha=0.75) plt.show() print("\n\n") #scatter graph print("scatter graph") df2.plot.scatter(x='a', y='b', s = df2['c']) plt.show() print("\n\n")
[ "matplotlib" ]
0a271df930365656572b30bd0c305611861ba6a3
Python
pkozilek/kaggle-titanic
/src/features_analysis.py
UTF-8
4,452
3.078125
3
[]
no_license
import plotly as plt import numpy as np import pandas as pd import functions.graphs as g features = pd.read_csv('datasets/features.csv', index_col=0) features_survived = features.loc[features.Survived == 1] features_died = features.loc[features.Survived == 0] features_ac = features.loc[features.Age != 0] # Age completed features_ac_survived = features_ac.loc[features_ac.Survived == 1] features__ac_died = features_ac.loc[features_ac.Survived == 0] ### Bias Analysis # Age bias age_bias = g.histogram( data_list=[features_survived.Age, features_died.Age], labels=['Survived', 'Died'], title='Normalized age bias analysis', x_bins=[-1, 100, 5], histnorm='percent', xaxis_title='Age', yaxis_title='%' ) # Sex bias sex_bias = g.histogram( data_list=[features_survived.Sex, features_died.Sex], labels=['Survived', 'Died'], title='Normalized sex bias analysis', x_bins=[1, 3, 1], histnorm='percent', xaxis_title='Sex', yaxis_title='%' ) # Pclass bias pclass = g.histogram( data_list=[features_survived.Pclass, features_died.Pclass], labels=['Survived', 'Died'], title='Normalized Pclass bias analysis', x_bins=[0, 20, 1], histnorm='percent', xaxis_title='Pclass', yaxis_title='%' ) # SibSp bias sibsp = g.histogram( data_list=[features_survived.SibSp, features_died.SibSp], labels=['Survived', 'Died'], title='Normalized SibSp bias analysis', x_bins=[0, 9, 1], histnorm='percent', xaxis_title='SibSp', yaxis_title='%' ) # Parch bias parch = g.histogram( data_list=[features_survived.Parch, features_died.Parch], labels=['Survived', 'Died'], title='Normalized Parch bias analysis', x_bins=[0, 7, 1], histnorm='percent', xaxis_title='Parch', yaxis_title='%' ) # Embarked bias embarked = g.histogram( data_list=[features_survived.Embarked, features_died.Embarked], labels=['Survived', 'Died'], title='Normalized Embarked bias analysis', x_bins=[0, 4, 1], histnorm='percent', xaxis_title='Embarked', yaxis_title='%' ) # Fare bias fare = g.histogram( data_list=[features_survived.Fare, features_died.Fare], labels=['Survived', 'Died'], title='Normalized Fare bias analysis', x_bins=[0, 100, 5], histnorm='percent', xaxis_title='Fare', yaxis_title='%' ) # age_bias.show() # sex_bias.show() # pclass.show() # sibsp.show() # parch.show() # embarked.show() # fare.show() ### Age correlation analysis age_sex_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.Sex, features__ac_died.Sex], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='Sex x Age', xaxis_title='Age', yaxis_title='Sex' ) age_pclass_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.Pclass, features__ac_died.Pclass], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='Pclass x Age', xaxis_title='Age', yaxis_title='Pclass' ) age_sibsp_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.SibSp, features__ac_died.SibSp], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='SibSp x Age', xaxis_title='Age', yaxis_title='SibSp' ) age_parch_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.Parch, features__ac_died.Parch], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='Parch x Age', xaxis_title='Age', yaxis_title='Parch' ) age_embarked_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.Embarked, features__ac_died.Embarked], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='Embarked x Age', xaxis_title='Age', yaxis_title='Embarked' ) age_fare_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.Fare, features__ac_died.Fare], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='Fare x Age', xaxis_title='Age', yaxis_title='Fare' ) # age_sex_scatter.show() # age_pclass_scatter.show() # age_sibsp_scatter.show() # age_parch_scatter.show() # age_embarked_scatter.show() # age_fare_scatter.show()
[ "plotly" ]
2c0a45344ce5db816a1b9b87232689e56ccbf009
Python
gauravsaxena1997/pycode
/matplotlib/16.annotations_and_text.py
UTF-8
748
2.8125
3
[]
no_license
import matplotlib.pyplot as plt import csv from matplotlib import style import numpy as np style.use('mystyle') x,y = np.loadtxt('file.txt', delimiter=',', unpack=True) plt.plot(x,y,label='Loaded from file') # -------------------Text--------------------- font_dict = { 'family':'serif', 'color':'darkred', 'size':10 } plt.text(9,6,'Text',fontdict=font_dict) # ------------------------------------------- # -----------------Annotation---------------- plt.annotate('Annotation',(10,8), xytext=(0.4,0.9), textcoords='axes fraction', arrowprops= dict(facecolor='w',color='m') ) # ------------------------------------------ plt.xlabel('xlabel') plt.ylabel('ylabel') plt.title('matplotlib\nfirst graph') plt.legend() plt.show()
[ "matplotlib" ]
0bd83ee004ef026cf05c529462a0d44e0e2fbc13
Python
dho619/ImageTransformations
/P06/p06.py
UTF-8
572
2.859375
3
[]
no_license
''' Transformação de perspectiva ''' import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread('senko.jpeg') rows,cols,ch = img.shape pts1 = np.float32([[306,665],[618,652],[278,987],[639,990]]) pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]]) M = cv2.getPerspectiveTransform(pts1,pts2) dst = cv2.warpPerspective(img,M,(300,300)) cv2.imwrite('senko_TransformacaoDePerspectiva.png', dst) plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() print('..|imagem salva com sucesso')
[ "matplotlib" ]
34f8902b5967546a30d46dee410e4c779b3f2017
Python
fgurri/kpi
/nautilus/plots.py
UTF-8
62,315
2.546875
3
[]
no_license
from django.db import connections import configparser import datetime import pandas as pd import mysql.connector from mysql.connector import Error import plotly as py import plotly.graph_objs as go from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import numpy as np import dateutil.relativedelta import nautilus.utils as u import nautilus.queries as q """ Generates a offline plotly plot with the graph 'total visits per month'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_visits_per_month() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: :rtype: string """ def plot_visits_per_month(): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as Mes, CONCAT(f_year, "-", f_monthname) as MesNom, sum(f_count) as Total FROM datawarehouse.dm1_visits_per_agenda GROUP BY f_month, CONCAT(f_year, "-", f_monthname) ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_visites = go.Scatter(x=df['MesNom'], y=df['Total'], mode='lines+markers', name='Visites per mes') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['Total']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_visites = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia') trace_omi_annotation = go.Scatter(x=["2017-Dec", "2017-Dec"], y=[0, df['Total'].max()], mode='lines', name='Inici odontologia a OMI360', line=dict(dash='dot')) data = [trace_visites, trace_regression_visites, trace_omi_annotation] layout = go.Layout( title='Evolució del número de visites per mes', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Distribution of visits per speciality'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_distribution_visits_per_speciality('201801', '201812') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param p_first_month: starting month of range values in YYYYMM format :param p_last_month: ending month of range values in YYYYMM format :rtype: string """ def plot_distribution_visits_per_speciality(p_first_month, p_last_month): try: connection = connections['datawarehouse'] sql = 'SELECT f_nomEspecialitat as Spec, sum(f_count) as Total FROM datawarehouse.dm1_visits_per_agenda WHERE f_month >= '+str(p_first_month)+' and f_month <= '+str(p_last_month)+' GROUP BY f_nomEspecialitat ORDER BY sum(f_count) DESC' df = pd.read_sql(sql, connection) trace = go.Pie(labels=df['Spec'], values=df['Total']) graph_title = 'Distribució visites per especialitat (Del ' + u.yyyymmToMonthName(p_first_month) + ' al ' + u.yyyymmToMonthName(p_last_month) + ')' data = [trace] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), autosize=False, width=1000, height=700, xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Visits per month by speciality'. You can choose to filter by speciality or by agenda, but one of both must be set. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_visits_per_month_speciality(p_id_especiality=19) >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param p_id_especiality: speciality identifier :param p_id_agenda: agenda identifier :rtype: string """ def plot_visits_per_month_speciality(p_id_especiality=None, p_id_agenda=None): try: connection = connections['datawarehouse'] sql = 'SELECT CONCAT(f_year, "-", f_monthname) as MesNom, f_month, sum(f_count) as Total FROM datawarehouse.dm1_visits_per_agenda WHERE ' if (p_id_especiality is None) and (p_id_agenda is None): p_id_especiality = 19 # medicina general per defecte if (p_id_especiality is not None) and (p_id_especiality != ""): sql = sql + 'f_idEspecialitat='+str(p_id_especiality)+' ' else: if (p_id_agenda is not None) and (p_id_agenda != ""): sql = sql + 'f_idAgenda=\''+str(p_id_agenda)+'\' ' sql = sql + 'GROUP BY CONCAT(f_year, "-", f_monthname), f_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) if df.empty: return None linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['Total']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia Especialitat') trace = go.Scatter(x=df['MesNom'], y=df['Total'], mode='lines+markers', name='Visites per mes') graph_title = 'Evolució mensual de visites' if p_id_especiality is not None: graph_title = q.get_Spec_Name(p_id_especiality) + ': '+ graph_title if p_id_agenda is not None: graph_title = q.get_Agenda_Name(p_id_agenda) + ': '+ graph_title data = [trace, trace_regression] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Frequency by agenda'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_frequency_per_agenda(p_id_agenda='AG100') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param p_id_agenda: agenda identifier :rtype: string """ def plot_frequency_per_agenda(p_id_agenda): try: connection = connections['datawarehouse'] sql = 'SELECT CONCAT(f_year, "-", f_monthname) as MesNom, f_month as Mes, f_count/f_patients as rep FROM datawarehouse.dm1_visits_per_agenda WHERE f_idAgenda=\''+str(p_id_agenda)+'\' ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_frequency = go.Scatter(x=df['MesNom'], y=df['rep'], mode='lines+markers', name='repetitivitat') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['rep']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='regressio repetitivitat') graph_title = q.get_Agenda_Name(p_id_agenda) + ': repetitivitat' data = [trace_frequency, trace_regression] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Patients per month'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_patients_per_month() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_patients_per_month(): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as Mes , CONCAT(LEFT(f_month, 4), "-", f_monthname) as MesNom, f_patients as Patients, f_new_patients FROM datawarehouse.dm2_stats_per_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_patients = go.Scatter(x=df['MesNom'], y=df['Patients'], mode='lines+markers', name='Total pacients') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['Patients']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_patients = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia total pacients') trace_omi_annotation = go.Scatter(x=["2017-Dec", "2017-Dec"], y=[0, df['Patients'].max()], mode='lines', name='Inici odontologia a OMI360', line=dict(dash='dot')) graph_title = 'Pacients per mes' data = [trace_patients, trace_regression_patients, trace_omi_annotation] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'New patients per month'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_new_patients_per_month() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_new_patients_per_month(): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as Mes, CONCAT(LEFT(f_month, 4), "-", f_monthname) as MesNom, f_patients as Patients, f_new_patients as NewPatients FROM datawarehouse.dm2_stats_per_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_new_patients = go.Scatter(x=df['MesNom'], y=df['NewPatients'], mode='lines+markers', name='Pacients nous') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['NewPatients']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_new_patients = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia nous pacients') trace_omi_annotation = go.Scatter(x=["2017-Dec", "2017-Dec"], y=[0, df['NewPatients'].max()], mode='lines', name='Inici odontologia a OMI360', line=dict(dash='dot')) graph_title = 'Pacients nous per mes' data = [trace_new_patients, trace_regression_new_patients, trace_omi_annotation] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Distribution patients vs new patients'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_distribution_new_patients() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_distribution_new_patients(): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as Mes, CONCAT(LEFT(f_month, 4), "-", f_monthname) as MesNom, f_patients-f_new_patients as Patients, f_new_patients as NewPatients FROM datawarehouse.dm2_stats_per_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_new_patients = go.Scatter(x=df['MesNom'], y=df['NewPatients'], mode='lines', name='Pacients nous', stackgroup='one', groupnorm='percent') trace_patients = go.Scatter(x=df['MesNom'], y=df['Patients'], mode='lines', name='Pacients vells', stackgroup='one') graph_title = 'Distribució nous pacients' data = [trace_new_patients, trace_patients] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict( type='linear', range=[1, 100], dtick=20, ticksuffix='%')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'month evolution of new Patients per speciality'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_new_patients_per_speciality_per_month() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_new_patients_per_speciality_per_month(): try: connection = connections['datawarehouse'] sql = 'SELECT f_nomEspecialitat as Spec, CONCAT(LEFT(f_month,4), "-", f_monthname) as MesNom, f_month as Mes, sum(f_newPatients) as NewPatients FROM dm2_newpatient_per_month_agenda GROUP BY f_nomEspecialitat, CONCAT(LEFT(f_month,4), "-", f_monthname), f_month' df = pd.read_sql(sql, connection) arraySpecs = df['Spec'].unique() df = df.set_index('Spec') data = list() for spec in arraySpecs: df_spec = pd.DataFrame(df.loc[df.index == spec, ['MesNom', 'Mes', 'NewPatients']]) df_spec = df_spec.sort_values(['Mes'], ascending=[1]) trace = go.Scatter(x=df_spec['MesNom'], y=df_spec['NewPatients'], mode='lines', name=spec, stackgroup='one', groupnorm='percent') data.append(trace) layout = go.Layout( title='Evolució de la distribució de nous pacients per especialitat', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict( type='linear', range=[1, 100], dtick=20, ticksuffix='%')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'New Patients per Speciality or Agenda'. You can choose to call by spec o agenda, but not both. If you set both values Spec is used. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_evolution_new_patients_per_spec(p_id_agenda='100') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_evolution_new_patients_per_spec(p_id_especiality=None, p_id_agenda=None): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as Mes, CONCAT(LEFT(f_month,4), "-", f_monthname) as MesNom, sum(f_newPatients) as NewPatients from dm2_newpatient_per_month_agenda WHERE ' if (p_id_especiality is None or p_id_especiality == '') and p_id_agenda is None: p_id_especiality = 19# medicina general per defecte if (p_id_especiality is not None) and p_id_especiality != "": sql = sql + 'f_idEspecialitat=' + str(p_id_especiality) + ' ' else: if (p_id_agenda is not None) and p_id_agenda != "": sql = sql + 'f_idAgenda=\'' + str(p_id_agenda) + '\' ' sql = sql + 'GROUP BY f_month, CONCAT(LEFT(f_month,4), "-", f_monthname) ' sql = sql + 'ORDER BY f_month ASC' df = pd.read_sql(sql, connection) if df.empty: return None trace_new_patients = go.Scatter(x=df['MesNom'], y=df['NewPatients'], mode='lines+markers', name='Pacients nous') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['NewPatients']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_new_patients = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia nous pacients') graph_title = 'Evolució del número de pacients nous' if p_id_especiality is not None: graph_title = q.get_Spec_Name(p_id_especiality) + ': '+ graph_title if p_id_agenda is not None: graph_title = q.get_Agenda_Name(p_id_agenda) + ': '+ graph_title data = [trace_new_patients, trace_regression_new_patients] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Distribution of new patients by speciality'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_distribution_new_patients_per_spec('201801', '201812') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param p_first_month: starting month of range values in YYYYMM format :param p_last_month: ending month of range values in YYYYMM format :rtype: string """ def plot_distribution_new_patients_per_spec(p_first_month, p_last_month): try: connection = connections['datawarehouse'] sql = 'SELECT f_nomEspecialitat as Spec, sum(f_newPatients) as NewPatients FROM datawarehouse.dm2_newpatient_per_month_agenda WHERE f_month >= '+str(p_first_month)+' and f_month <= '+str(p_last_month)+' GROUP BY f_nomEspecialitat ORDER BY sum(f_newPatients) DESC' df = pd.read_sql(sql, connection) trace_new_patients = go.Pie(labels=df['Spec'], values=df['NewPatients']) graph_title = 'Nous pacients per especialitat (Del ' + u.yyyymmToMonthName(p_first_month) + ' al ' + u.yyyymmToMonthName(p_last_month) + ')' data = [trace_new_patients] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'New Patients per agenda'. Optionally, you can show by speciallity. If no speciality is set it shows whole data. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_first_blood_per_agenda('201801', '201812') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param p_first_month: starting month of range values in YYYYMM format :param p_last_month: ending month of range values in YYYYMM format :param p_id_especiality: optional identifier of speciality :rtype: string """ def plot_first_blood_per_agenda(p_first_month, p_last_month, p_id_especiality=None): try: connection = connections['datawarehouse'] sql = 'SELECT f_nomAgenda as nomAgenda, sum(f_totalVisits) as Total, COUNT(*) as Patients, sum(f_totalVisits)/COUNT(*) as PerPatient FROM datawarehouse.dm_first_visit WHERE f_month between '+str(p_first_month)+' and '+str(p_last_month) if p_id_especiality is not None: sql = sql + ' AND f_idEspecialitat=' + str(p_id_especiality) + ' ' sql = sql + ' GROUP BY f_nomAgenda' sql = sql + ' ORDER BY sum(f_totalVisits) DESC' df = pd.read_sql(sql, connection) trace_visits = go.Bar(x=df['nomAgenda'], y=df['Total'], name='Total visites al centre') trace_per_patient = go.Bar(x=df['nomAgenda'], y=df['PerPatient'], name='Mitjana per pacient') graph_title = 'Visites per captació en agenda (Del ' + u.yyyymmToMonthName(p_first_month) + ' al ' + u.yyyymmToMonthName(p_last_month) + ')' if p_id_especiality is not None: graph_title = q.get_Spec_Name(p_id_especiality) + ': ' + graph_title data = [trace_visits, trace_per_patient] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=12, color='black'), ), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Last visits per month'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_last_visits_per_month() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_last_visits_per_month(): try: connection = connections['datawarehouse'] # we don't want to show future months, so we filter till past month now = datetime.datetime.now() + dateutil.relativedelta.relativedelta(months=-1) last_month = str(now.year) + str(now.month+1).zfill(2) sql = 'SELECT f_lastmonth as Mes, CONCAT(LEFT(f_lastmonth,4), "-", f_lastmonthname) as MesNom, count(*) as Total FROM datawarehouse.dm_first_visit WHERE f_lastmonth < '+ last_month + ' GROUP BY f_lastmonth, CONCAT(LEFT(f_lastmonth,4), "-", f_lastmonthname) ORDER BY f_lastmonth ASC' df = pd.read_sql(sql, connection) trace_visits = go.Scatter(x=df['MesNom'], y=df['Total'], mode='lines+markers', name='Ultimes visites per mes') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['Total']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_visits = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia') trace_omi_annotation = go.Scatter(x=["2017-Dec", "2017-Dec"], y=[0, df['Total'].max()], mode='lines', name='Inici odontologia a OMI360', line=dict(dash='dot')) data = [trace_visits, trace_regression_visits, trace_omi_annotation] layout = go.Layout( title='Evolució del número de últimes visites per mes', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Visits per patient'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_visits_per_patient() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_visits_per_patient(): try: connection = connections['datawarehouse'] df = pd.read_sql('SELECT f_numHistoria as Patient, f_totalVisits as Total FROM datawarehouse.dm_first_visit', connection) #max outliners to 50 for better visualization df[df['Total'] > 50] = 50 trace_visits = go.Histogram(x=df['Total'], name='Visites per pacient') data = [trace_visits] layout = go.Layout( title='Distribució del número de visites per