blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
135
path
stringlengths
2
372
src_encoding
stringclasses
26 values
length_bytes
int64
55
3.18M
score
float64
2.52
5.19
int_score
int64
3
5
detected_licenses
sequencelengths
0
38
license_type
stringclasses
2 values
code
stringlengths
55
3.18M
used_libs
sequencelengths
1
5
5363d87fc2f8c5901cdab491290edac5201656db
Python
gugajung/RP-II
/cadernos/ExecutandoUmaRegressaoMultivariada.py
UTF-8
869
2.671875
3
[]
no_license
import numpy as np import pandas as pd from scipy import stats import statsmodels.api as sm import matplotlib.pyplot as plt data = pd.read_excel('C:/Python/Data_Files/Housing.xlsx') print(data) X = data[['House Size (sq.ft.)', 'Number of Rooms', 'Year of Construction']] Y = data['House Price'] X1 = sm.add_constant(X) reg = sm.OLS(Y, X1).fit() print(reg.summary()) X = data[['House Size (sq.ft.)', 'Number of Rooms']] Y = data['House Price'] X1 = sm.add_constant(X) reg = sm.OLS(Y, X1).fit() print(reg.summary()) X = data[['House Size (sq.ft.)', 'Year of Construction']] Y = data['House Price'] X1 = sm.add_constant(X) reg = sm.OLS(Y, X1).fit() print(reg.summary()) X = data[['Number of Rooms', 'Year of Construction']] Y = data['House Price'] X1 = sm.add_constant(X) reg = sm.OLS(Y, X1).fit() print(reg.summary())
[ "matplotlib" ]
6b04740b0c10694eff015dedfd18e18e9189f323
Python
deepweaver/ravens
/Solver/utils.py
UTF-8
6,399
2.734375
3
[]
no_license
from PIL import Image import numpy as np import matplotlib.pyplot as plt import datetime,time import os import cv2 def visualize(data, answer=0, title=None, save=False, show=True): # input a list of sub images # e.g. # dataset["4cells"][23] # dataset["9cells"][47] # output an image presentation fig = plt.figure(figsize=(7,15)) if title: fig.suptitle(title, fontsize=14, y=0.97, fontweight='semibold') if len(data) == 10: columns = 3 rows = 4 elif len(data) == 17: columns = 4 rows = 5 else: print("Data error") arrIdx = 0 for i in range(1,columns*rows+1): if i == columns or i == 2*columns or len(data) == 17 and i == 3*columns: continue img = data[arrIdx] arrIdx += 1 tmp = fig.add_subplot(rows, columns, i) if len(data) == 10 and 0 < answer <= 6: if i == 6 + answer: tmp.title.set_text('Answer:') if len(data) == 17 and 0 < answer <= 8: if i == 12 + answer: tmp.title.set_text('Answer:') plt.setp(tmp.get_xticklabels(), visible=False) plt.setp(tmp.get_yticklabels(), visible=False) tmp.tick_params(axis='both', which='both', length=0) plt.imshow(img,cmap='gray') if save == True: st = datetime.datetime.fromtimestamp(time.time()).strftime('%Y_%m_%d_%H_%M_%S') if not os.path.exists("./output/"): os.mkdir("./output/") print("Made new dir for output") plt.savefig("./output/{}.png".format(st)) if show == True: plt.show() def get_one_hot(targets, nb_classes): res = np.eye(nb_classes)[np.array(targets).reshape(-1)] return res.reshape(list(targets.shape)+[nb_classes]) def sigmoid(x, derivative=False): return x*(1-x) if derivative else 1/(1+np.exp(-x)) class ContourManager(object): def __init__(self, mat): self.mat = mat # input image should be binary _, self._contours, self._hierarchy = cv2.findContours(255-self.mat, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # hierarchy is a numpy array of shape (1, self.numOfContours, 4) 4 being [Next, Previous, First_Child, Parent] # contours is a list of numpy arrays with shape (number of points, 1, x and y position) self.numOfContours = len(self._contours) self._computePerimeters() def getAllContours(self, ): return self._contours def getLv1Contours(self, ): self._computeLv1Contours() return self.lv1Cnt @staticmethod def showContours(contours, cntIdx=-1, save=False): # contours is a list of numpy arrays with shape (number of points, 1, x and y position) # cntIdx being the index, -1 if choose all of them img = self.mat.copy() cv2.drawContours(img, contours, cntIdx, (128,255,0), 2) plt.implot(img) plt.show() def getPerimeters(self): return self._perimeters def _computePerimeters(self,): self._perimeters = [] for i in range(self.numOfContours): self._perimeters.append(cv2.arcLength(self._contours[i], True)) def _computeLv1Contours(self, ): self.lv1Cnt = [] for i in range(self.numOfContours): if self._hierarchy[0,0,i] == -1: if self._perimeters[i] > 10: self.lv1Cnt.append(self._contours[i]) def main(): import pickle # with open("data.pkl", 'rb') as f: # dataset = pickle.load(f) # visualize(dataset["4cells"][23],save=True,answer=6) print("Hello world") with open("../data/data_a_b_570x900_py3.pkl", "rb") as file: data = pickle.load(file) testdata = data[18][2] # cv2.imwrite("tmp.png", data[18][2]) mgr = ContourManager(testdata) ContourManager.showContours(mgr.getLv1Contours()) class FeatureMatcher(object): @staticmethod def SIFTdetectorAndBFmatcher(img1, img2): # correct answer 8 # Initiate SIFT detector sift = cv2.xfeatures2d.SIFT_create() # find the keypoints and descriptors with SIFT kp1, des1 = sift.detectAndCompute(img1,None) kp2, des2 = sift.detectAndCompute(img2,None) # BFMatcher with default params bf = cv2.BFMatcher() matches = bf.knnMatch(des1,des2,k=2) # Apply ratio test good = [] for m,n in matches: if m.distance < 0.75*n.distance: good.append([m]) return len(good) @staticmethod def SIFTdetectorAndFLANNmatcher(img1, img2): sift = cv2.xfeatures2d.SIFT_create() # find the keypoints and descriptors with SIFT kp1, des1 = sift.detectAndCompute(img1,None) kp2, des2 = sift.detectAndCompute(img2,None) # FLANN parameters FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks=10) # or pass empty dictionary flann = cv2.FlannBasedMatcher(index_params,search_params) matches = flann.knnMatch(des1,des2,k=1) total_distance = 0 # Need to draw only good matches, so create a mask # matchesMask = [[0,0] for i in range(len(matches))] # ratio test as per Lowe's paper for i,(m,) in enumerate(matches): # if m.distance < 0.7*n.distance: # matchesMask[i]=[1,0] total_distance += m.distance return total_distance # img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) # plt.imshow(img3),plt.show() @staticmethod def ORBdetectorAndBFmatcher(img1, img2): orb = cv2.ORB_create() # find the keypoints and descriptors with ORB kp1, des1 = orb.detectAndCompute(img1,None) kp2, des2 = orb.detectAndCompute(img2,None) # create BFMatcher object bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # Match descriptors. matches = bf.match(des1,des2) # Sort them in the order of their distance. matches = sorted(matches, key = lambda x:x.distance) return sum([matches[i].distance for i in range(10)]) if __name__ == "__main__": main()
[ "matplotlib" ]
28c3c18cd0bec8d2ab4428a45e171551f36dfc1a
Python
SameeraSuhail1/ANN-Organic-Photovoltaic-Cells
/Python Code and Data/Transmittance/utility.py
UTF-8
4,890
2.5625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Wed May 22 21:11:45 2019 @author: Depp Pc """ import pandas as pd import numpy as np import math import matplotlib.pyplot as plt import random def plot_true_vs_pred(ytest, yhat, ytrain, ytrain_out, norm_lims, exp_str, j,which_conc_feature, optimizer = ""): ytest_df=pd.DataFrame({'target'+ which_conc_feature[7:]:ytest}) yhat_df=pd.DataFrame({'target'+ which_conc_feature[7:]:yhat}) ytrain_df=pd.DataFrame({'target'+ which_conc_feature[7:]:ytrain}) ytrain_out_df=pd.DataFrame({'target'+ which_conc_feature[7:]:ytrain_out}) ytest_unnormed=make_unnorm(ytest_df,norm_lims) yhat_unnormed=make_unnorm(yhat_df,norm_lims) ytrain_unnormed=make_unnorm(ytrain_df,norm_lims) ytrain_out_unnormed=make_unnorm(ytrain_out_df,norm_lims) plt.plot(ytest_unnormed, 'bs', label='True Value') plt.plot(yhat_unnormed, 'r^', label='Predicted Value') plt.legend() # t = np.arange(0, len(ytest_unnormed), 1) #plt.xticks(t) plt.grid(which='both', axis = 'both') plt.xlabel('Test Samples',fontsize=20) plt.ylabel('T%', fontsize=20) plt.suptitle('Transmittance Prediction of Test Samples',fontsize=20) plt.savefig(fname=exp_str + "/figures/test_learned_nh_" + str(j) + which_conc_feature + optimizer + ".pdf") plt.show() plt.plot(ytrain_unnormed, 'bs', label='True Value') plt.plot(ytrain_out_unnormed, 'r^',label='Predicted Value') plt.legend() # t = np.arange(0, len(ytrain_unnormed), 1) #plt.xticks(t) plt.grid(which='both', axis = 'both') plt.xlabel('Training Samples',fontsize=20) plt.ylabel('T%', fontsize=20) plt.suptitle('Transmittance Prediction of Training Samples',fontsize=15) plt.savefig(fname=exp_str + "/figures/train_learned_nh_" + str(j) + which_conc_feature + optimizer + ".pdf") plt.show() def make_norm(data,*restcol): from copy import deepcopy data_n = deepcopy(data) norm_limits = {} for colname in restcol: meanthis= (np.mean(data[colname])) stdthis= (np.std(data[colname])) norm_limits[colname] = {'mean': meanthis, 'std': stdthis} data_n[colname] = (data[colname] - meanthis)/stdthis # maxthis = max(data[colname]) # minthis = min(data[colname]) #norm_limits[colname] = {'max':maxthis, 'min':minthis} #data_n[colname]=(2*((data[colname]-minthis)/(maxthis-minthis))) - 1; return data_n, norm_limits def make_norm_given_lim(data, norm_lims, *restcol): from copy import deepcopy data_n = deepcopy(data) for colname in norm_lims.keys(): if colname not in data.columns.tolist(): continue else: data_n[colname] = (data[colname] - norm_lims[colname]['mean'])/norm_lims[colname]['std'] return data_n def make_unnorm(data, normlims): from copy import deepcopy data_unnorm = deepcopy(data) for colname in normlims.keys(): if colname not in data.columns.tolist(): continue else: data_unnorm[colname] = data[colname]*normlims[colname]['std'] + normlims[colname]['mean'] return data_unnorm def my_r2_score(v_true, v_pred): ssres = np.sum(np.square(v_true - v_pred)) sstot = np.sum(np.square(v_true - np.mean(v_true))) return 1 - ssres / sstot def split_tt(df_normed, train_percent,iteration=3, *featurename): n=train_percent/100 dftrain = df_normed.sample(frac =n, random_state=iteration) dftrain.sort_index(inplace=True) dftest=df_normed.drop(dftrain.index) actual_perc=(len(dftrain)/len(df_normed))*100 print(actual_perc) tempp=[] for j in featurename: temp_list = [] for k in featurename: temp_list.append(k) tempp.append(temp_list) for j in temp_list: if j[0:7] == 'feature': target_name= 'target' + j[7:] else: target_name= 'target' xdftrain=dftrain ydftrain=dftrain xdftest=dftest ydftest=dftest xdftrain=xdftrain.filter(items=featurename, axis=1) ydftrain=ydftrain.filter(items=[target_name], axis=1) xdftest=xdftest.filter(items=featurename,axis=1) ydftest=ydftest.filter(items=[target_name],axis=1) xdftrain=xdftrain.dropna(axis=1) ydftrain=ydftrain.dropna(axis=1) xdftest=xdftest.dropna(axis=1) ydftest=ydftest.dropna(axis=1) xtrain = xdftrain.values xtrain=xtrain.reshape((len(xtrain),len(featurename))) ytrain = ydftrain.values ytrain=ytrain.reshape(len(ytrain),) xtest = xdftest.values xtest=xtest.reshape((len(xtest),len(featurename))) ytest = ydftest.values ytest=ytest.reshape(len(ytest),) return xdftrain, ydftrain, xdftest, ydftest, xtrain, ytrain, xtest, ytest,
[ "matplotlib" ]
1f817093cb7a750c935e82df91830ae8b6f370eb
Python
gportella/Miscelanious_QM
/Parameterize_hmC_rotation/do_parse_g09_plumed_plot_maps_and_projections.py
UTF-8
5,660
2.53125
3
[]
no_license
#! /usr/bin/env python import numpy as np import itertools import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib import cm import math EV2H = 1./27.211385050 H2KJMOL = 2625.5 def lastscf(fn): opt_energy = 0.0 with open(fn) as f: for l in f: if "SCF Done:" in l.rstrip(): opt_energy = float(l.rstrip("\n").\ split("=")[1].split()[0]) if opt_energy >= 0.0: return None else: return opt_energy def change_range(ang_degrees): new_range_deg = ang_degrees if ang_degrees <= 180 else ang_degrees - 360 return new_range_deg def e_vs_d(dih_freq): d1 = [] d2 = [] Edd = [] dih_values = [] for i, u in enumerate(xrange(len(dih_freq))): dih_values.append([x for x in xrange(-180, 180, dih_freq[i])]) for dih_comb in itertools.product(*dih_values): # I want the order switched wrt itertools product, a bit hacky # this is due to the way the plotting works # data remains the same new_d1 = dih_comb[1] % 360 new_d2 = dih_comb[0] % 360 fn = "dh" + "_" + str(new_d1) +\ "_" + str(new_d2) + ".out" E = lastscf(fn)*H2KJMOL d1.append(dih_comb[1]) d2.append(dih_comb[0]) Edd.append(E) d1d2 = np.column_stack((np.array(d1), np.array(d2))) g = np.column_stack((d1d2, (np.array(Edd))- min(Edd))) return g def heat_plot(data, title_plot="DFT", do_write=True, outpng="dih_hmC.png"): vecfunc = np.vectorize(change_range) d1 = vecfunc(data[:,0]).reshape(len(data[:,0]),1) d2 = vecfunc(data[:,1]).reshape(len(data[:,0]),1) g = np.hstack((d1, d2, data[:,2].reshape((len(data[:,0]),1)))) N = int(len(data[:,2])**.5) z = g[:,2].reshape(N, N) fig, ax = plt.subplots(figsize=(9,9), dpi=120) im = plt.imshow(z, extent=(min(d1)[0], max(d1)[0], min(d2)[0], max(d2)[0]), origin="lower", cmap=cm.CMRmap) ax.set_xlabel("C4-C5-C55-OH5 (deg)") ax.set_ylabel("C5-C55-OH5-HO5 (deg)") ax.set_title(title_plot, fontsize=14) plt.clim(0,45) cb = fig.colorbar(im, fraction=0.046, pad=0.04, ax=ax) cb.set_label("Energy (kJ/mol)") #cs = plt.contour(z, 25, extent=(-180, 180, -180, 180), origin="lower", cmap=cm.CMRmap) cs = plt.contour(z, 25, extent=(min(d1)[0], max(d1)[0], min(d2)[0], max(d2)[0]), origin="lower", linewidths=.5, cmap=cm.CMRmap) plt.clim(0,1000) if do_write: plt.savefig(outpng) else: plt.show() def project(data, axis=1): gg_tup = tuple(map(tuple, data)) d = {} if axis != 0 and axis != 1: print "Axis can only be 0 or 1" return None for el in gg_tup: d.setdefault(el[axis], []).append((el[2])) deg = [] ener = [] for k in d: norm = 0 for e_s in d[k]: norm += math.exp(-e_s) s = 0 for e_s in d[k]: s += e_s*math.exp(-e_s)/norm deg.append(k) ener.append(s) emin = min(ener) ener = [x - emin for x in ener] deg = np.array(deg) ener = np.array(ener) projected = np.column_stack((deg, ener)) return projected def do_plot(data, do_write=False, outpng="ff_vs_qm.png"): count = 0 f, ax = plt.subplots(len(data),1, sharex=True, figsize=(9,9), dpi=120) f.subplots_adjust(hspace=0.2) labels = ["FF", "DFT"] for datasets in data: count += 1 ax[count-1].grid(b=True, which='major', color='gray', linestyle='--', linewidth=0.5) ax[count-1].set_axisbelow(True) for c_counter, dataset in enumerate(datasets[0]): thelabel = labels[c_counter] dihedral = datasets[1] ax[count-1].set_title(dihedral) for j in range(dataset.shape[1]-1): ax[count-1].plot(dataset[:, 0],dataset[:,j+1], linewidth=1.2, label=thelabel) ax[count-1].legend(ncol=4).get_frame().set_linewidth(0.1) plt.xlabel("Dihedral (deg)") ax[count-1].set_ylabel("Energy (kJ/mol)") if do_write: plt.savefig(outpng) else: plt.show() def mod_360(val): return val % 360 def print_xy(p, label, fname="out.dat"): p[:, 0] = map(mod_360, p[:, 0]) p.view("f8, f8").sort(axis=0) with open(fname, "w") as fh: np.savetxt(fh, p, fmt="%f") dfreq = [10, 10] gg = e_vs_d(dfreq) gg[:,0] = map(mod_360, gg[:, 0]) gg[:,1] = map(mod_360, gg[:, 1]) gg.view("f8, f8, f8").sort(axis=0) np.savetxt("2d_dft_deg.dat", gg, fmt="%f") # heat_plot(gg, title_plot="DFT", do_write=True, outpng="dih_hmC_dft.png") ff_2d_rad = np.genfromtxt("fe_2d.dat", usecols=(0, 1, 2)) d1 = np.rad2deg(ff_2d_rad[:, 0]) d1[:] = map(mod_360, d1[:]) d2 = np.rad2deg(ff_2d_rad[:, 1]) d2[:] = map(mod_360, d2[:]) d1d2 = np.column_stack((d1, d2)) ff_2d = np.column_stack((d1d2, ff_2d_rad[:, 2])) ff_2d.view("f8, f8, f8").sort(axis=0) np.savetxt("2d_fe_deg.dat", ff_2d, fmt="%f") p0 = project(gg, axis=0) p1 = project(gg, axis=1) p0.view("f8, f8").sort(axis=0) p1.view("f8, f8").sort(axis=0) fe_one = np.genfromtxt("fe_one.dat") fe_one[:,0] *= 57.295779513 fe_two = np.genfromtxt("fe_two.dat") fe_two[:,0] *= 57.295779513 print_xy(p0, "DFT C4-C5-C55-OH5", "dft_cc.dat") print_xy(p1, "DFT C5-C55-OH5-HO5", "dft_co.dat") print_xy(fe_one, "FF C4-C5-C55-OH5", "ff_cc.dat") print_xy(fe_two, "FF C5-C55-OH5-HO5", "ff_co.dat") # data = [([fe_one, p0], "C4-C5-C55-OH5"), # ([fe_two, p1], "C5-C55-OH5-HO5")] # do_plot(data, do_write=True, outpng="ff_vs_qm.png")
[ "matplotlib" ]
d0901e11ba24a2c5eb5641d83cbfdd4a3565fc01
Python
InnovAnon-Inc/HafrenHaver
/src/HafrenHaver/moon_app.py
UTF-8
14,538
2.734375
3
[ "Unlicense", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-public-domain" ]
permissive
#! /usr/bin/env python3 from app import App from constants import DEFAULT_BACKGROUND, SECONDARY_BACKGROUND from cropping_app import CroppingApp from constants import OPAQUE import pygame from gui import GUI, BLACK from constants import ORIGIN from circle_app import CircleApp from client import Client from server import Server from math import radians as rad,degrees as deg """ import numpy as np def filled_arc (center, r, theta1, theta2): # https://stackoverflow.com/questions/30642391/how-to-draw-a-filled-arc-in-matplotlib # Range of angles phi = np.linspace (theta1, theta2, 100) # x values x = center[0] + r * np.sin (np.radians (phi)) # y values. need to correct for negative values in range theta=90--270 yy = np.sqrt (r - x ** 2) yy = [-yy[i] if phi[i] > 90 and phi[i] < 270 else yy[i] for i in range (len (yy))] y = center[1] + np.array (yy) # Equation of the chord m = (y[-1] - y[0]) / (x[-1] -x[0]) c = y[0] - m * x[0] y2 = m * x + c # Plot the filled arc ax.fill_between (x, y, y2, color=col[theta1 / 45]) """ import math from math import pi import matplotlib.pyplot as plt import matplotlib as mpl from constants import ORIGIN """ def dual_half_circle(center, radius, angle=0, ax=None, colors=('w','k'), **kwargs): "" Add two half circles to the axes *ax* (or the current axes) with the specified facecolors *colors* rotated at *angle* (in degrees). "" if ax is None: ax = plt.gca() theta1, theta2 = angle, angle + 180 w1 = Wedge(center, radius, theta1, theta2, fc=colors[0], **kwargs) w2 = Wedge(center, radius, theta2, theta1, fc=colors[1], **kwargs) for wedge in [w1, w2]: ax.add_artist(wedge) return [w1, w2] """ # TODO alpha values suck def arc_patch (ax, lunacity): # https://stackoverflow.com/questions/58263608/fill-between-arc-patches-matplotlib ax.grid (False) xmin = -85 xmax = +85 xrng = xmax - xmin ymin = -85 ymax = +85 yrng = ymax - ymin ax.set_xlim (xmin, xmax) ax.set_ylim (ymin, ymax) # Use a predefined colormap colormap = [] # Draw multiple ellipses with different colors and style. All are perfectly superposed ellipse = mpl.patches.Ellipse ( # Base one, with big black line for reference ORIGIN, xrng, yrng, color='k', fill=False, zorder=3) # TODO what is zorder ? # Define some clipping paths # One for each area #clips = [ # mpl.patches.Arc ( # One covering right half of your ellipse # ORIGIN, xrng, yrng, theta1=0, theta2=360, # visible=False # We do not need to display it, just to use it for clipping # ), #] clips = [] #colormap.append ('purple') X, Y = ORIGIN ll = xmin, ymin w, h = xrng / 2, yrng lrect = ll, w, h ll = xmin + w, ymin rrect = ll, w, h if lunacity < .25: # 0 , .25 => new moon, first quarter moon print ("q0-q1") lun = lunacity * 4 # 0 , 1. lun = 1 - lun # 1 , 0. rx, ry = xrng * lun, yrng # dark