pacient', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none', title='Visites'), yaxis=dict(showticklabels=True, title='Número de pacients', tickformat='.0f', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Distribution casual vs fidelizied'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_distribution_casual_vs_fidelizied() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_distribution_casual_vs_fidelizied(): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as mes, CONCAT(LEFT(f_month,4), "-", f_monthname) as MesNom, f_casuals as casuals, f_fidelitzats as fidelitzats, f_visits_casuals as visitsCasuals, f_visits_fidelitzats as visitsFidelitzats FROM datawarehouse.dm2_stats_per_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_casual = go.Scatter(x=df['MesNom'], y=df['casuals'], mode='lines', name='Pacients casuals', stackgroup='one', groupnorm='percent') trace_fidelizied = go.Scatter(x=df['MesNom'], y=df['fidelitzats'], mode='lines', name='Pacients fidelitzats', stackgroup='one') data = [trace_casual, trace_fidelizied] layout = go.Layout( title='Distribució pacients casuals vs fidelitzats', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict( type='linear', range=[1, 100], dtick=20, ticksuffix='%')) fig = go.Figure(data=data, layout=layout) plotdiv_patients = py.offline.plot(fig, include_plotlyjs=False, output_type='div') trace_visits_casual = go.Scatter(x=df['MesNom'], y=df['visitsCasuals'], mode='lines', name='Visites casuals', stackgroup='one', groupnorm='percent') trace_visits_fidelizied = go.Scatter(x=df['MesNom'], y=df['visitsFidelitzats'], mode='lines', name='Visites fidelitzats', stackgroup='one') data = [trace_visits_casual, trace_visits_fidelizied] layout = go.Layout( title='Distribució visites casuals vs fidelitzats', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict( type='linear', range=[1, 100], dtick=20, ticksuffix='%')) fig = go.Figure(data=data, layout=layout) plotdiv_visits = py.offline.plot(fig, include_plotlyjs=False, output_type='div') return plotdiv_patients, plotdiv_visits except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Distance to last visit'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_distance_to_lastmonth() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_distance_to_lastmonth(): try: connection = connections['datawarehouse'] df = pd.read_sql('SELECT f_numHistoria as Patient, PERIOD_DIFF(IF(f_lastmonth=f_month,EXTRACT(YEAR_MONTH FROM CURRENT_DATE()),f_lastmonth), f_month) as mesos FROM datawarehouse.dm_first_visit', connection) df = df[df['mesos']>0] trace_distance = go.Histogram(x=df['mesos'], name='Mesos des de última visita') data = [trace_distance] layout = go.Layout( title='Conteig dels mesos que fa que no ve cada pacient', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none', title='Mesos des de última visita'), yaxis=dict(showticklabels=True, title='Número de pacients', tickformat='.0f', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Callcenter plots to analyse performance. usage:: >>> import plots >>> plots = plots_callcenter_period('2018/01/01', '2018/01/31') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot[1]}) :param p_date_ini: string representation of starting date in YYYY/MM/DD format :param p_date_fin: string representation of ending date in YYYY/MM/DD format :rtype: array of plots """ def plots_callcenter_period (p_date_ini, p_date_fin): try: connection = connections['datawarehouse'] # format date to use in a between condition: YYYYMMDD date_ini = datetime.datetime.strptime(str(p_date_ini), "%d/%m/%Y").strftime("%Y/%m/%d") date_fin = datetime.datetime.strptime(str(p_date_fin), "%d/%m/%Y").strftime("%Y/%m/%d") sql = "SELECT f_hour, sum(f_total) as total, sum(f_answered) as answered, sum(f_not_answered) as not_answered, if(sum(f_answered)>0,sum(f_not_answered)/sum(f_answered),sum(f_not_answered)) as overcall_factor FROM dm3_callcenter_general WHERE f_day BETWEEN \'"+date_ini+"\' AND \'"+date_fin+"\' and f_dst_id='6000' and f_hour between '07' and '23' GROUP BY f_hour ORDER BY f_hour ASC" df = pd.read_sql(sql, connection) if df.empty: return "No hi han dades en el periode triat.", None, None, None, None, None trace_answered = go.Scatter(x=df['f_hour'], y=df['answered'], mode='lines', name='Contestades', stackgroup='one', fillcolor='#81d386', line = dict( color = ('#81d386'),), hovertemplate = '%{y:.2f}%', groupnorm='percent') trace_not_answered = go.Scatter(x=df['f_hour'], y=df['not_answered'], mode='lines', name='No contestades', hovertemplate = '%{y:.2f}%', line = dict( color = ('#f28282'),), fillcolor= '#f28282', stackgroup='one') graph_title = 'Distribució contestades vs no contestades' data = [trace_answered, trace_not_answered] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), yaxis=dict(type='linear', range=[1, 100], dtick=20, ticksuffix='%') ) fig = go.Figure(data=data, layout=layout) plot_distrib = py.offline.plot(fig, include_plotlyjs=False, output_type='div') trace_abs_lost_calls = go.Bar(x=df['f_hour'], y=df['not_answered'], name='total no agafades') layout = go.Layout( title='Quantitat trucades no agafades', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) data=[trace_abs_lost_calls] fig = go.Figure(data=data, layout=layout) plot_abs_values = py.offline.plot(fig, include_plotlyjs=False, output_type='div') df = pd.read_sql("select f_week_day_order, f_week_day, f_hour, sum(f_not_answered) as not_answered, sum(f_total) as total from dm3_callcenter_general where f_day BETWEEN \'"+date_ini+"\' AND \'"+date_fin+"\' and f_dst_id='6000' and f_hour between '07' and '22' group by f_week_day_order, f_week_day, f_hour order by f_week_day_order ASC, f_hour ASC", connection) days = df['f_week_day'].unique() hours = sorted(df['f_hour'].unique()) values = [] for hour in hours: line = [] for day in days: v = df.loc[(df['f_week_day'] == day) & (df['f_hour'] == hour), 'not_answered'].values if v.size >0: line.append(v[0]) else: line.append(0) values.append(line) trace_heatmap_no_answer = go.Heatmap(z=values, x=days, y=hours, colorscale='Reds') data = [trace_heatmap_no_answer] layout = go.Layout( title='No contestades (valor absolut)', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), yaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) fig = go.Figure(data=data, layout=layout) plot_heatmap_no_answer = py.offline.plot(fig, include_plotlyjs=False, output_type='div') # total calls total_values = [] for hour in hours: line = [] for day in days: v = df.loc[(df['f_week_day'] == day) & (df['f_hour'] == hour), 'total'].values if v.size >0: line.append(v[0]) else: line.append(0) total_values.append(line) trace_heatmap_total = go.Heatmap(z=total_values, x=days, y=hours, colorscale='Blues', reversescale=True) data = [trace_heatmap_total] layout = go.Layout( title='Rebudes (valor absolut)', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), yaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) fig = go.Figure(data=data, layout=layout) plot_heatmap_total = py.offline.plot(fig, include_plotlyjs=False, output_type='div') df = pd.read_sql("select f_day, f_hour, sum(f_not_answered) as not_answered, sum(f_total) as total from dm3_callcenter_general where f_day BETWEEN \'"+date_ini+"\' AND \'"+date_fin+"\' and f_dst_id='6000' and f_hour between '07' and '22' group by f_day, f_hour order by f_day ASC, f_hour ASC", connection) days = df['f_day'].unique() hours = sorted(df['f_hour'].unique()) values_day = [] values_total = [] for hour in hours: line = [] line_total = [] for day in days: v = df.loc[(df['f_day'] == day) & (df['f_hour'] == hour), 'not_answered'].values v_total = df.loc[(df['f_day'] == day) & (df['f_hour'] == hour), 'total'].values if v.size >0: line.append(v[0]) else: line.append(0) if v_total.size >0: line_total.append(v_total[0]) else: line_total.append(0) values_day.append(line) values_total.append(line_total) trace_heatmap_per_day_no_answer = go.Heatmap(z=values_day, x=days, y=hours, colorscale='Reds') data = [trace_heatmap_per_day_no_answer] layout = go.Layout( title='No contestades per dia (valor absolut)', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), yaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) fig = go.Figure(data=data, layout=layout) plot_heatmap_per_day_no_answer = py.offline.plot(fig, include_plotlyjs=False, output_type='div') trace_heatmap_per_day_total = go.Heatmap(z=values_total, x=days, y=hours, colorscale='Blues', reversescale=True) data = [trace_heatmap_per_day_total] layout = go.Layout( title='Rebudes per dia (valor absolut)', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), yaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) fig = go.Figure(data=data, layout=layout) plot_heatmap_per_day_total = py.offline.plot(fig, include_plotlyjs=False, output_type='div') return plot_distrib, plot_abs_values, plot_heatmap_no_answer, plot_heatmap_total, plot_heatmap_per_day_no_answer, plot_heatmap_per_day_total except Error as e: print("Error while connecting to MySQL", e) """ Callcenter plots representing evolution usage:: >>> import plots >>> plots = plots_callcenter_evo() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot[1]}) :param: None :rtype: array of plots """ def plots_callcenter_evo(): try: connection = connections['datawarehouse'] current_month = datetime.date.today().strftime('%Y%m') sql = 'SELECT f_month, sum(f_total) as total, sum(f_answered) as answered, sum(f_not_answered) as not_answered, sum(f_answered)/sum(f_total) as percent_answered, sum(f_not_answered)/sum(f_total) as percent_not_answered FROM datawarehouse.dm3_callcenter_general WHERE f_month < ' + current_month +' GROUP BY f_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) df['f_month_order'] = np.arange(len(df)) trace_total = go.Scatter(x=df['f_month_order'], y=df['total'], mode='lines', name='Rebudes per mes', line = dict( color = ('blue'), dash = 'solid'),) trace_answered = go.Scatter(x=df['f_month_order'], y=df['answered'], mode='lines', name='Contestades per mes', line = dict( color = ('green'), dash = 'solid',),) trace_not_answered = go.Scatter(x=df['f_month_order'], y=df['not_answered'], mode='lines', name='No contestades per mes', line = dict( color = ('red'), dash = 'solid',),) linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['total']) predicted_y_total = pol_reg.predict(poly_reg.fit_transform(linear_x)) pol_reg.fit(X_poly, df['answered']) predicted_y_answered = pol_reg.predict(poly_reg.fit_transform(linear_x)) pol_reg.fit(X_poly, df['not_answered']) predicted_y_not_answered = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_total = go.Scatter(x=df['f_month_order'], y=predicted_y_total, mode='lines', name='Tendencia trucades rebudes', line = dict( color = ('blue'), dash = 'dot'),) trace_regression_answered = go.Scatter(x=df['f_month_order'], y=predicted_y_answered, mode='lines', name='Tendencia