left, dark middle, light right light_patch = mpl.patches.Rectangle ( # right half *rrect, visible=False) dark_patch = mpl.patches.Ellipse ( # center ORIGIN, rx, ry, visible=False) dark_patch2 = mpl.patches.Rectangle ( # left half *lrect, visible=False) colormap.append ('black') colormap.append ('white') colormap.append ('black') clips.append ( dark_patch2) clips.append (light_patch) clips.append ( dark_patch) elif lunacity < .5: # .25, .5 => first quarter moon, full moon print ("q1-q2") assert .25 <= lunacity lun = lunacity - .25 # 0. , .25 assert lun >= 0 assert lun < .25 lun = lun * 4 # 0. , 1. assert lun >= 0 assert lun < 1 rx, ry = xrng * lun, yrng # dark left, light middle, light right light_patch2 = mpl.patches.Rectangle ( # right *rrect, visible=False) dark_patch = mpl.patches.Rectangle ( # left *lrect, visible=False) light_patch = mpl.patches.Ellipse ( # middle ORIGIN, rx, ry, visible=False) colormap.append ('white') colormap.append ('black') colormap.append ('white') clips.append (light_patch2) clips.append ( dark_patch) clips.append (light_patch) elif lunacity < .75: # .5 , .75 => full moon, third quarter moon print ("q2-q3") assert .5 <= lunacity lun = lunacity - .5 # 0. , .25 assert lun >= 0 assert lun < .25 lun = lun * 4 # 0. , 1. assert lun >= 0 assert lun < 1 lun = 1 - lun # 1. , 0. assert lun > 0 assert lun <= 1 rx, ry = xrng * lun, yrng # light left, light middle, dark right light_patch2 = mpl.patches.Rectangle ( # left *lrect, visible=False) dark_patch = mpl.patches.Rectangle ( # right *rrect, visible=False) light_patch = mpl.patches.Ellipse ( # middle ORIGIN, rx, ry, visible=False) colormap.append ('white') colormap.append ('black') colormap.append ('white') clips.append (light_patch2) clips.append ( dark_patch) clips.append (light_patch) elif lunacity < 1.0: # .75, 1. => third quarter moon, full moon print ("q3-q4") assert .75 <= lunacity lun = lunacity - .75 # 0. , .25 assert lun >= 0 assert lun < .25 lun = lun * 4 # 0. , 1. assert lun >= 0 assert lun < 1 rx, ry = xrng * lun , yrng # light left, dark middle, dark right dark_patch2 = mpl.patches.Rectangle ( # right *rrect, visible=False) light_patch = mpl.patches.Rectangle ( # left # apparently +90 to +270 is the same as +0 to +360 in matplotlib. *lrect, visible=False) # because matplotlib doesn't understand angles, drawing patch3 will hide light_patch #dark_patch3 = mpl.patches.Arc ( # right # ORIGIN, xrng, yrng, theta1=-90, theta2=+90, visible=False) dark_patch = mpl.patches.Ellipse ( # middle ORIGIN, rx, ry, visible=False) colormap.append ('black') colormap.append ('white') #colormap.append ('black') colormap.append ('black') clips.append ( dark_patch2) clips.append (light_patch) #clips.append ( dark_patch3) clips.append ( dark_patch) n = len (clips) # Ellipses for your sub-areas. # Add more if you want more areas # Apply the style of your areas here (colors, alpha, hatch, etc.) areas = [ mpl.patches.Ellipse ( ORIGIN, xrng, yrng, # Perfectly fit your base ellipse color=colormap [i], fill=True, alpha=1.0, # Add some style, fill, color, alpha zorder=i) for i in range (n) # Here, we have 3 areas ] # Add all your components to your axe ax.add_patch (ellipse) for area, clip in zip (areas, clips): ax.add_patch (area) ax.add_patch (clip) area.set_clip_path (clip) # Use clipping paths to clip you areas from pygameplotlib import PyGamePlotLib import datetime from datetime import timedelta import ephem moon_name_db = ('wolf', 'snow', 'worm', 'pink', 'flower', 'strawberry', 'buck', 'sturgeon', 'corn', 'harvest', "hunter's", 'beaver', 'cold', 'blue') def get_moon_name_helper (moon_no): if moon_no is None: name = 'blue' else: name = moon_name_db[moon_no] name = "%s moon" % (name,) return name class MoonApp (PyGamePlotLib): def __init__ (self, observer=None, *args, **kwargs): PyGamePlotLib.__init__ (self, *args, **kwargs) self.name = None self.set_time (compute=False) def notify (self, time=None): self.set_time (time) def set_time (self, time=None, compute=True): if time is None: time = datetime.datetime.utcnow () self.time = time if compute: self.compute () def compute_helper (self, fig): PyGamePlotLib.compute_helper (self, fig) time = self.time if time is None: return self.phase = self.get_moon_phase () #ax = fig.add_subplot (facecolor='black') ax = fig.add_subplot () ax.get_xaxis ().set_visible (False) ax.get_yaxis ().set_visible (False) ax.patch.set_visible (False) arc_patch (ax, self.phase) """ if self.phase < .25: # TODO waxing crescent x = w / 2 y = h / 2 start_angle = SOUTH.radians () stop_angle = NORTH.radians () color = (200, 200, 200) for r in range (1, inf): pygame.gfxdraw.arc (self.ss, x, y, r, start_angle, stop_angle, color) pass elif self.phase == .25: # TODO first quarter pass elif self.phase < .5: # TODO waxing gibbous pass elif self.phase == .5: # TODO full moon pass elif self.phase < .75: # TODO waning gibbous pass elif self.phase == .75: # TODO third quarter pass elif self.phase < 1: # TODO waning crescent pass else: # TODO new moon pass """ def get_moon_phase (self): # https://michelanders.blogspot.com/2011/01/moon-phases-with-pyephem.html # g = self.observer time = self.time time = ephem.Date (time) nnm = ephem.next_new_moon (time) pnm = ephem.previous_new_moon (time) # for use w. moon_phases.ttf A -> just past newmoon, # Z just before newmoon # '0' is full, '1' is new # note that we cannot use m.phase as this is the percentage of the moon # that is illuminated which is not the same as the phase! lunation = (time - pnm) / (nnm - pnm) return lunation """ def set_subsurface (self, ss): CircleApp.set_subsurface (self, ss) self.compute () def draw_scene (self, temp=None): CircleApp.draw_scene (self, temp) if temp is None: temp = self.ss if self.computed_image is None: self.compute () if self.computed_image is None: return temp.blit (self.computed_image, ORIGIN) """ """ def run_loop (self, events, keys): # TODO move this to the GUI ? if isinstance (self.gps, Client): self.gps.Loop () if isinstance (self.gps, Server): self.gps.Pump () self.set_time () PyGamePlotLib.run_loop (self, events, keys) """ """ def run_loop (self, events, keys): # TODO move this to the GUI ? #if isinstance (self.gps, Client): self.gps.Loop () #if isinstance (self.gps, Server): self.gps.Pump () time = self.time time = time + timedelta (hours=9) self.set_time (time) PyGamePlotLib.run_loop (self, events, keys) """ #def set_gps (self, gps): # self.gps = gps # self.set_observer (gps.observer) def get_moon_name (self): return self.get_moon_names ()[-1] def get_moon_names (self): times = self.get_full_moon_times () moon_no = 0 name = get_moon_name_helper (moon_no) names = [name] time = times[0] month = time.month for time in times[1:]: month2 = time.month if month == month2: name = get_moon_name_helper (None) else: moon_no = moon_no + 1 name = get_moon_name_helper (moon_no) names.append (name) month = month2 names = tuple (names) print ("names: %s" % (tuple (zip (names, times)),)) return names def get_full_moon_times (self): time = self.time ny = time.replace (month=1, day=1, hour=0, minute=0, second=0) assert time > ny #time = ephem.Date (time) #ny = ephem.Date (ny) nfm = ephem. next_full_moon (time).datetime () times = [nfm] while True: # >= ? pfm = ephem.previous_full_moon (time).datetime () if pfm <= ny: break time = pfm times.append (time) assert pfm <= ny assert time >= ny times = times[::-1] times = tuple (times) return times from circle_app import CircleApp def blit_alpha (target, source, location, opacity): # https://nerdparadise.com/programming/pygameblitopacity x, y = location temp = pygame.Surface ((source.get_width (), source.get_height ())).convert () temp.blit (target, (-x, -y)) temp.blit (source, ORIGIN) temp.set_alpha (opacity) target.blit (temp, location) #def get_pic_name (name): # use name as query param, return URL of resource ? # return "shiva.png" class CircleMoonApp (CircleApp, MoonApp): # TODO compute moon name, fetch background def __init__ (self, notify_art=None, rotation=None, *args, **kwargs): CircleApp.__init__ (self, rotation, *args, **kwargs) MoonApp .__init__ (self, *args, **kwargs) self.pic_name = None self.raw_pic = None self.pic = None self.notify_art = notify_art def start_running (self): CircleApp.start_running (self) MoonApp .start_running (self) def stop_running (self): CircleApp.stop_running (self) MoonApp .stop_running (self) def set_subsurface (self, ss): CircleApp.set_subsurface (self, ss) # TODO handle geometries&rotations here MoonApp .set_subsurface (self, None, True) def compute (self): MoonApp.compute (self) name = self.name self.name = self.get_moon_name () #pic_name = self.pic_name if name != self.name: if self.notify_art is not None: self.notify_art (self.name) # notify troller #self.pic_name = get_pic_name (self.name) # use self.name as query param to get resource #raw_pic = self.raw_pic #if pic_name != self.pic_name: # self.raw_pic = pygame.image.load (self.pic_name) # load resource # self.raw_pic = self.raw_pic.convert_alpha () # self.set_background (self.pic_name) #pic = self.pic #if raw_pic != self.raw_pic: # self.pic = pygame.transform.scale (self.raw_pic, (w, h)) # prepare resource for blitting def notify_bg (self, pic_name): if pic_name == self.pic_name: return self.pic_name = pic_name self.set_background (self.pic_name) #def draw_cropped_scene (self, temp): # #MapApp .draw_scene (self, temp) # CircleApp.draw_cropped_scene (self, temp) # # size = temp.get_size () # moon = pygame.Surface (size) # MoonApp .draw_scene (self, moon) # opacity = 100 # blit_alpha (temp, moon, ORIGIN, opacity) def draw_foreground (self, temp): CircleApp.draw_foreground (self, temp) size = temp.get_size () moon = pygame.Surface (size) MoonApp .draw_foreground (self, moon) opacity = 255 / 2 blit_alpha (temp, moon, ORIGIN, opacity) def positive_space (self, is_root=True): raise Exception () def negative_space (self, is_root=True): raise Exception () def minsz (self): raise Exception () if __name__ == "__main__": #from gps_client import GPSClient from artwork_client import ArtworkClient from hal import HAL9000 def main (): a = CircleMoonApp () n = a.notify_bg # cb for artwork client to set background of moon app b = ArtworkClient (n) a.notify_art = b.notify_request # cb for moon app to request background from artwork client def new_loop (events, keys): self = a time = self.time time = time + timedelta (hours=9) self.set_time (time) PyGamePlotLib.run_loop (self, events, keys) a.run_loop = new_loop with HAL9000 (app=a) as G: #h = "localhost" #p = 1717 #n = a.set_observer #g = GPSClient (h, p, n) #a.set_gps (g) G.run () main () quit ()
[ "matplotlib" ]
4f964e5f99967a55b6246f244ae847fd5c7735bc
Python
CuriousKomodo/insta_graph
/graphnoods/data_processing/insta_scraper.py
UTF-8
3,229
2.78125
3
[]
no_license
import json import os import urllib.request import PIL import requests from bs4 import BeautifulSoup as bs from PIL import Image import matplotlib.pyplot as plt from natebbcommon.logger import initialise_logger from natebbwebcapture.webdriver_firefox import WebdriverFirefox from webdriver_utils.common import timed_scroll from config.webdriver_config import WebdriverConfig class InstagramScraper: def __init__(self, config): self.config = config self.webdriver = WebdriverFirefox( page_load_timeout=config.page_load_timeout, browser_emulation=config.browser_emulation, viewport_size_h_w=config.viewport_size_h_w, headless=config.headless, ) self.scroll_time = config.scroll_time self.scroll_pause_time = config.scroll_pause_time self.ins_explore_url = 'https://www.instagram.com/explore' self.image_save_path = './' def extract_links_of_posts_by_tag(self, hashtag='food'): self.webdriver.get(os.path.join(self.ins_explore_url, 'tags', hashtag)) if self.scroll_time: timed_scroll(self.webdriver.driver, self.scroll_time, self.scroll_pause_time) url_shortcodes = [] dom_string = self.webdriver.driver.page_source # obtain DOM soup = bs(dom_string, 'html.parser') body = soup.find('body') script = body.find('script', text=lambda t: t.startswith('window._sharedData')) page_json = script.contents[0].split(' = ', 1)[1].replace(';', '') soup = json.loads(page_json) # Find elements by x-path maybe? for url in soup['entry_data']['TagPage'][0]['graphql']['hashtag']['edge_hashtag_to_media']['edges']: url_shortcodes.append(url['node']['shortcode']) print('Extracted {} post shortcodes for hashtag:{}'.format(len(url_shortcodes), hashtag)) return url_shortcodes def save_images_by_url(self, list_url_shortcodes, image_save_path='./'): for short_code in list_url_shortcodes: image_url = os.path.join(self.ins_explore_url, 'p', short_code, 'media/?size=m') try: image = Image.open(requests.get(image_url, stream=True).raw) image.save(os.path.join(image_save_path + "{}.jpg".format(short_code))) except PIL.UnidentifiedImageError: print('Cannot load image for shortcode:{}'.format(short_code)) def scrap_caption_by_url(self): pass def scrap_hashtags_by_url(self): pass def display_images_from_short_code(self, short_code, size='m'): assert size in ['s','m','l'] image_url = os.path.join(self.ins_explore_url, 'p', short_code, 'media/?size={}'.format()) image = Image.open(urllib.request.urlopen(image_url)) image.show() def finish_extraction(self): # Maybe produce some sort of summary self.webdriver.driver.close() if __name__ == '__main__': root_logger = initialise_logger() hashtag = 'food' ins_scraper = InstagramScraper(config=WebdriverConfig()) url_shortcodes = ins_scraper.extract_links_of_posts_by_tag(hashtag) ins_scraper.display_images_from_short_code(url_shortcodes[0])
[ "matplotlib" ]
26838f68cfc8e3865b1338626201081541f083ac
Python
aniket3331/mlprojects
/titanicml.py
UTF-8
3,190
2.859375
3
[]
no_license
import numpy as numpy import pandas as pdd import seaborn as sns import matplotlib.pyplot as plt data=pdd.read_csv("train.csv",header=0,sep=',',quotechar='"') #a=data.info() #b=data.describe() #c=data.pivot_table(index='Sex',values='Survived') #d=data.pivot_table(index='Pclass',values='Survived') #e=d.plot.bar() #f=plt.show() #g=sns.FacetGrid(data,col='Survived') #l=g.map(plt.hist,'Age',bins=20) #grid=sns.FacetGrid(data,row='Pclass',col='Sex',height=2.2,aspect=1.6) #grid.map(plt.hist,'Age',alpha=.5,bins=20) #print(plt.show()) def process_age(df,cut_points,label_names): df["Age"] = df["Age"].fillna(-0.5) df["Age_categories"] = pdd.cut(df["Age"],cut_points,labels=label_names) return df cut_points = [-1,0, 5, 12, 18, 35, 60, 100] label_names = ["Missing", 'Infant', "Child", 'Teenager', "Young Adult", 'Adult', 'Senior'] data_new = process_age(data,cut_points,label_names) age_cat_pivot = data_new.pivot_table(index="Age_categories",values="Survived") age_cat_pivot.plot.bar() #plt.show() def create_dummies(df,column_name): dummies = pdd.get_dummies(df[column_name],prefix=column_name) df = pdd.concat([df,dummies],axis=1) return df data_new = create_dummies(data_new,"Pclass") #print(data_new.head()) data_new = create_dummies(data_new,"Sex") data_new = create_dummies(data_new,"Age_categories") columns = ['Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_female', 'Sex_male', 'Age_categories_Missing','Age_categories_Infant', 'Age_categories_Child', 'Age_categories_Teenager', 'Age_categories_Young Adult', 'Age_categories_Adult', 'Age_categories_Senior'] X_data = data_new[columns] Y_data = data_new['Survived'] from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split train_X, test_X, train_y, test_y = train_test_split(X_data,Y_data, test_size=0.2,random_state=0) lr = LogisticRegression() lr.fit(train_X, train_y) predictions = lr.predict(test_X) acc_log = accuracy_score(test_y, predictions) knn = KNeighborsClassifier(n_neighbors = 3) knn.fit(train_X, train_y) predictions = knn.predict(test_X) acc_knn = accuracy_score(test_y, predictions) decision_tree = DecisionTreeClassifier() decision_tree.fit(train_X, train_y) predictions = decision_tree.predict(test_X) acc_decision_tree = accuracy_score(test_y, predictions) svc = SVC(gamma='scale') svc.fit(train_X, train_y) predictions = svc.predict(test_X) acc_svc = accuracy_score(test_y, predictions) random_forest = RandomForestClassifier(n_estimators=100) random_forest.fit(train_X, train_y) predictions = random_forest.predict(test_X) acc_random_forest = accuracy_score(test_y, predictions) models = pdd.DataFrame({ 'Model': ['Support Vector Machines', 'KNN', 'Logistic Regression', 'Random Forest', 'Decision Tree'], 'Score': [acc_svc, acc_knn, acc_log, acc_random_forest, acc_decision_tree]}) print(models.sort_values(by='Score', ascending=False))
[ "matplotlib", "seaborn" ]
782c054b2e8d42c9d3a1890ff95603dbe4847ad4
Python
jorenretel/phd_thesis
/python_plots/beta_sheet_distance_table/beta_sheet_distances.py
UTF-8
3,281
2.53125
3
[]
no_license
from Bio.PDB import PDBParser from numpy import std, average import seaborn as sns import matplotlib.pyplot as plt import pandas as pd OmpA_beta_sheet_pairs = [(8, 42), (10, 40), (12, 38), (14, 36), (16, 34), (52, 80), (54, 78), (75, 103), (77, 101), (79, 99), (81, 97), (83, 95), (85, 93)] parser = PDBParser() #structure = parser.get_structure('OmpA', '/homes/retel/qj/pdb1qjp.ent') structure = parser.get_structure('OmpA', 'pdb2ge4.ent') #nuclei = ['CA', 'CB', 'C', 'HA', 'H'] nuclei = ['H'] def calculate_distances(): #nuclei = ['CA', 'CB', 'C'] #nuclei = ['CA', 'CB', 'C', 'N', 'H', 'HA', 'HB'] #nuclei = ['H', 'HA', 'HB'] intra = {} sequential = {} longrange1 = {} longrange2 = {} for chain in structure.get_chains(): residues = list(chain.get_residues()) for one, two in OmpA_beta_sheet_pairs: resA = residues[one] resB = residues[one+1] resC = residues[two-1] resD = residues[two] for nucleus1 in nuclei: for nucleus2 in nuclei: if nucleus1 in resA and nucleus2 in resA: intra[(nucleus1, nucleus2)] = intra.get((nucleus1, nucleus2), []) intra[(nucleus1, nucleus2)].append(resA[nucleus1] - resA[nucleus2]) if nucleus1 in resA and nucleus2 in resB: sequential[(nucleus1, nucleus2)] = sequential.get((nucleus1, nucleus2), []) sequential[(nucleus1, nucleus2)].append(resA[nucleus1] - resB[nucleus2]) if nucleus1 in resA and nucleus2 in resD: longrange1[(nucleus1, nucleus2)] = longrange1.get((nucleus1, nucleus2), []) longrange1[(nucleus1, nucleus2)].append(resA[nucleus1] - resD[nucleus2]) if nucleus1 in resB and nucleus2 in resC: longrange2[(nucleus1, nucleus2)] = longrange2.get((nucleus1, nucleus2), []) longrange2[(nucleus1, nucleus2)].append(resB[nucleus1] - resC[nucleus2]) replace_by_stats(intra) replace_by_stats(sequential) replace_by_stats(longrange1) replace_by_stats(longrange2) return intra, sequential, longrange1, longrange2 def nucleus_in_residue(residue, nucleus): for name in residue.child_dict.keys(): if nucleus in name: return residue[name] def replace_by_stats(dictionary): for nuclei, distance in dictionary.items(): dictionary[nuclei] = (average(distance), std(distance)) def create_correlation_plot(distances): xaxis_labels = nuclei yaxis_labels = nuclei * 4 data = [] for combination in distances: for nucleus2 in xaxis_labels: row = [] data.append(row) for nucleus1 in xaxis_labels: if (nucleus1, nucleus2) in combination: row.append(combination[nucleus1, nucleus2][0]) else: row.append(None) data = pd.DataFrame(data=data, index=yaxis_labels, columns=xaxis_labels) sns.heatmap(data, cmap="YlGn_r", annot=True) plt.show() create_correlation_plot(calculate_distances())