trucades contestades', line = dict( color = ('green'), dash = 'dot'),) trace_regression_not_answered = go.Scatter(x=df['f_month_order'], y=predicted_y_not_answered, mode='lines', name='Tendencia trucades no contestades', line = dict( color = ('red'), dash = 'dot'),) data = [trace_total, trace_regression_total, trace_answered, trace_regression_answered, trace_not_answered, trace_regression_not_answered] layout = go.Layout( title='Evolució del número de trucades per mes', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=60, tickfont=dict(family='Old Standard TT, serif', size=10, color='black'), showexponent='none', tickmode = 'array', tickvals = df['f_month_order'], ticktext = df['f_month']), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) plot_absolute = py.offline.plot(fig, include_plotlyjs=False, output_type='div') trace_visits_casual = go.Scatter(x=df['f_month_order'], y=df['percent_answered'], mode='lines', name='Contestades', stackgroup='one', groupnorm='percent') trace_visits_fidelizied = go.Scatter(x=df['f_month_order'], y=df['percent_not_answered'], mode='lines', name='No contestades', stackgroup='one') data = [trace_visits_casual, trace_visits_fidelizied] layout = go.Layout( title='Distribució contestades vs no contestades mes a mes', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=60, tickfont=dict(family='Old Standard TT, serif', size=10, color='black'), showexponent='none', tickmode = 'array', tickvals = df['f_month_order'], ticktext = df['f_month']), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) plot_distrib_percent = py.offline.plot(fig, include_plotlyjs=False, output_type='div') return plot_absolute, plot_distrib_percent, plot_absolute except Error as e: print("Error while connecting to MySQL", e) def plots_ext_performance(p_date_ini, p_date_fin): try: connection = connections['datawarehouse'] # format date to use in a between condition: YYYYMMDD date_ini = datetime.datetime.strptime(str(p_date_ini), "%d/%m/%Y").strftime("%Y/%m/%d") date_fin = datetime.datetime.strptime(str(p_date_fin), "%d/%m/%Y").strftime("%Y/%m/%d") sql = "SELECT f_extension as extension, sum(f_answered) as answered, sum(f_spoken_time) as spoken_time, sum(f_spoken_time)/sum(f_answered) as time_per_call FROM dm3_callcenter_per_extension WHERE f_day BETWEEN \'"+date_ini+"\' AND \'"+date_fin+"\' and f_extension IN (100, 101, 102, 104, 111, 112) GROUP BY f_extension" df = pd.read_sql(sql, connection) lines = [] line = {} calls = 0 spoken_time = 0 time_per_call = 0 total = 0 for index, row in df.iterrows(): calls += row[1] spoken_time += row[2] time_per_call += row[3] total += 1 line = {'extension': row[0], 'answered': f'{row[1]:10.0f}', 'spoken_time': f'{row[2]/3600:10.2f}', 'time_per_call': f'{row[3]/60:10.2f}'} lines.append(line) # add averages if total > 0: line = {'extension': 'promig', 'answered': f'{calls/total:10.0f}', 'spoken_time': f'{spoken_time/(3600*total):10.2f}', 'time_per_call': f'{time_per_call/(60*total):10.2f}'} lines.append(line) sql = "SELECT f_extension as extension, f_day, f_hour, sum(f_answered) as answered, sum(f_spoken_time) as spoken_time, sum(f_spoken_time)/sum(f_answered) as time_per_call FROM dm3_callcenter_per_extension WHERE f_day BETWEEN \'"+date_ini+"\' AND \'"+date_fin+"\' and f_extension IN (100, 101, 102, 104, 111, 112) GROUP BY f_extension, f_day, f_hour ORDER BY f_extension, f_day, f_hour" df = pd.read_sql(sql, connection) extensions = sorted(df['extension'].unique()) days = sorted(df['f_day'].unique()) hours = sorted(df['f_hour'].unique()) plots = [] for extension in extensions: values_day = [] for hour in hours: line = [] for day in days: v = df.loc[(df['extension'] == extension) & (df['f_day'] == day) & (df['f_hour'] == hour), 'answered'].values if v.size >0: line.append(v[0]) else: line.append(0) values_day.append(line) trace_heatmap_per_extension = go.Heatmap(z=values_day, x=days, y=hours, colorscale='Reds', name=extension) graph_title = 'Trucades ateses per l\'extensió ' + extension layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), yaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) heatmap_data = [trace_heatmap_per_extension] fig = go.Figure(data=heatmap_data, layout=layout) plots.append(py.offline.plot(fig, include_plotlyjs=False, output_type='div')) return lines, plots except Error as e: print("Error while connecting to MySQL", e)
[ "plotly" ]
8fefca3afd7864bd1ae1df08b3c1e58f494d01b4
Python
antoniosj/data-science-playground
/machine-learning-az/data_processing_template.py
UTF-8
1,923
3.609375
4
[]
no_license
# data preprocessing # importing libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # importing dataset dataset = pd.read_csv('Data.csv') # creates matrix of independents variables until last column minus 1 X = dataset.iloc[:, :-1].values # creates matrix of dependent variable. The last column. lastColumn = 3 Y = dataset.iloc[:, lastColumn].values """ # tirar a media para preencher valor faltando from sklearn.preprocessing import Imputer imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) # fit colunas 1 e 2 do index imputer = imputer.fit(X[:, 1:3]) X[:, 1:3] = imputer.transform(X[:, 1:3])""" """ # Encoding categorical data # Colunas que tem um mesmo padrão (ex: 10 linhas com 3 tipos de países vão ser divididos # em 0, 1 e 2 e depois vão ter 3 valores (0, 0, 1) para o ml não achar que um valor é # maior que o outro apenas por causa da categoria dele from sklearn.preprocessing import LabelEncoder, OneHotEncoder # X = colunas independentes e X[:, ] = todas as linhas da coluna 0 labelEncoder_X = LabelEncoder() X[:, 0] = labelEncoder_X.fit_transform(X[:, 0]) #OneHotEncoder vai transformar minhas categorias em uma tabela de 0, 0, 1 oneHotEncoder = OneHotEncoder(categorical_features = [0]) # lembrar de formatar os valores em .0f X = oneHotEncoder.fit_transform(X).toarray() # Y = coluna dependente labelEncoder_Y = LabelEncoder() # como essa coluna só são dois valores (0 e 1) não precisa do onehotencoder. Y = labelEncoder_Y.fit_transform(Y) """ # Splitting the dataset into training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0) # Feature scalling # Standard or Normalization from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)
[ "matplotlib" ]
4b56ae0997fede4b989912d881f79888d454d73a
Python
qapquiz/TSP_With_GA
/main.py
UTF-8
4,965
3.296875
3
[]
no_license
from Town import Town from costMatrix import CostMatrix from salesMan import SalesMan import random #import matplotlib.pyplot as plt #initial variable for Genetic Algorithm MAX_ITERATION = 1000 MAX_POPULATION = 20 PC = 0.8 PM = 0.05 #create list of object town townList = list() townData = open("town.txt", 'r') while townData: line = townData.readline().split() if (line == []): break; townList.append(Town(line[0], line[1], line[2])) #createCostMatrix costMatrixDict = CostMatrix(townList).createCostMatrix() #create population populationList = list() for i in range(20): populationList.append(SalesMan()) populationList[i].randomFirstPath(townList) populationList[i].calculateFitness(costMatrixDict, townList) #start iteration iteration = 1 while iteration <= MAX_ITERATION: #roulette selection #sort populationList populationList = sorted(populationList, key=lambda population: population.fitness) #end sort populationList sumFitness = 0 for population in populationList: sumFitness = sumFitness + population.getFitness() probability = 0 sumProbabilities = 0 for population in populationList: population.setProbability(sumProbabilities + ((float(population.getFitness()) / float(sumFitness)))) sumProbabilities += population.getProbability() - sumProbabilities population.setProbability(1 - population.getProbability()) #print "fitness: " + str(population.getFitness()) #print "prob: " + str(population.getProbability()) #selection phase populationList = populationList[::-1] populationIndex = 0 populationIndexSelectionList = list() #/2 while (len(populationIndexSelectionList) != MAX_POPULATION): randNumber = random.uniform(0, 1) for population in populationList: if randNumber < population.getProbability(): populationIndexSelectionList.append(populationIndex) break #if populationIndex not in populationIndexSelectionList: # populationIndexSelectionList.append(populationIndex) # break populationIndex = populationIndex + 1 populationIndex = 0 populationSelectionList = list() #/2 for i in range(MAX_POPULATION): populationSelectionList.append(populationList[populationIndexSelectionList[i]]) #print "SelectionList: " + str(populationIndexSelectionList) #end selection phase #crossover phase crossoverCount = 0 while crossoverCount < (MAX_POPULATION): parent1 = populationSelectionList[crossoverCount] parent2 = populationSelectionList[crossoverCount+1] #occur crossover if random.uniform(0, 1) < PC: child1 = SalesMan() child2 = SalesMan() #child1 child1.setPath(parent1.getPath()[:100]) while len(child1.getPath()) != len(townList): parent2Path = parent2.getPath() for town in parent2Path: if town not in child1.getPath(): child1.getPath().append(town) #child2 child2.setPath(parent2.getPath()[:100]) while len(child2.getPath()) != len(townList): parent1Path = parent1.getPath() for town in parent1Path: if town not in child2.getPath(): child2.getPath().append(town) populationList.append(child1) populationList.append(child2) #not occur crossover then copy parent to child else: child1 = SalesMan() child2 = SalesMan() child1.setPath(parent1.getPath()) child1.setFitness(parent1.getFitness()) child2.setPath(parent2.getPath()) child2.setFitness(parent2.getFitness()) populationList.append(child1) populationList.append(child2) crossoverCount = crossoverCount + 2 #print "=========================================================================" #print child1.getPath() child1.calculateFitness(costMatrixDict, townList) #print child1.getFitness() #end crossover phase #end roulette selection #print "len of populationList: " + str(len(populationList)) calculateFitnessCount = 20 while calculateFitnessCount < len(populationList): populationList[calculateFitnessCount].calculateFitness(costMatrixDict, townList) calculateFitnessCount = calculateFitnessCount + 1 mutationIndex = 0 for population in populationList: if mutationIndex >= 20: pathIndex = 0 pathIndexList = list() for path in population.getPath(): if random.uniform(0, 1) < PM: pathIndexList.append(pathIndex) if len(pathIndexList) == 2: temp = population.getPath()[pathIndexList[0]] population.getPath()[pathIndexList[0]] = population.getPath()[pathIndexList[1]] population.getPath()[pathIndexList[1]] = temp pathIndexList = list() pathIndex = pathIndex + 1 mutationIndex = mutationIndex + 1 #sort populationList populationList = sorted(populationList, key=lambda population: population.fitness) #end sort populationList #for population in populationList: # print population.getFitness() delIndex = 20 while delIndex < len(populationList): del populationList[delIndex] iteration = iteration + 1 #end iteration print populationList[0].getPath() print "Total distance: " + str(populationList[0].getFitness()) #return Answer