[ "matplotlib", "seaborn" ]
92f0f7730344068a04ef0a4843d8e1183d7694d2
Python
KKalem/toolbox
/dynamic_point.py
UTF-8
4,036
2.703125
3
[]
no_license
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Author: Ozer Ozkahraman ([email protected]) # Date: 2018-05-24 import numpy as np try: # explicit relative imports with dots in front. from .Pid import PID from .Quaternion import Quat from . import geometry as geom except SystemError: # absolute imports when we want to run this by itself from Pid import PID from Quaternion import Quat import geometry as geom RADTODEG = 360 / (np.pi * 2) class DynamicPoint: def __init__(self, mass=1, init_pos=(0,0,0), init_vel = (0,0,0), init_acc = (0,0,0), damping=None, max_vel=None, max_acc=None ): self.mass = mass self.pos = np.array(init_pos, dtype='float64') self.vel = np.array(init_vel, dtype='float64') self.acc = np.array(init_acc, dtype='float64') self.damping = damping self.max_vel = max_vel self.max_acc = max_acc def _limit_vel(self, vel): if self.max_vel is not None: vel = geom.vec_limit_len(vel, self.max_vel) return vel def _limit_acc(self, acc): if self.max_acc is not None: acc = geom.vec_limit_len(acc, self.max_acc) return acc def _apply_damping(self): if self.damping is not None: self.vel -= self.vel*self.damping def update(self, dt): self.vel += self.acc * dt self.vel = self._limit_vel(self.vel) self.pos += self.vel * dt def get_position(self): return self.pos def get_orientation_quat(self): # use the velocity as orientation # ra=heading/yaw, dec=pitch, roll=roll yaw,pitch = geom.vec3_to_yaw_pitch(self.vel) roll = 0 yaw*=RADTODEG pitch*=RADTODEG return Quat([yaw,pitch,roll]).q class VelocityPoint(DynamicPoint): def __init__(self, speed=None, **kwargs): super().__init__(**kwargs) self.target = DynamicPoint() if speed is None: self.speed = 999999 else: self.speed = speed def set_target(self, target): self.target.pos = np.array(target, dtype='float64') def update(self, dt): if self.target is not None: target_dist, target_vec = geom.vec_normalize(self.target.get_position() - self.pos) if target_dist > 0.1: self.vel = target_vec * self.speed else: self.vel = np.zeros(3) self.vel = self._limit_vel(self.vel) self.pos += self.vel * dt class PIDPoint(DynamicPoint): def __init__(self, pid=None, **kwargs): super().__init__(**kwargs) self.target = DynamicPoint() if pid is None: self.pid = PID(P=0.2, D=0.5) else: self.pid = PID(*pid) def set_target(self, target): self.target.pos = np.array(target, dtype='float64') self.pid.clear() def update(self, dt): self.acc = np.array((0.,0.,0.)) if self.target is not None: target_dist, target_vec = geom.vec_normalize(self.target.get_position() - self.pos) if target_dist > 0: forward_acc = self.pid.update(target_dist, dt) self.acc -= forward_acc * target_vec self._apply_damping() self.acc = self._limit_acc(self.acc) self.vel += self.acc * dt self.vel = self._limit_vel(self.vel) self.pos += self.vel * dt if __name__ == '__main__': import matplotlib.pyplot as plt plt.ion() p = PIDPoint() p.set_target((5,5,5)) trace = [] for i in range(10000): p.update(0.01) trace.append(p.pos.copy()) p.set_target((0,0,0)) for i in range(10000): p.update(0.01) trace.append(p.pos.copy()) trace = np.array(trace) plt.plot(range(len(trace)),trace[:,0])
[ "matplotlib" ]
c583f8ee9dcded37d054e7c4b5bf1ce8ece4f8da
Python
ulmefors/CarND-Vehicle-Detection
/lib/feature_extractor.py
UTF-8
4,975
3
3
[]
no_license
import numpy as np import matplotlib.image as mpimg import cv2 from skimage.feature import hog class FeatureExtractor: """ Extract features from images. Code developed with inspiration from Udacity Self-Driving Car Nanodegree. """ def __init__(self, feature_config, color_space): self.feature_config = feature_config self.color_space = color_space SPATIAL_SIZE = (64, 64) HIST_BINS = 32 def bin_spatial(self, image, size=SPATIAL_SIZE): # Create feature vector using pixel values features = cv2.resize(image, size).ravel() return features # Define a function to compute color histogram features def color_hist(self, image, nbins=HIST_BINS, bins_range=(0, 256)): channel1_hist = np.histogram(image[:, :, 0], bins=nbins, range=bins_range) channel2_hist = np.histogram(image[:, :, 1], bins=nbins, range=bins_range) channel3_hist = np.histogram(image[:, :, 2], bins=nbins, range=bins_range) hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0])) return hist_features def get_hog_features(self, image, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True): args = { 'orientations': orient, 'pixels_per_cell': (pix_per_cell,) * 2, 'cells_per_block': (cell_per_block,) * 2, 'transform_sqrt': True, 'visualise': vis, 'feature_vector': feature_vec } if vis: features, hog_image = hog(image, **args) return features, hog_image else: features = hog(image, **args) return features def __extract_features(self, feature_image, spatial_size=SPATIAL_SIZE, hist_bins=HIST_BINS, orient=9, pix_per_cell=8, cell_per_block=2, hog_channel=0, spatial_feat=True, hist_feat=True, hog_feat=True): file_features = [] if spatial_feat: spatial_features = self.bin_spatial(feature_image, size=spatial_size) file_features.append(spatial_features) if hist_feat: hist_features = self.color_hist(feature_image, nbins=hist_bins) file_features.append(hist_features) if hog_feat: args_dict = { 'vis': False, 'feature_vec': True } args_list = [orient, pix_per_cell, cell_per_block] if hog_channel == 'ALL': channels = range(feature_image.shape[2]) else: channels = [hog_channel] hog_features = [] for channel in channels: hog_features.append(self.get_hog_features(feature_image[:, :, channel], *args_list, **args_dict)) # Unroll features if more than 1 dimension # if len(np.array(hog_features).shape) > 1: if np.ndim(hog_features) > 1: hog_features = np.ravel(hog_features) file_features.append(hog_features) return np.concatenate(file_features) def extract_features_from_image(self, image): # Convert color space from RGB to configuration color space (if required) feature_image = self.convert_color_space(image) features = self.__extract_features(feature_image, **self.feature_config) return features def extract_features_from_files(self, image_files): features = [] for img_file in image_files: # Read RGB version from disk image = mpimg.imread(img_file) # Scale values to make png and jpeg compatible if img_file.endswith('png'): image = (image * 255).astype(np.uint8) file_features = self.extract_features_from_image(image) features.append(file_features) return features def convert_color_space(self, image): """ Converts color space in accordance with configuration :param image: image in RGB color space :return: image in configured color space """ # Load color space color_space = self.color_space # Convert from RBG to chosen color space if color_space != 'RGB': if color_space == 'HSV': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) elif color_space == 'LUV': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2LUV) elif color_space == 'HLS': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) elif color_space == 'YUV': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV) elif color_space == 'YCrCb': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb) else: feature_image = np.copy(image) return feature_image def main(): pass if __name__ == '__main__': main()
[ "matplotlib" ]
4e3bf57c639652f83ff5924c8a3f3e3f39c62cd8
Python
jlan84/numpy-assignment
/src/jl_basic.py
UTF-8
1,106
3.484375
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt def column_vector(n): return np.arange(n) def random_array(r, c): return np.random.rand(r,c) def color_replace(v): return np.where(v,'blue', 'red') def compute_true_false_sums(x,b): dic = {} dic[True] = np.sum(x[b==True]) dic[False] = np.sum(x[b==False]) return dic def select_from_two_arrays(x,y,b): return np.where(b,x,y) def sum_of_squred_diff(x,y): return np.sum((x-y)**2) if __name__ == "__main__": v = column_vector(3) print(v.shape) v2 = random_array(4,3) print(v2) x = np.array([0,0,1,0]) print(color_replace(x)) x = np.array([0, 1, 2, 3, 4, 5]) b = np.array([True, True, False, True, False, False]) print(compute_true_false_sums(x,b)) x = np.array([1, 2, 3, 4, 5, 6]) y = np.array([10, 20, 30, 40, 50, 60]) b = np.array([True, True, False, True, False, True]) print(select_from_two_arrays(x,y,b)) x = np.array([0, 1, 0, 1, 0, 1]) y = np.array([0, 1, 2, 3, 4, 5]) print(sum_of_squred_diff(x,y))
[ "matplotlib" ]
5a5d709f27630a40f7a596634af70de5be70b6ae
Python
Manukhurana97/Machine-Learning1
/12 Mean shift.py
UTF-8
1,119
2.953125
3
[]
no_license
# Machine automatically detects the numbers of clusters # It Take all the feature -center as a cluster center # Its a hierarchical clustering algo import numpy as np from sklearn.cluster import MeanShift import pandas as pd import matplotlib.pylab as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import style from sklearn.datasets.samples_generator import make_blobs style.use('ggplot') # initial centers center = [[1, 1, 1], [5, 5, 5], [3, 10, 10]] X, _ = make_blobs(n_samples=1000, centers=center, cluster_std=1.5) ms = MeanShift() ms.fit(X) lables = ms.labels_ # final centers cluster_center = ms.cluster_centers_ n_cluster = len(np.unique(lables)) color = 10*['r', 'g', 'c', 'k', 'y', 'm'] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for i in range(len(X)): ax.scatter(X[i][0], X[i][1], X[i][2], c=color[lables[i]], marker='o') ax.scatter(cluster_center[:, 0], cluster_center[:, 1], cluster_center[:, 2], marker='X', color='k', zorder=10) plt.show() if len(center) == len(cluster_center): for i in range(len(center)): print(cluster_center[i]-center[i])
[ "matplotlib" ]