[ "matplotlib" ]
e6075aefd576879dd36f907009922e0cfac9657a
Python
Tusharcoder18/Sea-Level-Predictor
/sea_level_predictor.py
UTF-8
1,236
3.390625
3
[]
no_license
import pandas as pd import matplotlib.pyplot as plt from scipy.stats import linregress def draw_plot(): # Read data from file df = pd.read_csv('epa-sea-level.csv') # Create scatter plot plt.scatter(x='Year', y='CSIRO Adjusted Sea Level', data=df) # Create first line of best fit lin_result = linregress(x=df['Year'], y=df['CSIRO Adjusted Sea Level']) slope = lin_result.slope intercept = lin_result.intercept year_extended = pd.Series([int(i) for i in range(1880, 2050)]) best_fit1 = slope * year_extended + intercept plt.plot(year_extended, best_fit1, 'r') # Create second line of best fit recent = df[df['Year'] >= 2000] lin_result = linregress(x=recent['Year'], y=recent['CSIRO Adjusted Sea Level']) slope = lin_result.slope intercept = lin_result.intercept year_extended = pd.Series([int(i) for i in range(2000, 2050)]) best_fit2 = intercept + slope * year_extended plt.plot(year_extended, best_fit2, 'g') # Add labels and title plt.xlabel('Year') plt.ylabel('Sea Level (inches)') plt.title('Rise in Sea Level') # Save plot and return data for testing (DO NOT MODIFY) plt.savefig('sea_level_plot.png') return plt.gca()
[ "matplotlib" ]
d20403de3a82124f0bc1b9c065774658c47e245a
Python
Karel-van-de-Plassche/petra-plot
/DSC.py
UTF-8
3,853
3.09375
3
[ "MIT" ]
permissive
import matplotlib as mpl from matplotlib import cycler import matplotlib.pyplot as plt plt.style.use('./paper.mplstyle') # Choose the settings file to use import numpy as np from IPython import embed import pandas as pd from itertools import chain import os def load_file(filename): with open(filename, 'r', encoding = "ISO-8859-1") as file_: lines = file_.readlines() # Read the complete file dfs = [] while len(lines) > 0: # Keep reading until all chunks are read name_ind = lines.index('Curve Name:\n') # Look for 'Curve Name:' del lines[name_ind] curve_name = lines[name_ind].strip() print(curve_name) start_ind = lines.index('Curve Values:\n') # Values start after 'Curve Values' column_names = lines[start_ind+1].split() # The line after that are the column names column_units = lines[start_ind+2].split() # And after that the units results_ind = lines.index('Results:\n') # The values stop when we find 'Results:' df = pd.DataFrame(np.loadtxt(lines[start_ind+3:results_ind]), columns=column_names) # Now put it in a table df.set_index('Tr', inplace=True) # The 'x-axis' is Tr dfs.append(df['Value']) # And we only need the Value column try: end_ind = lines.index('Curve Name:\n') # Try to find the next chunk except ValueError: end_ind = len(lines) # If we can't find it, we're done! del lines[:end_ind] #results = pd.concat(dfs, axis=1) # Now, merge all chuncks together heating = pd.concat(dfs[1::2], axis=1) # Merge all heating chunks cooling = pd.concat(dfs[0::2], axis=1) # And all cooling chunks for set in chain([heating, cooling]): # For both heating and cooling set.columns = reversed(range(1, len(set.columns) + 1)) # Number them N..1 set.index.name = 'Temperature [$\degree$C]' # And rename the x-axis heating.columns = ['Heating ' + str(col) for col in heating.columns] # Now prepend Heating to the column names cooling.columns = ['Cooling ' + str(col) for col in cooling.columns] # And Cooling #labels = [] #for ii in range(1, len(results.columns) // 2 + 1): # labels.append('Heating ' + str(ii)) # labels.append('Cooling ' + str(ii)) #labels = list(reversed(labels)) #results.columns = labels return heating, cooling def plot_heating_cooling(heating, cooling, shift=0.2, base_shift=0.0): fig = plt.figure() ax = fig.add_subplot(111) for ii in range(1, len(cooling.columns) + 1): cooling.iloc[:, ii:] = cooling.iloc[:, ii:] + shift # Shift all curves, the 2nd one the most cooling += base_shift # And shift all columns a set amount for ii in range(1, len(heating.columns) + 1): heating.iloc[:, ii:] = heating.iloc[:, ii:] - shift heating -= base_shift for ii in range(len(heating.columns)): for set in chain([heating, cooling]): # Now plot Heating ii and Cooling ii in pairs ax.plot(set.iloc[:, ii], label=set.iloc[:, ii].name) ax.legend() # Plot the legend #cooling.plot(ax=ax) #heating.plot(ax=ax) cmap = plt.get_cmap('tab20') # Choose the colors by name: https://matplotlib.org/examples/color/colormaps_reference.html plt.rc('axes', prop_cycle=(cycler('color', cmap.colors))) root = 'DSC' # This is the main folder to look for files for filename in os.listdir(root): # For every folder in the root folder if filename.endswith('.txt'): # If it ends with .txt path_to_file = os.path.join(root, filename) heating, cooling = load_file(path_to_file) # Read the file and put it in a table plot_heating_cooling(heating, cooling, shift=0.2, base_shift=0.0) # And plot the curves plt.show()
[ "matplotlib" ]
602036d1f09959ff9dbdad8a43cf2c26d17446d1
Python
marcinu456/Modelowanie-Komputerowe
/Nowy folder (2)/Nowy folder/WykresyPython/zad3.py
UTF-8
1,258
3.390625
3
[]
no_license
import sys import numpy as np from numpy.lib import median import matplotlib.pyplot as plt def gauss(data): mean = sum([ k*v for k, v in data.items()])/sum(data.values())#średnia mse = sum([v*(k - mean)**2 for k, v in data.items()])/sum(data.values())#wariacia rmse = np.sqrt(mse)#odchylenie mx = max([ v for k, v in data.items()]) med = np.median([ k*v for k, v in data.items()]) ret = [ (mx * np.exp( -(((x - med))**2)/(2*mse) )) for x in data.keys()]#rozklad normalny print("dzieci najprawdopodbniej są w odlgełośći ",3*rmse, "kroków") return ret def main(): x = np.loadtxt('spacery/odlegloscPo1000.txt', unpack=True) valCount = dict() for pos in x: if pos in valCount: valCount[pos] += 10 else: valCount[pos] = 0 valCount = {k: v for k, v in sorted(valCount.items(), key=lambda item: item[0])} plt.plot(valCount.keys(), gauss(valCount)) plt.xlabel("X") plt.ylabel("dzieci") if __name__ == "__main__": main() plt.legend() plt.show() # Bardziej prawdopodobne jest to, że dziecko będzię bliżej odległości 1 # Odległośc 3sigma można uznać, za wartość graniczną gdzię znajduję się # 99.7% procent wszystkich dzieci
[ "matplotlib" ]
69dc68b6961443954bc6396ec43c203db782a761
Python
edfong/npl
/experiments/LogReg_ARD/run_NPL_logreg.py
UTF-8
2,971
2.71875
3
[ "BSD-3-Clause" ]
permissive
""" main script for running NPL """ import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt import copy import time from npl import bootstrap_logreg as bbl import pickle def load_data(dataset,seed): #load polish if dataset == 'Polish': year = 3 with open('./data/pc_train_y{}_seed{}'.format(year,seed), 'rb') as handle: pc_train = pickle.load(handle) #Move into vectors y = pd.to_numeric(pc_train['y'].values[:,0]) x = pc_train['x'].values D_data = pc_train['D'] N_data = pc_train['N'] #prior and loss settings from paper alph_conc = 0 #prior strength gamma = 1/N_data #loss scaling relative to log-likelihood #load adult if dataset == 'Adult': with open('./data/ad_train_seed{}'.format(seed), 'rb') as handle: ad_train = pickle.load(handle) #Move into vectors y = np.uint8(ad_train['y'])[:,0] x = ad_train['x'].values D_data = ad_train['D'] N_data = ad_train['N'] #prior and loss settings from paper alph_conc = 0 gamma = 1/N_data #load arcene if dataset == 'Arcene': with open('./data/ar_train_seed{}'.format(seed), 'rb') as handle: ar_train = pickle.load(handle) N_data = ar_train['N'] D_data = ar_train['D'] y = np.int8(ar_train['y'].values.reshape(N_data,)) x = ar_train['x'].values #prior and loss settings from paper alph_conc = 1 gamma = 1/N_data return y,x,alph_conc,gamma,N_data,D_data def main(dataset, B_postsamples): #same parameters between datasets T_trunc = 100 a=1 b = 1 #rate of gamma hyperprior for i in range(30): seed = 100+i np.random.seed(seed) y,x,alph_conc,gamma,N_data,D_data = load_data(dataset,seed) start= time.time() #carry out posterior bootstrap beta_bb, ll_b = bbl.bootstrap_logreg(B_postsamples,alph_conc,T_trunc,y,x,N_data,D_data,a,b,gamma) end = time.time() print ('Time elapsed = {}'.format(end - start)) #convert to dataframe and save dict_bb = {'beta': beta_bb, 'll_b': ll_b, 'time': end-start} par_bb = pd.Series(data = dict_bb) #Polish if dataset == 'Polish': par_bb.to_pickle('./parameters/par_bb_logreg_c{}_a{}_b{}_gN_pol_B{}_seed{}'.format(alph_conc,a,b,B_postsamples,seed)) #Adult if dataset == 'Adult': par_bb.to_pickle('./parameters/par_bb_logreg_c{}_a{}_b{}_gN_ad_B{}_seed{}'.format(alph_conc,a,b,B_postsamples,seed)) #Arcene if dataset == 'Arcene': par_bb.to_pickle('./parameters/par_bb_logreg_c{}_a{}_b{}_gN_ar_B{}_seed{}'.format(alph_conc,a,b,B_postsamples,seed)) if __name__=='__main__': main('Polish',2000) main('Adult',2000) main('Arcene',2000)
[ "matplotlib" ]
fcf7e4efb410c260f3b0ae77d795ab050cb568dc
Python
shadimohagheghi/Generative-Models-for-Multigroup-Connectivity-Structures
/Liaison_model.py
UTF-8
5,124
2.578125
3
[]
no_license
import networkx as nx from allfunctions import draw_degdist import numpy as np import matplotlib import matplotlib.pyplot as plt from almost_clique import almost_clique from numpy import inf import matplotlib.pyplot as plt matplotlib.rc('xtick', labelsize=25) matplotlib.rc('ytick', labelsize=25) plt.close("all") ########################################################## ########################################################## def Liaison_model(): clique_size = [3,4,5,6,7,8,9,10]; # clique sizes clique_edges=np.asarray(clique_size) clique_edges = np.divide(np.multiply(clique_edges,clique_edges+1),2) ep = 0.1; clique_num = np.zeros(len(clique_size)); # number of cliques of given size for i in range(len(clique_size)): clique_num[i] = int(2.5321*(50.0/(clique_size[i])**3)); clique_num = map(int,clique_num) # comment this next line to generate a small sample graph easy to visualize #clique_num = [0,7,3,1,0,0,0,0] ########################################################### ########################################################### def li_num(size): # number of liaisons given clique size maxli = 2; p = float(size)**2/200; a = np.random.binomial(maxli, p, size=1) +1 return a ########################################################### ########################################################### # almost cliques are generated Gclique,li,li_cliquewise,clique_sizes,all_liaisons,clique_lead,nstart = almost_clique(clique_size,clique_num,li_num) print(len(clique_lead)), 'cliques formed' ################################################ #### liaison model ############################# m = 2; ext_li = int(float(sum(clique_num))/m); # deciding number