90dc533e7acee73be7627c125f6e8cafcef73a29
Python
Mengjiao926/Network-Analysis-of-Titanic-Facebook-Page
/Json-Pajek/Code for answers.py
UTF-8
1,155
3.65625
4
[]
no_license
import networkx as net import matplotlib.pyplot as plt g = net.read_pajek('chenchupajek.net') print("Find the number of nodes in the graph?") print ("Nodes: ",len(g)) print("Find the number of components (connected subgraphs)?") print ("Number of components (Connected Subgraphs): ",len(list(net.connected_component_subgraphs(g)))) print("Find the node with the maximum degree? What is that degree?") deg = net.degree(g) print("Node with Maximum Degree: ", max(deg, key=deg.get)) print("Maximum Degree: ", max(deg.values())) undirected = g.to_undirected() print ('Number of edges for undirected graph: ',len(undirected.edges())) print("What is the density of the graph?") print ("Density of the Graph: ",net.density(g)) print("Create a degree distribution plot?") h = g.to_undirected() print("Number of edges in the converted undirected graph is: %s"%h.number_of_edges()) print("Density of the undirected graph is: %s"%net.density(h)) degree_sequence=sorted(net.degree(g).values(),reverse=True) dmax = max(degree_sequence) plt.hist(degree_sequence,bins=dmax) plt.title("Degree Distribution Plot") plt.ylabel("count") plt.xlabel("degree") plt.show()
[ "matplotlib" ]
9db7a03d65679c6566ff252908fe6b312c0579b1
Python
Andreasksalk/ReinforcementLearning
/Chapter-02/2-5.py
UTF-8
1,867
3.046875
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 12 21:17:46 2019 @author: a.k.salk """ import numpy as np import matplotlib.pyplot as plt num_bandits = 10 steps = 10000 alpha = 0.1 epsilon = 0.1 mean=0 std=0.01 # Random walk paramters plus=0.01 minus=-plus num_actions = 1 actions = [] # Creating bandits bandits = [] for i in range(num_bandits): bandits.append([np.random.normal(mean, std), std]) # h loop defines the number of re-runs to generate a more fluent distribution on the problem. for h in range(100): opt_a = [] # Collecting max value for and position m_bandit = 0 b_bandit = 0 for i in range(num_bandits): if bandits[i][0] > m_bandit: m_bandit = bandits[i][0] b_bandit = i q = np.zeros(num_bandits) n = np.zeros(num_bandits) for i in range(steps): # Creating the random walk for bandit in bandits: if np.random.uniform() < 0.5: bandit[0] += np.random.normal(mean, std) else: bandit[0] -= np.random.normal(mean, std) selected_bandit = np.argmax(q) if np.random.uniform() < epsilon: selected_bandit = np.random.choice(len(q)) reward = np.random.normal(bandits[selected_bandit][0], bandits[selected_bandit][1]) n[selected_bandit] += 1 q[selected_bandit] += alpha * (reward - q[selected_bandit]) opt_a.append(int(selected_bandit == b_bandit)) if i <= num_actions: action = sum(opt_a)/len(opt_a) else: action = sum(opt_a[-num_actions:])/num_actions if h == 0: actions.append(action) else: actions[i] += (action - actions[i]) / (h + 1) plt.axis([0, steps, -1, 1]) plt.plot(range(steps), actions) plt.show()
[ "matplotlib" ]
c50efe487d8a5f643b105629ebaf57c1e254e88b
Python
atwilson0729/vislab
/Plots/Covid plots/Stack Bar Chart.py
UTF-8
4,308
3.1875
3
[]
no_license
<<<<<<< HEAD import pandas as pd import plotly.offline as pyo import plotly.graph_objs as go # Load CSV file from Datasets folders df = pd.read_csv('../../Datasets/CoronavirusTotal.csv') # Removing empty spaces from State column to avoid errors df = df.apply(lambda x: x.str.strip() if x.dtype == "object" else x) # Creating unrecovered column df['Unrecovered'] = df['Confirmed'] - df['Deaths'] - df['Recovered'] # Removing China and others from data frame df = df[(df['Country'] != 'China')] # Creating sum of number of cases group by Country Column new_df = df.groupby(['Country']).agg( {'Confirmed': 'sum', 'Deaths': 'sum', 'Recovered' : 'sum', 'Unrecovered': 'sum'}).reset_index() # Sorting values and select 20 first value new_df = new_df.sort_values(by=['Confirmed'], ascending=[False]).head(20).reset_index() # Preparing data # Creates three plotly graph objects for bar chart data, each with an x-axis of 'Country' in a pandas df # Each of the three plotly objects is a different color on the stacked chart # The first object has a y-axis of Unrecovered data in pandas df # The second object has a y-axis of recovered data in pandas df # The third object has a y-axis of deaths data in pandas df # The graph objects are then all stored in a list named data trace1 = go.Bar(x=new_df['Country'], y=new_df['Unrecovered'], name='Unrecovered', marker={'color': '#CD7F32'}) trace2 = go.Bar(x=new_df['Country'], y=new_df['Recovered'],name='Recovered', marker={'color': '#9EA0A1'}) trace3= go.Bar(x=new_df['Country'], y=new_df['Deaths'], name='Deaths', marker={'color': '#FFD700'}) data= [trace1, trace2, trace3] # Preparing layout layout = go.Layout(title='CoronaVirus Cases in the first 20 countries except China', xaxis_title="Country", yaxis_title="Number of Cases", barmode='stack') # Plot the figure and saving in an HTML file fig = go.Figure(data=data, layout=layout) pyo.plot(fig, filename='stackbarchart.html') #data = [ # go.Scatter(x=new_df['Recovered'], # y=new_df['Unrecovered'], # text=new_df['Country'], # mode='markers', # marker=dict(size=new_df['Confirmed'] / #100,color=new_df['Confirmed'] /100, showscale=True)) #] #layout = go.Layout(title='Corona Virus Confirmed Cases', xaxis_title="Recovered Cases", # yaxis_title="Unrecovered Cases", hovermode='closest') #fig = go.Figure(data=data, latout=layout) ======= import pandas as pd import plotly.offline as pyo import plotly.graph_objs as go df = pd.read_csv('../Datasets/CoronavirusTotal.csv') df = df.apply(lambda x: x.str.strip() if x.dtype == "object" else x) df['Unrecovered'] = df['Confirmed'] - df['Deaths'] - df['Recovered'] df = df[(df['Country'] != 'China')] new_df = df.groupby(['Country']).agg( {'Confirmed': 'sum', 'Deaths': 'sum', 'Recovered' : 'sum', 'Unrecovered': 'sum'}).reset_index() new_df = new_df.sort_values(by=['Confirmed'], ascending=[False]).head(20).reset_index() trace1 = go.Bar(x=new_df['Country'], y=new_df['Unrecovered'], name='Unrecovered', marker={'color': '#CD7F32'}) trace2 = go.Bar(x=new_df['Country'], y=new_df['Recovered'],name='Recovered', marker={'color': '#9EA0A1'}) trace3= go.Bar(x=new_df['Country'], y=new_df['Deaths'], name='Deaths', marker={'color': '#FFD700'}) data= [trace1, trace2, trace3] layout = go.Layout(title='CoronaVirus Cases in the first 20 countries except China', xaxis_title="Country", yaxis_title="Number of Cases", barmode='stack') fig = go.Figure(data=data, layout=layout) pyo.plot(fig, filename='stackbarchart.html') #data = [ # go.Scatter(x=new_df['Recovered'], # y=new_df['Unrecovered'], # text=new_df['Country'], # mode='markers', # marker=dict(size=new_df['Confirmed'] / #100,color=new_df['Confirmed'] /100, showscale=True)) #] #layout = go.Layout(title='Corona Virus Confirmed Cases', xaxis_title="Recovered Cases", # yaxis_title="Unrecovered Cases", hovermode='closest') #fig = go.Figure(data=data, latout=layout) >>>>>>> parent of cba2bbd (test commit 2) #pyo.plot(fig, filename='bubblechart.html')
[ "plotly" ]
3a623b1e1ec56f5b64bab8ed3e056bfcd947f7ef
Python
austin-psu-phases/atomPython
/python stuff/pathdistort.py
UTF-8
2,533
3.328125
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri Sep 11 19:21:43 2015 @author: Austin """ import math import random as rnd import numpy as np import pandas as pd import matplotlib.pyplot as plt from math import sqrt, asin, cos, sin print "hello" ##take a list of vetors from a text file ## format of file: space seperated list ## read in vector lists twopi=6.2831853 def rotate (theta,vec): # print(vec) W1 = np.array([[0,-vec[2],vec[1]],[vec[2],0,-vec[0]],[-vec[1],vec[0],0]]) W2 = np.dot(W1,W1) E = np.array([[1,0,0],[0,1,0],[0,0,1]]) a = sin(theta) b = 1-cos(theta) transform = E + a*W1 + b*W2 # print(W1) # print(transform) return transform imgs=5 df1 = pd.read_csv('file1.txt', sep=' ') print(df1) coords1 = df1.values df2 = pd.read_csv('file2.txt', sep=' ') print(df2) coords2 = df2.values # list of difference between vectors diff1=coords1-coords2 print(diff1) # angle about z= arcsine of y/sqrt(x^2 + y^2) # angle about y= arcsine of z/sqrt(z^2 + H^2) # gives transform matrix to point x in direction of vector # transform normal vector by angle1, angle2 and then randangle about x axis #list of angles for transformation obtained below: # get list of cross products (normal vectors) to diff1 #print((np.cross(coords1[3],coords2[3]))) unormvecs=[] for i in range(len(diff1)): if diff1[i,1] and diff1[i,0] == 0: unormvecs.append(1,0,0) norm=sqrt(pow(diff1[i,1],2)+pow(diff1[i,0],2)) # print(norm) unormvecs.append([diff1[i,1]/norm, -diff1[i,0]/norm, 0]) print("this should be zero...if it worked") k1=np.dot(rotate(rnd.random()*twopi,diff1[1]),unormvecs[1]) print(np.dot(k1,diff1[1])) #for i in range(len(diff1)): # n_place=[] # norm=None # print(n_place) # print(norm) # norm=np.linalg.norm(np.cross(coords1[i],coords2[i])) # n_place=np.cross(coords1[i],coords2[i])*(1/norm) # print(n_place) # print(norm) # unormvecs.append(n_place) # ## interpolate by some odd number of points between coordinates # define normRndRot # takes a normal unit vector # coordinate transform by anglez and angley # apply a random rotation about x'' # unto each image add normRndRot # make a imgs+2 by len(diff1) array images=[[[coords1[i]+((j/float(imgs+1)))*coords2[i]]for j in range(0,imgs+2)] for i in range(len(diff1)) ] images = np.array(images) ## #vectors=np.random.RandomState(42).rand(100,3) #print vectors #print "space" #np.save("output1",vectors) #newvector = np.load("output1.npy") #print newvector ##