of external liaisons Gli = nx.barabasi_albert_graph(ext_li,2); #only option for external liaison model print "Barabasi Albert Graph = ", Gli.edges() plt.figure(1) nx.draw(Gli, pos=nx.circular_layout(Gli)) limodel_deglist = np.zeros(len(Gli)); for i in range(len(Gli)): limodel_deglist[i] = len(Gli[i]) ord_limodel = sorted(range(len(limodel_deglist)),key=lambda x:limodel_deglist[x]) print "ord_limodel = ", ord_limodel clique_ext_list = np.zeros(sum(clique_num)) for i in range(sum(clique_num)): # randomly assign cliques to external liaisons clique_ext_list[i] = np.random.randint(ext_li); print "clique_ext_list = ", clique_ext_list cliquenodes = len(Gclique); for i in range(len(Gli)): for j in range(len(Gli)): if j in Gli[i]: Gclique.add_edge(cliquenodes+i,cliquenodes+j) for i in range(ext_li): dums = np.where(clique_ext_list==i); for j in range(len(dums[0])): for k in range(len(li_cliquewise[dums[0][j]])): Gclique.add_edge(cliquenodes+i,li_cliquewise[dums[0][j]][k]) degthis,a1,a2 = draw_degdist(Gclique,1,'b',0) figcolor = 'b' plt.figure(2) plt.scatter((a1),(a2),c=figcolor,marker='o',s=400,alpha=0.5) plt.plot((a1),(a2),linewidth=2,c=figcolor) plt.xlabel('node degree',fontsize=30) plt.ylabel('number of nodes',fontsize=30) plt.axis([-2, 45, -19, 670]) clique_list = []; for i in range(len(clique_size)): dum = np.linspace(clique_size[i],clique_size[i], clique_num[i]) clique_list = np.hstack((clique_list,dum )) colors = []; c = 0; for i in range(len(clique_list)): colors.extend(np.linspace(c,c,clique_list[i])) c = c + 1 for i in range(ext_li): colors.append(20); c = c + 1 #pos=nx.spring_layout(Gclique,iterations=200) posx = []; posy = []; for i in range(len(clique_list)): centerx = np.cos(2*np.pi*i/len(clique_list)) centery = np.sin(2*np.pi*i/len(clique_list)) x1 = []; y1 = []; for j in range(int(clique_list[i])): x1.append(centerx + 0.2*np.cos(2*np.pi*j/clique_list[i])) y1.append(centery + 0.2*np.sin(2*np.pi*j/clique_list[i])) posx.extend(x1); posy.extend(y1); print ext_li x1 = []; y1 = []; print "ext_li=",ext_li for j in range(ext_li): x1.append(0.5*np.cos(2*np.pi*j/ext_li)) y1.append(0.5*np.sin(2*np.pi*j/ext_li)) posx.extend(x1); posy.extend(y1); pos = np.transpose(np.vstack((posx,posy))) plt.figure(3) nx.draw(Gclique,pos,node_color=colors,node_size=800,cmap=plt.cm.Blues) plt.show() print 'diameter of liaison network is', nx.diameter(Gclique) print 'avg clustering coeff is', nx.average_clustering(Gclique) print 'avg shortest path length', nx.average_shortest_path_length(Gclique) plt.show() return Gclique Gclique = Liaison_model()
[ "matplotlib" ]
6c8f7a3a3b183b25e1439c26e1f4756cea5a3f94
Python
petercunning/notebook
/pcolor.py
UTF-8
1,441
2.875
3
[ "GFDL-1.1-only", "MIT" ]
permissive
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> import numpy as np from iris.cube import Cube from iris.coords import DimCoord # <codecell> def create_cube(): lon1d = np.arange(5) lat1d = np.arange(4) data = np.random.random((len(lat1d),len(lon1d))) cube = Cube(data) lon = DimCoord(lon1d, standard_name='longitude', units='degrees', circular=False) lat = DimCoord(lat1d, standard_name='latitude', units='degrees') cube.add_dim_coord(lon, 1) cube.add_dim_coord(lat, 0) return cube # <codecell> cube = create_cube() # <codecell> x = cube.coord(axis='X') x.guess_bounds() x # <codecell> y = cube.coord(axis='Y') y.guess_bounds() y # <codecell> %matplotlib inline import matplotlib.pyplot as plt plt.pcolormesh(x.points, y.points, cube.data) # <codecell> import iris.quickplot as qplt cs = qplt.pcolormesh(cube) # <codecell> import cartopy.crs as ccrs from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter fig, ax = plt.subplots(subplot_kw=dict(projection=ccrs.PlateCarree())) cs = qplt.pcolormesh(cube) ax.set_xticks(x.points, crs=ccrs.PlateCarree()) ax.set_yticks(y.points, crs=ccrs.PlateCarree()) lon_formatter = LongitudeFormatter(zero_direction_label=True) lat_formatter = LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) # <codecell> # <codecell>
[ "matplotlib" ]
7f1e595c478d60f368d15ac1a9695929608497b3
Python
a2liu/mosquitoSim
/run3.py
UTF-8
869
3.71875
4
[]
no_license
import time import matplotlib from sim import population #This script simulates the decay of a set of populations that have varying attributes def getPopAttributes(iteration): #Determine population attributes based on iteration number # Initial population size popSize = 10000 # percentage of initial pop. infected perInfect = .5 # % chance that offspring of an infected male is male ratio = .5 # Growth of population per generation. 0 means no growth, 1 means double every year, etc. growth = 6 return (popSize, perInfect, ratio, growth) start = time.process_time() # Amount of populations to simulate popNum = 1000 # Max iteration count maxIter = 10000 for x in range(1, popNum): pop = population(*getPopAttributes(x)) print(x,pop.decay(maxIter)) stop = time.process_time() print("Time Elapsed:", stop - start)
[ "matplotlib" ]
4d33c2137c8938cbaad4e1fc436f8e291d230790
Python
mmilunovic/bin-genetic-algorithm
/bin-gen-algorithm.py
UTF-8
7,422
2.96875
3
[]
no_license
# %matplotlib inline import random import numpy as np import matplotlib.pyplot as plt import math from mpl_toolkits import mplot3d pi = 3.1415 def levy_function(chromosome): x = chromosome[0] y = chromosome[1] tmp1 = math.pow(math.sin(3*pi*x), 2) tmp2 = math.pow((x - 1), 2) * (1 + math.pow(math.sin(3*pi*y), 2)) tmp3 = math.pow((y - 1), 2) * (1 + math.pow(math.sin(2*pi*y), 2)) return tmp1 + tmp2 + tmp3 def l_show(x, y): tmp1 = math.pow(math.sin(3*pi*x), 2) tmp2 = math.pow((x - 1), 2) * (1 + math.pow(math.sin(3*pi*y), 2)) tmp3 = math.pow((y - 1), 2) * (1 + math.pow(math.sin(2*pi*y), 2)) return tmp1 + tmp2 + tmp3 levy_vectorized = np.vectorize(l_show) x = np.linspace(-13, 13, 30) y = np.linspace(-13, 13, 30) X, Y = np.meshgrid(x, y) Z = levy_vectorized(X, Y) ax = plt.axes(projection='3d') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='plasma', edgecolor='none') ax.set_title('Levijeva funkcija br.13'); ax.view_init(50, 35) def bin_encode(chromosome, bin_val, min_val, precision): ret = "" for g in chromosome: val = round((g - min_val)/bin_val) ret += bin(val)[2:].rjust(precision,'0') return ret def bin_encode_chromosomes(chromosomes, precision, max_val, min_val): bin_val = (max_val - min_val) / (2**precision-1) bin_chromosomes = [ bin_encode(c, bin_val, min_val, precision) for c in chromosomes] return bin_chromosomes def bin_decode(chromosome, bin_val, min_val, precision): ret = [] for idx in range(0, len(chromosome), precision): g = int(chromosome[idx:idx + precision], 2) ret.append(g * bin_val + min_val) return ret def bin_decode_chromosomes(chromosomes, precision, max_val, min_val): bin_val = (max_val - min_val) / (2**precision-1) bin_chromosomes = [ bin_decode(c, bin_val, min_val, precision) for c in chromosomes] return bin_chromosomes def two_point_crossover(pairs): length = len(pairs[0]) children = [] for (a,b) in pairs: r1 = random.randrange(0, length) r2 = random.randrange(0, length) if r1 < r2: children.append(a[:r1] + b[r1:r2] + a[r2:]) children.append(b[:r1] + a[r1:r2] + b[r2:]) else: children.append(a[:r2] + b[r2:r1] + a[r1:]) children.append(b[:r2] + a[r2:r1] + b[r1:]) return children def inv_mutation(chromosomes, mutation_rate): mutated_chromosomes = [] for chromosome in chromosomes: if random.random() < mutation_rate: r1 = random.randrange(0, len(chromosome) - 1) r2 = random.randrange(0, len(chromosome) - 1) if r1 < r2: mutated_chromosomes.append(chromosome[:r1] + chromosome[r1:r2][::-1] + chromosome[r2:]) else: mutated_chromosomes.append(chromosome[:r2] + chromosome[r2:r1][::-1] + chromosome[r1:]) else: mutated_chromosomes.append(chromosome) return mutated_chromosomes def generate_inital_chromosomes(length, max, min, pop_size): return [ [random.uniform(min,max) for j in range(length)] for i in range(pop_size)] def population_stats(costs): return costs[0], sum(costs)/len(costs) def rank_chromosomes(cost, chromosomes): costs = list(map(cost, chromosomes)) ranked = sorted( list(zip(chromosomes,costs)), key = lambda c:c[1]) return list(zip(*ranked)) def natural_selection(chromosomes, n_keep): return chromosomes[:n_keep] def pairing(parents): pairs = [] i = 0 for i in range(0, len(parents), 2): pairs.append([parents[i], parents[i+1]]) return pairs def genetic(cost_func , extent, population_size, mutation_rate = 0.3, chromosome_length = 2, precision = 13, max_iter = 500): min_val = extent[0] max_val = extent[1] avg_list = [] best_list = [] curr_best = 10000 same_best_count = 0 chromosomes = generate_inital_chromosomes(chromosome_length, max_val, min_val, population_size) for iter in range(max_iter): ranked, costs = rank_chromosomes(cost_func, chromosomes) best, average = population_stats(costs) parents = natural_selection(ranked, population_size) parents = bin_encode_chromosomes(parents, precision, max_val, min_val) pairs = pairing(parents) children = two_point_crossover(pairs) chromosomes = parents + children chromosomes = inv_mutation(chromosomes, mutation_rate) chromosomes = bin_decode_chromosomes(chromosomes, precision, max_val, min_val) print("Generation: ",iter+1," Average: {:.3f}".format(average)," Curr best: {:.3f}".format(best), "[X, Y] = {:.3f} {:.3f}".format(chromosomes[0][0],chromosomes[0][1])) print("-------------------------") avg_list.append(average) if best < curr_best: best_list.append(best) curr_best = best same_best_count = 0 else: same_best_count += 1 best_list.append(best) if(cost_func(chromosomes[0]) < 0.05): avg_list = avg_list[:iter] best_list = best_list[:iter] all_avg_list.append(avg_list) all_best_list.append(best_list) generations_list.append(iter) print("\nSolution found ! Chromosome content: [X, Y] = {:.3f} {:.3f}\n".format(chromosomes[0][0],chromosomes[0][1])) return if same_best_count > 20: print("\nStopped due to convergance.Best chromosome [X, Y] = {:.3f} {:.3f}\n".format(chromosomes[0][0],chromosomes[0][1])) avg_list = avg_list[:iter] best_list = best_list[:iter] all_avg_list.append(avg_list) all_best_list.append(best_list) generations_list.append(iter) return if iter == 499: avg_list = avg_list[:iter] best_list = best_list[:iter] all_avg_list.append(avg_list) all_best_list.append(best_list) generations_list.append(iter) print("\nStopped due to max number of iterations, solution not found. Best chromosome [X, Y] = {:.3f} {:.3f}\n".format(chromosomes[0][0],chromosomes[0][1])) def display_stats(all_avg_list, all_best_list, generations_list): c = 0 colors = ['red', 'green', 'blue', 'yellow', 'orange'] for average_list in all_avg_list: x_axis = list(range(generations_list[c])) y_axis = average_list plt.plot(x_axis, y_axis, linewidth=3, color=colors[c], label=str(c + 1)) plt.title('Average cost function value', fontsize=19) plt.xlabel('Generation', fontsize=10) plt.ylabel('Cost function') c += 1 plt.legend(loc='upper right') plt.show() c = 0 for best_list in all_best_list: x_axis = list(range(generations_list[c])) y_axis = best_list plt.plot(x_axis, y_axis, color=colors[c], label=str(c + 1)) plt.title('Best cost function value', fontsize=19) plt.xlabel('Generation') plt.ylabel('Cost function') c += 1 plt.legend(loc='upper right') plt.show() number_of_chromosomes = [20, 100, 150] all_avg_list = [] generations_list = [] all_best_list = [] run_number = 5 for x in number_of_chromosomes: print("==========================") for k in range(0, run_number): print("\n", k + 1, ": run of genetic algorithm with ", x ," chromosomes.\n") genetic(levy_function, [10, -10], x) display_stats(all_avg_list, all_best_list, generations_list) all_best_list = [] all_avg_list = [] generations_list = []
[ "matplotlib" ]
ef36aa10ece1fcbff5c642451ddcb9595c80b44f
Python
judyliou/CS224W-Analysis-of-Networks
/hw0/hw0_2.py
UTF-8
1,224
2.65625
3
[]
no_license
import snap import numpy as np import matplotlib.pyplot as plt wiki = snap.LoadEdgeList(snap.PNGraph, "wiki-Vote.txt", 0, 1, '\t') degree = [] cnt = [] CntV = snap.TIntPr64V() snap.GetOutDegCnt(wiki, CntV) for i in CntV: if i.GetVal1() != 0 and i.GetVal2() != 0: degree.append(i.GetVal1()) cnt.append(i.GetVal2()) degree = np.array(degree) cnt = np.array(cnt) fig = plt.figure() plt.figure(figsize=(12,8)) ax = plt.gca() ax.scatter(degree, cnt, c='red', alpha=0.5, edgecolors='none', s=80) ax.set_yscale('log') ax.set_xscale('log') ax.set_xlim([degree.min(), degree.max()]) ax.set_title('Out-degree Distribution', fontsize=30) ax.set_xlabel('Degree (log)', fontsize=24) ax.set_ylabel('Count (log)', fontsize=24) plt.savefig('hw0_2.1.png') degree = np.log10(degree) cnt = np.log10(cnt) a, b = np.polyfit(degree, cnt, 1) print('a =', a) print('b =', b) # Make theoretical line to plot x = np.array([degree.min(), degree.max()]) y = a * x + b plt.figure(figsize=(12,8)) plt.plot(degree, cnt, 'ro') plt.plot(x, y, 'b', linewidth=3) plt.xlabel('Degree (log)', fontsize=20) plt.ylabel('Count (log)', fontsize=20) plt.title('Out-degree Distribution', fontsize=30) plt.savefig('hw0_2.2.png')
[ "matplotlib" ]
176b6444afaf6905ea4e304eacac8a6577e970d9
Python
hpqcp/Dryer-Project1
/base/data_preProcess.py
UTF-8
2,343
2.671875
3
[]
no_license
import numpy as np import pandas as pd from pandas import DataFrame import matplotlib.pyplot as plt from functools import reduce ''' 读取EXCEL _path,路径,_sheetNum第几个Sheet , _colName选择列 Return : DataFrame ''' def readExcel(_path,_sheetNum,_colNum=[]): if len(_colNum) <= 0 : dfData = pd.read_excel(_path, sheet_name=_sheetNum) else: dfData = pd.read_excel(_path,sheet_name=_sheetNum ,usecols=_colNum) return dfData ''' 计算统计指标 _path,路径,_sheetNum第几个Sheet , _colName选择列 Return : DataFrame ''' def computeIndex(_df): count = _df.count() max = _df.max() min = _df.min() mean = _df.mean() std = _df.std() dfRtn = DataFrame({'Count':count,'Max':max,'Min':min,'Mean':mean,'Std':std}) return dfRtn '''判断是否有空值,True 有空值 , False 无空值 ''' def isContainMissValue(_df): for i in _df.isnull().any(): if i : return True return False ''' 空值处理 ''' def FillMissValue(_df): return 0 ''' ''' def compute_ChangePoint(_series,_mode="first"): minList = computeIndex(_series).values[:,2] if _mode == "first" : minIndexList = [_series[_series[i] == minList[i]].index.values[0] for i in range(0, _series.shape[1], 1)][:] else: minIndexList = [_series[_series[i] == minList[i]].index.values[-1] for i in range(0, _series.shape[1], 1)][:] # minIndexList = _series[_series[0] == minList[0]].index.values[-1] return minIndexList # return _series # return [_series[_series[i]>minList[2]][i] for i in range(1, len(_series) - 1, 1)][:] # print(minList[0]) # return _series[_series[0]>minList[0] and _series[0].index ][0] ''' ''' def wave_peakTrough(_series): minList = computeIndex(_series).values[:, 2] min1 = [_series[_series[i] == minList[i]].index.values[1] for i in range(0, _series.shape[1], 1)][:] min2 = [_series[_series[i] == minList[i]].index.values[-1] for i in range(0, _series.shape[1], 1)][:] #从最小点往前 max1 = [_series[_series[i] ==max(_series[i])].index.values[-1] for i in range(0, _series.shape[1], 1)][:] max2 = [_series[_series[i] == max(_series[i])].index.values[0] for i in range(0, _series.shape[1], 1)][:] # _series[_series[i] == ] # print(max0,max1) return minIndex
[ "matplotlib" ]
34cf0ab5db0f312f1b57cc5462e535e0a9e87f69
Python
SabyasachiNITD/DIP-LAB
/DAY2/4.py
UTF-8
366
2.609375
3
[]
no_license
import cv2 import numpy as np import matplotlib.pyplot as plt img =cv2.imread("2nd.tif",0) img1 = img - (img & 240) img1 = cv2.equalizeHist(img1) fig=plt.figure() ax1= fig.add_subplot(1,2,1) ax3=fig.add_subplot(1,2,2) ax1.imshow(img,cmap="gray",interpolation=None) ax3.imshow(img1,cmap="gray",interpolation=None) ax1.axis("off") ax3.axis("off") plt.show()
[ "matplotlib" ]
71f6cc6134c49498124001208552b49107976581
Python
EParisot/ft_linear_regression
/train.py
UTF-8
7,182
2.71875
3
[]
no_license
import os import random import json import time import click import matplotlib.pyplot as plt import matplotlib.animation as animation import time from threading import Thread class Trainer(object): def __init__(self, data_file, sep, plot, model_file, epochs, learning_rate): self.data_file = data_file self.sep = sep self.plot = plot self.model_file = model_file self.epochs = epochs self.learning_rate = learning_rate self.learning_rate_hist = [] self.model = {"theta_0": 0.0, "theta_1": 0.0, "x_min": 0, "x_max": 0, "y_min": 0, "y_max": 0} self.x_data = [] self.y_data = [] self.labels = [] self.acc = [] self.loss = [] # Read data self.read_data() if len(self.x_data) != len(self.y_data) or len(self.x_data) == 0: print("Error : no valid data found in %s" % self.data_file) exit(0) # Read model if len(self.model_file): self.read_model() def read_data(self): if os.path.exists(self.data_file): with open(self.data_file) as f: for line in f: line = line.replace('\n', '') line_data = line.split(self.sep) if len(line_data) == 2 and all([value.isdigit() for value in line_data]): self.x_data.append(int(line_data[0])) self.y_data.append(int(line_data[1])) elif len(line_data) == 2: self.labels.append(line_data[0]) self.labels.append(line_data[1]) self.normalise() def normalise(self): x_min = min(self.x_data) x_max = max(self.x_data) y_min = min(self.y_data) y_max = max(self.y_data) self.model["x_min"] = x_min self.model["x_max"] = x_max self.model["y_min"] = y_min self.model["y_max"] = y_max for i, _ in enumerate(self.x_data): self.x_data[i] -= x_min self.x_data[i] /= (x_max - x_min) self.y_data[i] -= y_min self.y_data[i] /= (y_max - y_min) def read_model(self): if os.path.exists(self.model_file): with open(self.model_file, "r") as f: check = f.read(2) f.seek(0) if len(check) != 0 and check[0] != "\n" and check != "{}": data = json.load(f) self.model["theta_0"] = data["theta_0"] self.model["theta_1"] = data["theta_1"] self.model["x_min"] = data["x_min"] self.model["x_max"] = data["x_max"] self.model["y_min"] = data["y_min"] self.model["y_max"] = data["y_max"] def save_model(self): if not os.path.exists(self.model_file): mode = "w+" else: mode = "w" with open(self.model_file, mode) as f: json.dump(self.model, f) def animate(self): plt.clf() x_data, y_data = [list(t) for t in zip(*sorted(zip(self.x_data, self.y_data)))] plt.scatter(x_data, y_data) if len(self.labels): plt.xlabel(self.labels[0]) plt.ylabel(self.labels[1]) # result x1 = min(x_data) y1 = self.estimate(x1) x2 = max(x_data) y2 = self.estimate(x2) plt.plot([x1, x2], [y1, y2], c="r") plt.twinx().twiny() # plot learning rate history plt.plot(self.learning_rate_hist, label="Learning Rate") plt.legend() plt.draw() plt.pause(1/self.epochs) def train(self): theta_0 = 0.0 theta_1 = 0.0 # read model if self.model["theta_0"] != theta_0 or self.model["theta_1"] != theta_1: theta_0 = self.model["theta_0"] theta_1 = self.model["theta_1"] # process train self.train_loop() # write model file self.save_model() # plot result if self.plot: plt.figure("Train history") plt.plot(self.acc, label="acc") plt.plot(self.loss, label="loss") plt.legend() plt.show(block=True) def train_loop(self): # shuffle datas l = list(zip(self.x_data, self.y_data)) random.shuffle(l) x_data, y_data = zip(*l) # loop on epochs for epoch in range(self.epochs): print("Training... Epoch : %d" % (epoch + 1)) loss, acc = self.train_epoch(x_data, y_data) self.acc.append(acc) self.loss.append(loss) self.learning_rate_hist.append(self.learning_rate) # print print("loss : %f ; acc : %f" % (round(loss, 2), round(acc, 2))) if self.plot: self.animate() def train_epoch(self, X, Y): n = float(len(X)) # cost b_vect = [] a_vect = [] for i, _ in enumerate(X): error_b = self.estimate(X[i]) - Y[i] b_vect.append(error_b) error_a = error_b * X[i] a_vect.append(error_a) loss_b_prime = sum(b_vect) loss_a_prime = sum(a_vect) # gradient descent tmp_theta_0 = self.learning_rate * loss_b_prime / n tmp_theta_1 = self.learning_rate * loss_a_prime / n self.model["theta_0"] -= tmp_theta_0 self.model["theta_1"] -= tmp_theta_1 # metrics new_loss_tab = [] acc_tab = [] for i, _ in enumerate(X): error = self.estimate(X[i]) - Y[i] error_sq = error ** 2 new_loss_tab.append(error_sq) acc_tab.append(1) new_loss = sum(new_loss_tab) / n acc = float(sum(acc_tab) / n) # adjust LR if len(self.loss) > 0: if new_loss >= self.loss[-1]: self.model["theta_0"] += self.learning_rate * tmp_theta_0 / n self.model["theta_1"] += self.learning_rate * tmp_theta_1 / n self.learning_rate *= 0.5 else: self.learning_rate *= 1.05 return new_loss, acc def estimate(self, x): y = self.model["theta_0"] + self.model["theta_1"] * x return y @click.command() @click.argument("data_file", type=click.Path(exists=True)) @click.argument("model_file", default="model.json") @click.option("-sep", "sep", default=",", help="csv separator") @click.option("-p", "plot", is_flag=True, help="plot data") @click.option("-e", "epochs", default=1, help="epochs to train") @click.option("-l", "learning_rate", default=0.1, help="learning rate") def main(data_file, sep, plot, model_file, epochs, learning_rate): trainer = Trainer(data_file, sep, plot, model_file, epochs, learning_rate) if trainer.plot: plt.ion() trainer.train() if __name__ == "__main__": main()
[ "matplotlib" ]
2b371258ebe17251c416b9ebb80255cf1e6774df
Python
Lyuyangdaisy/DS_package
/chinese/output_in_3d_plot/app_3d_graph.py
UTF-8
5,021
2.78125
3
[ "MIT" ]
permissive