[ "matplotlib" ]
88c1508ddbbc7e89d6a191a2f9d6df066279c05f
Python
dillon-duncando/MSA-Discord-Bot
/runBot.py
UTF-8
11,128
3.09375
3
[ "MIT" ]
permissive
import discord import matplotlib.pyplot as plt import numpy as np import sympy as sp import re, os, sys, math, time from configparser import * import pickle from PIL import Image import botFunctions as bf from pnglatex import pnglatex config = ConfigParser() config.read('config.ini') with open ('primelist', 'rb') as fp: primelist = pickle.load(fp) def primeFromList(): for prime in primelist: yield prime #used to stop the bot from running a calculation that goes on for too long class Timer: def __init__(self): self._start_time = None def start(self): """Start a new timer""" if self._start_time is not None: raise TimerError(f"Timer is running. Use .stop() to stop it") self._start_time = time.perf_counter() def time(self): if self._start_time is None: raise TimerError(f"Timer is not running. Use .start() to start it") elapsed_time = time.perf_counter() - self._start_time return(elapsed_time) def stop(self): """Stop the timer, and report the elapsed time""" if self._start_time is None: raise TimerError(f"Timer is not running. Use .start() to start it") elapsed_time = time.perf_counter() - self._start_time self._start_time = None print(f"Elapsed time: {elapsed_time:0.4f} seconds") #an allow list for what functions can be called when plotting to avoid arbitrary code execution safe_list = ['acos', 'asin', 'atan', 'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log', 'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh'] safe_dict = { "sin" : np.sin, "cos" : np.cos, "tan" : np.tan, "arcsin" : np.arcsin, "arccos" : np.arccos, "arctan" : np.arctan, "sinh" : np.sinh, "cosh" : np.cosh, "tanh" : np.tanh, "arcsinh" : np.arcsinh, "arccosh" : np.arccosh, "arctanh" : np.arctanh, "floor" : np.floor, "ceil" : np.ceil, "ln" : np.log, "log" : np.log10, "sinc" : np.sinc, "sqrt" : np.sqrt, "pi" : math.pi, "tau" : 2*math.pi, "e" : np.exp(1) } #declare discord client client = discord.Client() @client.event async def on_ready(): print('We have logged in as {0.user}'.format(client)) @client.event async def on_message(message): #ignore messages from oneself if message.author == client.user: return #Hello world for discord if message.content.startswith('$hello'): await message.channel.send('Hello!') #return list of commands to give the bot if(message.content.startswith('$commands') or message.content.startswith('$help')): await message.channel.send( 'List of commands: \n'\ '$commands: Provide a list of commands \n'\ '$factor x: Factor a positive integer x \n'\ '$isPrime x: Check if integer x is prime \n'\ '$plot f(x), min, max: Plot a function of x from the min to the max \n'\ '$polar f(x), min, max: Plot a function of x from the min to the max in polar coordinates \n'\ '$roll xdy: Roll x number of y sided dice \n'\ '$tex or $Tex LaTeX: Render LaTeX code and return as an image' ) #roll dice, like in d&d if message.content.startswith('$roll '): text = message.content[6:] index = text.find("d") if(index >= 0): await message.channel.send(bf.roll(text, index)) #draw a 2d graph in cartesian coordinates #only uses arithmetic and functions defined in the safe dict if message.content.startswith('$plot '): text = message.content[5:] try: split = re.split(",", text.replace("^", "**"), 2) x = np.linspace(float(split[1]),float(split[2]), 100) y = eval(split[0], {**safe_dict, 'x': x}) fig = plt.figure() plot = plt.plot(x,y) fig.savefig("newplot.png") await message.channel.send(file=discord.File("newplot.png")) except Exception as e: print(e) await message.channel.send('beep boop. something went wrong.') #draw a 2d graph in polar coordinates #only uses arithmetic and functions defined in the safe dict if message.content.startswith('$polar '): text = message.content[6:] try: split = re.split(",", text.replace("^", "**"), 2) x = np.linspace(float(split[1]),float(split[2]), 100) y = eval(split[0], {**safe_dict, 'x': x}) fig = plt.figure() plot = plt.polar(x,y) fig.savefig("newplot.png") await message.channel.send(file=discord.File("newplot.png")) except Exception as e: await message.channel.send('beep boop. something went wrong.') await message.channel.send(e) #render latex if('$tex ' in message.content): command = message.content[(message.content.find('$tex ')+4):] try: sp.preview(command, viewer='file', filename='latex.png', euler=False) old_im = Image.open('latex.png') old_size = old_im.size new_size = (old_im.size[0]+20, old_im.size[1]+20) new_im = Image.new("RGB", new_size, color = (255, 255, 255)) new_im.paste(old_im, (int((new_size[0]-old_size[0])/2), int((new_size[1]-old_size[1])/2))) new_im.save('latex.png') await message.channel.send(file=discord.File("latex.png")) except Exception as e: await message.channel.send('beep boop. something went wrong.') await message.channel.send(e) #render latex if('$Tex ' in message.content): command = message.content[(message.content.find('$Tex ')+4):] try: sp.preview(command, viewer='file', filename='latex.png', euler=False) old_im = Image.open('latex.png') old_size = old_im.size new_size = (old_im.size[0]+20, old_im.size[1]+20) new_im = Image.new("RGB", new_size, color = (255, 255, 255)) new_im.paste(old_im, (int((new_size[0]-old_size[0])/2), int((new_size[1]-old_size[1])/2))) new_im.save('latex.png') await message.channel.send(file=discord.File("latex.png")) except Exception as e: print(e) await message.channel.send('beep boop. something went wrong.') #determine if a number is prime if message.content.startswith('$isPrime '): text = message.content[9:] try: x = int(text) if(bf.isPrime(x)): await message.channel.send(str(x) + ' is prime.') else: await message.channel.send(str(x) + ' is not prime.') except Exception as e: await message.channel.send('beep boop. something went wrong.') await message.channel.send(e) #factor a composite number, if possible within a reasonable amount of time if message.content.startswith('$factor '): text = message.content[8:] try: x = int(text) if(x <= 0): await message.channel.send("I don't know how to factor that.") elif(x == 1): await message.channel.send('1 = 1^1') elif(bf.isPrime(x)): await message.channel.send(str(x) + ' is a prime number.') else: factors = [] exponents = [] primes = primeFromList() index = 0 timer = Timer() timer.start() time = timer.time() pFactor = bf.powerFactor(x) x = pFactor[0] expIncrement = pFactor[1] #jexpIncrement = 1 while not bf.isPrime(x) and x != 1 and time < 60: try: p = next(primes) if(x%p == 0): factors.append(p) exponents.append(0) while(x%p == 0): exponents[index] = exponents[index] + expIncrement x = x//p index = index + 1 if(math.sqrt(x) == math.floor(math.sqrt(x))): x = math.floor(math.sqrt(x)) expIncrement = expIncrement * 2 except Exception as e: message.channel.send(e) factors.append(x) exponents.append(1) x = x//x time = timer.time() timer.stop() if(bf.isPrime(x)): factors.append(x) exponents.append(expIncrement) factorization = [] for i in range(len(factors)): factorization.append(str(factors[i]) + "^" + str(exponents[i])) if time >= 60: await message.channel.send("Computation took too long.") msg = str(int(text)) + ' = ' + "+".join(factorization) + " + a potential prime or semiprime " + str(x) else: msg = str(int(text)) + ' = ' + "+".join(factorization) await message.channel.send(msg) except Exception as e: print(e) await message.channel.send('beep boop. something went wrong.') #returns pi in terms of the superior circle constant if message.content.startswith('$pi'): await message.channel.send('π = τ/2') #restart the bot, mostly useful to update the code of the bot #it should open itself, then close itself, but sometimes it just opens itself. if message.content.startswith('$restart'): #check the message author is authorized to restart the bot if message.author.name == config.get("main", "owner"): await message.channel.send('brb') os.startfile(__file__) sys.exit() #shut down the bot if message.content.startswith('$shutdown'): #check the message author is authorized to shut down the bot if message.author.name == config.get("main", "owner"): await message.channel.send('Goodbye.') print("Terminating bot") sys.exit() #config is in the git ignore to avoid publishing the bot id in a public repository #the bot id can be acquired by creating a bot application at https://discord.com/developers/applications client.run(config.get("main", "id"))
[ "matplotlib" ]
47658ae30e2c23c3859589f04dc738e4198cd904
Python
ggravanis/AdvancedML
/src/machine_learning/part23.py
UTF-8
8,263
2.96875
3
[]
no_license