#coding = utf-8 # Author: Hu Baitao #Function : app on browser drawing 3d graph #Date : 2020-08-27 #zhuliang3000.xlsx为案例表 import xlrd import plotly.graph_objs as go import numpy as np import dash import dash_core_components as dcc import dash_html_components as html import dash_table from dash.dependencies import Input, Output, State import pandas as pd #输入函数 def para_input(): print('请输入数据文件路径,.xlsx文件') #D:\homework\Research 2020 S\10 cycle old alg\zhuliang3000.xlsx filename = input() return filename #读取表格,处理数据 def read_xlsx(filename): # file_object = xlrd.open_workbook(filename) # sheetnames = file_object.sheet_names() # sheetwork = file_object.sheet_by_name(sheetnames[0]) # nrows = sheetwork.nrows # ncols = sheetwork.ncols # data = [] # data_title = [] # # for i in range(ncols): # data_title.append(sheetwork.cell_value(0,i)) # data.append(data_title) # # for j in range(ncols): # new_row_data = [] # for k in range(1,nrows): # new_row_data.append(sheetwork.cell_value(k,j)) # data.append(new_row_data) data = pd.read_excel(filename) return data # 展示数据 def generate_table(dataframe, max_rows): return html.Table([ html.Thead( html.Tr([html.Th(col) for col in dataframe.columns]) ), html.Tbody([ html.Tr([ html.Td(dataframe.iloc[i][col]) for col in dataframe.columns ]) for i in range(min(len(dataframe), max_rows)) ]) ]) def generate_graph(dataframe, x_value, y_value, z_value): trace = go.Scatter3d( x=dataframe[x_value], y=dataframe[y_value], z=dataframe[z_value], mode='markers', marker=dict( size=5, color=dataframe[z_value], # set color to an array/list of desired values colorscale='Viridis' ) ) layout = go.Layout(title='主量元素分析', scene=dict( xaxis_title=x_value, yaxis_title=y_value, zaxis_title=z_value ), height= 800, width= 1000 ) fig = go.Figure(data=[trace], layout=layout) return fig def main(): filename = para_input() df = read_xlsx(filename) external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div(children=[ html.H1( children='3D Graph', style = { 'textAlign': 'center', # 'color': colors['text'] } ), html.H4(children='主量3000'), dcc.Dropdown( id='num_row', options=[{'label': 'show first 10 rows', 'value': 10}, {'label': 'show first 25 rows', 'value': 25}, {'label': 'show first 50 rows', 'value': 50}, {'label': 'show first 100 rows', 'value': 100}], value=10 ), dash_table.DataTable( id='table', columns=[{"name": i, "id": i} for i in df.columns], data=df.to_dict('records'), page_size =10, ), html.Label('选择三个主元素'), dcc.Checklist( id='box-section', options=[ {'label': 'TRUE VALUE', 'value': 'TRUE VALUE'}, {'label': 'SIO2(WT%)', 'value': 'SIO2(WT%)'}, {'label': 'TIO2(WT%)', 'value': 'TIO2(WT%)'}, {'label': 'AL2O3(WT%)', 'value': 'AL2O3(WT%)'}, {'label': 'CR2O3(WT%)', 'value': 'CR2O3(WT%)'}, {'label': 'FEOT(WT%)', 'value': 'FEOT(WT%)'}, {'label': 'CAO(WT%)', 'value': 'CAO(WT%)'}, {'label': 'MGO(WT%)', 'value': 'MGO(WT%)'}, {'label': 'MNO(WT%)', 'value': 'MNO(WT%)'}, {'label': 'K2O(WT%)', 'value': 'K2O(WT%)'}, {'label': 'NA2O(WT%)', 'value': 'NA2O(WT%)'} ], value=['TRUE VALUE', 'SIO2(WT%)','TIO2(WT%)'] ), html.Button(id='submit-button-state', n_clicks=0,children='Submit'), dcc.Graph( id='graph with main element', figure= generate_graph(df,'TRUE VALUE','SIO2(WT%)','TIO2(WT%)') ) ]) @app.callback( Output('table','page_size'), [Input('num_row', 'value')]) def update_row_num(row_num): return row_num @app.callback( Output('graph with main element', 'figure'), [Input('submit-button-state', 'n_clicks')], [State('box-section', 'value')]) def update_figure(n_clicks, box_value): fig = generate_graph(df, box_value[0], box_value[1], box_value[2]) return fig app.run_server(debug=True) if __name__=='__main__': main()
[ "plotly" ]
cdf95c826bd71984c2e88dd1a9974efb53573e7e
Python
nihaomiao/PRICAI18_MVF-CasCNN
/MVFCasCNN/SaveHeatmapToFig.py
UTF-8
1,743
2.796875
3
[ "MIT" ]
permissive
# Transforming heatmap Matrix to Figure and saving them # Author: Haomiao Ni import os import matplotlib.pyplot as plt from scipy.sparse import load_npz, lil_matrix from scipy.signal import medfilt2d import numpy as np def run(MatPath, FigPath, heatthre, medflag): dpi = 1000.0 FileList = os.listdir(MatPath) FileList.sort() plt.ioff() fig = plt.figure(frameon=False) for FileName in FileList: print FileName if os.path.splitext(FileName)[1] == '.npz': file = os.path.join(MatPath, FileName) heatmap = load_npz(file) heatmap = lil_matrix(heatmap) heatmap = np.array(heatmap.todense()) if heatthre: # threshold 0.5 heatmap[np.logical_and(heatmap<0.5, heatmap>0)] = 0.1 if medflag: # post processing heatmap = medfilt2d(heatmap, (3, 3)) heatmap[0, 0] = 1.0 fig.clf() fig.set_size_inches(heatmap.shape[1]/dpi, heatmap.shape[0]/dpi) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) cm = plt.cm.get_cmap('jet') ax.imshow(heatmap, cmap=cm, aspect='auto') postfix = FileName.split('_')[-1] FigName = FileName.replace(postfix,"FIG.jpg") fig.savefig(os.path.join(FigPath, FigName), dpi=int(dpi)) if __name__ == "__main__": heatthre = False # choose False to show those pixels whose predictions are less than 0.5 medflag = False # choose True to median filter heatmaps MatPath = '' FigPath = "" if not os.path.exists(FigPath): os.makedirs(FigPath) run(MatPath, FigPath, heatthre, medflag)
[ "matplotlib" ]
53d6cd6a98dbe37ab48d0d21207d35e5f618d751
Python
robertjankowski/social-media-influence-on-covid-pandemic
/scripts/visualization.py
UTF-8
7,338
2.6875
3
[ "MIT" ]
permissive
import sys import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns sys.path.append("../") from scripts.network import degree_node_size, degree_selected_nodes_size from scripts.virtual_layer import * DEFAULT_CONFIG = { 'font.size': 16, 'font.family': 'sans-serif', 'font.sans-serif': ['DejaVu Sans'] } def load_matplotlib(): plt.rcParams.update(DEFAULT_CONFIG) plt.rc('text', usetex=True) plt.rc('figure', figsize=(8, 6)) def save_figure(filename: str): """ Save matplotlib figure in correct extension :param filename: Name of output plot """ extension = filename.split('.')[-1] if extension == "png": plt.savefig(filename, bbox_inches='tight', dpi=300) elif extension == "pdf" or extension == "svg": plt.savefig(filename, bbox_inches='tight') else: print('Error. Cannot save figure, unsupported extension: [{}]'.format(extension)) def draw_network(g: nx.Graph, ax=None, pos=None, node_size_list=None, node_size_scale=10, edge_alpha=0.1, node_border_color='black', node_border_width=0.5): """ Draw nx.Graph on matplotlib axis :param g: nx.Graph :param ax: matplotlib canvas :param pos: position of nodes (e.g. from nx.spring_layout(g)) :param node_size_list: list of node sizes :param node_size_scale: float :param edge_alpha: float :param node_border_color: float :param node_border_width: float """ if pos is None: pos = nx.spring_layout(g) if node_size_list is None: node_size_list = degree_node_size(g, node_size_scale) nx.draw_networkx_edges(g, ax=ax, alpha=edge_alpha, pos=pos, connectionstyle='arc3, rad = 0.1') nx.draw_networkx_nodes(g, node_size=node_size_list, ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width) def draw_epidemic_layer(g: nx.Graph, ax=None, pos=None, node_size_scale=10, edge_alpha=0.1, node_border_color='black', node_border_width=0.5): if pos is None: pos = nx.spring_layout(g) susceptible_nodes = [] infected_nodes = [] quarantined_nodes = [] recovered_nodes = [] dead_nodes = [] for node in g.nodes: node_status = g.nodes[node]['l1_status'] if node_status is None: print('Node should have `l1_status` field. Exiting...') return if node_status == 'S': susceptible_nodes.append(node) elif node_status == 'I': infected_nodes.append(node) elif node_status == 'Q': quarantined_nodes.append(node) elif node_status == 'R': recovered_nodes.append(node) elif node_status == 'D': dead_nodes.append(node) susceptible_nodes_sizes = degree_selected_nodes_size(g, susceptible_nodes, node_size_scale) infected_nodes_sizes = degree_selected_nodes_size(g, infected_nodes, node_size_scale) quarantined_nodes_sizes = degree_selected_nodes_size(g, quarantined_nodes, node_size_scale) recovered_nodes_sizes = degree_selected_nodes_size(g, recovered_nodes, node_size_scale) dead_nodes_sizes = degree_selected_nodes_size(g, dead_nodes, node_size_scale) nx.draw_networkx_edges(g, ax=ax, alpha=edge_alpha, pos=pos, connectionstyle='arc3,rad=0.1', arrowstyle='<->') # Susceptible nodes nx.draw_networkx_nodes(g, nodelist=susceptible_nodes, node_size=susceptible_nodes_sizes, node_color='orange', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='susceptible') # Infected nodes nx.draw_networkx_nodes(g, nodelist=infected_nodes, node_size=infected_nodes_sizes, node_color='lightblue', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='infected') # Quarantined nodes nx.draw_networkx_nodes(g, nodelist=quarantined_nodes, node_size=quarantined_nodes_sizes, node_color='brown', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='quarantined') # Recovered nodes nx.draw_networkx_nodes(g, nodelist=recovered_nodes, node_size=recovered_nodes_sizes, node_color='green', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='recovered') # Dead nodes nx.draw_networkx_nodes(g, nodelist=dead_nodes, node_size=dead_nodes_sizes, node_color='black', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='dead') def draw_virtual_layer(g: nx.Graph, ax=None, pos=None, node_size_scale=10, edge_alpha=0.1, node_border_color='black', node_border_width=0.5): if pos is None: pos = nx.spring_layout(g) positive_nodes = [] negative_nodes = [] for node in g.nodes: node_opinion = get_opinion(g, node) if node_opinion == 1: positive_nodes.append(node) elif node_opinion == -1: negative_nodes.append(node) positive_node_sizes = degree_selected_nodes_size(g, positive_nodes, node_size_scale) negative_nodes_sizes = degree_selected_nodes_size(g, negative_nodes, node_size_scale) nx.draw_networkx_edges(g, ax=ax, alpha=edge_alpha, pos=pos, connectionstyle='arc3,rad=0.1', arrowstyle='<->', edgelist=g.edges) # Positive opinions nx.draw_networkx_nodes(g, nodelist=positive_nodes, node_size=positive_node_sizes, node_color='red', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='+1') # Negative opinions nx.draw_networkx_nodes(g, nodelist=negative_nodes, node_size=negative_nodes_sizes, node_color='blue', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='-1') def plot_heatmap(array, xtickslabels: list, ytickslabels: list, colorscale_label: str, title_label: str): """ Plot heatmap from 2d array with x and y ticks labels :param array: 2d array :param xtickslabels: :param ytickstlabels: :param colorscale_label: :param title_label: """ xticks_labels = ['{:.2f}'.format(l) for l in xtickslabels] yticks_labels = ['{:.2f}'.format(b) for b in ytickslabels] sns.heatmap(array, annot=False, cmap="YlGnBu", yticklabels=yticks_labels, xticklabels=xticks_labels, vmin=0, vmax=1, cbar_kws={'label': colorscale_label}) plt.title(title_label) def plot_imshow(df, xlabel, ylabel, cmap=mpl.cm.Reds): plt.imshow(df, cmap=cmap) xticks = [float(x) for x in df.columns] plt.xticks(range(len(xticks)), xticks) yticks = [int(x) for x in df.index] plt.yticks(range(len(yticks)), yticks) plt.colorbar() plt.xlabel(xlabel, fontsize=20) plt.ylabel(ylabel, fontsize=20)
[ "matplotlib", "seaborn" ]
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
0