#!/usr/bin/env python # coding: utf8 import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.tight_bbox import adjust_bbox from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier import time from sklearn.metrics import precision_recall_curve, average_precision_score, hamming_loss, \ label_ranking_average_precision_score, roc_auc_score, accuracy_score from itertools import cycle import random def binary_to_text(df): y_labels = [] labels_cumsum = {} for index, item in df.iterrows(): labels = [] for label_index, value in item.iteritems(): if np.isnan(value): continue if int(value) == 1: labels.append(label_index) if labels_cumsum.get(label_index) is None: labels_cumsum[label_index] = 0 else: labels_cumsum[label_index] = labels_cumsum.get(label_index) + 1 y_labels.append(labels) return y_labels, labels_cumsum def load_data(filename): load_path = "../../data/DeliciousMIL/" data = pd.read_csv(load_path + filename) data = data.set_index(['Unnamed: 0']) return data def bag_of_words(df): d = {} for row, items in df.iterrows(): my_dict = {} for item in items: if np.isnan(item): continue if int(item) in my_dict: my_dict[int(item)] += 1 else: my_dict[item] = 1 d[row] = my_dict df = pd.DataFrame.from_dict(d) df = df.transpose() df = pd.DataFrame(df).fillna(0) return df def get_n_most_significant(df, n): temp_dict = {} for index, column in df.items(): temp_dict[index] = int(sum(column)) df = pd.DataFrame(temp_dict, index=[0]) df = df.transpose() df = df.reset_index(drop=False) df = df.rename({"index": "label", 0: "value"}, axis='columns') # df['value'].plot.kde() # plt.show() df.label = df.label.astype(int) df = df.sort_values(by="value", ascending=False) x = [] y = [] label = [] counter = 0 for index, item in df.iterrows(): x.append(counter) y.append(item['value']) label.append(item['label']) counter += 1 # plt.scatter(x=x, y=y, s=1) # plt.show() df = df.head(n) return df['label'] if __name__ == "__main__": # Set the paths save_path = "../../results/part23/" print "Loading the data..." # Load the data X_test = load_data('part1_test.csv') # 3980 y_test = load_data('test_labels.csv') print "Data loaded." print "creating labeled arrays" X = bag_of_words(X_test) keys = get_n_most_significant(X, 3500) X = X[keys] y = y_test['grammar'] # y = y_test['language'] X = np.array(X) y = np.array(y) fig, axes = plt.subplots(ncols=5, nrows=2, sharey='all', sharex='row', figsize=(14, 8)) fig.suptitle("Learning Curves") fig.text(0.5, 0.04, 'Iteration', ha='center') fig.text(0.04, 0.5, 'Accuracy %', va='center', rotation='vertical') fig.tight_layout() fig.subplots_adjust(top=0.95, left=0.11, bottom=0.08) for k in range(0, 10): if k < 5: j = k m = 0 else: j = k-5 m = 1 # split test set in two sets equally distributed X_test, X_pool, y_test, y_pool = train_test_split(X, y, test_size=0.50, random_state=7) X_train = [] y_train = [] for i in range(len(y_pool)): if y_pool[i] == 0: if len(y_train) < 4: X_train.append(X_pool[i]) y_train.append(y_pool[i]) np.delete(X_pool, i) np.delete(y_pool, i) else: continue if y_pool[i] == 1: if len(y_train) < 8: X_train.append(X_pool[i]) y_train.append(y_pool[i]) np.delete(X_pool, i) np.delete(y_pool, i) else: break # Uncertainty Sampling Initialization X_train_US = np.array(X_train) y_train_US = np.array(y_train) X_pool_US = np.array(X_pool) y_pool_US = np.array(y_pool) # Random Sampling Initialization X_train_RS = np.array(X_train) y_train_RS = np.array(y_train) X_pool_RS = np.array(X_pool) y_pool_RS = np.array(y_pool) # Initialize storage arrays us_acc = [] rs_acc = [] for iteration in range(10): clf_US = SVC(kernel='linear', C=1, probability=True) # Train classifier with Uncertainty Sampling Train set clf_US.fit(X_train_US, y_train_US) prob_US = clf_US.predict_proba(X_pool_US) y_pred_US = clf_US.predict(X_test) temp = [np.abs(item[1] - 0.5) for item in prob_US] # we focus on minority class item[1] u_sample = np.argmin(temp) # Train classifier with Random Sampling Train set clf_RS = SVC(kernel='linear', C=1, probability=True) clf_RS.fit(X_train_RS, y_train_RS) prob_RS = clf_RS.predict_proba(X_pool_RS) y_pred_RS = clf_RS.predict(X_test) r_sample = random.randint(0, len(y_pool_RS)) # Store scores in arrays us_acc.append(accuracy_score(y_pred=y_pred_US, y_true=y_test)) rs_acc.append(accuracy_score(y_pred=y_pred_RS, y_true=y_test)) print "Iteration {}".format(iteration + 1) print "Uncertainty Sampling AUC: ", roc_auc_score(y_score=y_pred_US, y_true=y_test) print "Uncertainty Sampling Accuracy: ", accuracy_score(y_pred=y_pred_US, y_true=y_test) print "Uncertainty Sampling Pool size", X_pool_US.shape print "Uncertainty Sampling Train size", X_train_US.shape print "The Uncertainty sample number is {} and its value is {}".format(u_sample, temp[u_sample]) print "---------------------------------------------" print "Random Sampling AUC: ", roc_auc_score(y_score=y_pred_RS, y_true=y_test) print "Random Sampling Accuracy: ", accuracy_score(y_pred=y_pred_RS, y_true=y_test) print "Random Sampling Pool size", X_pool_RS.shape print "Random Sampling Train size", X_train_RS.shape print "The Random sample number is {} and its value is {}".format(r_sample, temp[r_sample]) # Update train and pool set for Uncertainty Sampling X_train_US = np.vstack((X_train_US, X_pool_US[u_sample, :])) y_train_US = np.hstack((y_train_US, y_pool_US[u_sample])) X_pool_US = np.delete(X_pool_US, u_sample, 0) y_pool_US = np.delete(y_pool_US, u_sample, 0) # Update train and pool set for Random Sampling X_train_RS = np.vstack((X_train_RS, X_pool_RS[r_sample, :])) y_train_RS = np.hstack((y_train_RS, y_pool_RS[r_sample])) X_pool_RS = np.delete(X_pool_RS, r_sample, 0) y_pool_RS = np.delete(y_pool_RS, r_sample, 0) axes[m, j].plot(us_acc) axes[m, j].plot(rs_acc) # axes[i, 0].set_ylabel("General Iteration {}".format(k)) axes[m, j].set_title("Test {}".format(k+1)) plt.setp([a.get_xticklabels() for a in axes[0, :]], visible=False) plt.setp([a.get_yticklabels() for a in axes[:, 1]], visible=False) fig.legend(("Uncertainty Sampling", "Random Sampling")) fig.savefig(save_path + 'ALearningCurves.png') # plt.figure() # plt.plot(us_acc, label="Uncertainty Sampling") # plt.plot(rs_acc, label="Random Sampling") # plt.legend() # plt.title("Learning Curves") # plt.ylabel("Accuracy %") # plt.ylim((0, 1)) # plt.xlabel("Iteration") # plt.savefig(save_path + "ALearningCurves_{}.png".format(k)) # plt.show()
[ "matplotlib" ]
b4a609846c9b423aca72e19e337b95e02f5371f5
Python
strongnine/Series2Image
/src/generate_by_files.py
UTF-8
2,016
3.109375
3
[]
no_license
#!/usr/bin/python #copyright(c) strongnine # 批量生成 GAF 图片的代码 (Generate GAF images in batches) # 将文件夹中的每个文件都生成一个 GAF 图 (...) import os import numpy as np import matplotlib.pyplot as plt from matplotlib import image from pyts.image import GramianAngularField # 根据自己的需求修改一下变量的参数 dirname = "./data/dataset" # 要处理的文件夹路径 savepath = "./data" # GAF 图片保存的路径 img_sz = 28 # 确定生成的 GAF 图片的大小 method = 'summation' # GAF 图片的类型,可选 'summation'(默认)和 'difference' # 以下是 GAF 生成的代码 print("GAF 生成方法:%s,图片大小:%d * %d" % (method, img_sz, img_sz)) img_path = "%s/images" % savepath # 可视化图片保存的文件夹 data_path = "%s/data_mat" % savepath # 数据文件保存的文件夹 if not os.path.exists(img_path): os.makedirs(img_path) # 如果文件夹不存在就创建一个 if not os.path.exists(data_path): os.makedirs(data_path) # 如果文件夹不存在就创建一个 print("开始生成...") print("可视化图片保存在文件夹 %s 中,数据文件保存在文件夹 %s 中。" % (img_path, data_path)) gaf = GramianAngularField(image_size=img_sz, method=method) img_num = 0 # 计算生成的图片个数 for fname in os.listdir(dirname): filename, ext = os.path.splitext(fname) if ext != '.csv': continue # 如果不是 csv 文件则跳过 img_num += 1 src_data = np.loadtxt("{}/{}".format(dirname, fname), delimiter=",") # 加载数据 (load the source data) x = src_data.reshape(1, -1) img_gaf = gaf.fit_transform(x) img_save_path = "%s/%s.png" % (img_path, filename) image.imsave(img_save_path, img_gaf[0]) # 保存图片 (save image) data_save_path = "%s/%s.csv" % (data_path, filename) np.savetxt(data_save_path, img_gaf[0], delimiter=',') # 保存数据为 csv 文件 print("生成完成,共处理 %d 个图片。" % img_num)
[ "matplotlib" ]
6e776125f04408c00f6e2fed6f162f706a04a6bf
Python
gaurangrai/Youtube-data-mining
/scripts/Wordcount/word_count_category.py
UTF-8
2,015
3.390625
3
[]
no_license
#!/usr/bin/env python3 import csv import math import matplotlib.pyplot as plt from wordcloud import STOPWORDS stopwords = set(STOPWORDS) csv_filepath = "../../csv_files/" files = {"Tech": "comments_tech.csv","Comedy": "comments_comedy.csv","News":"comments_news.csv","TV":"comments_TV.csv"} average_words_category = [] def count_words_with_file(filepath, category): totalRows = 0 totalWords = 0 comments = [] with open(filepath, "r") as commentFile: commentReader = csv.reader(commentFile, delimiter=',', quoting=csv.QUOTE_MINIMAL) for row in commentReader: comments.append(row[4].split()) totalRows += 1 for comment in comments: for word in comment: if word not in stopwords: totalWords += 1 return (category, int(math.floor(totalWords/totalRows))) def plot_graph(): xCoordinates = [] yCoordinates = [] xLabels = [] counter = 1 for val in average_words_category: xCoordinates.append(counter) yCoordinates.append(val[1]) xLabels.append(val[0]) counter += 1 fig, ax = plt.subplots() rects = ax.bar(xCoordinates, yCoordinates, 0.75, color=['blue','green','red','yellow']) for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2., 1.0*height, '%d' % int(height), ha='center', va='bottom') ax.set_title("Words Per Comment") ax.set_xticks(xCoordinates) ax.set_xticklabels(xLabels) ax.set_xlabel('Category') ax.set_ylabel('Words / Comment') plt.savefig('wordspercomment.png') if __name__ == "__main__": # Calculating average words per comment for various categories for category,filename in files.items(): average_words_category.append(count_words_with_file(csv_filepath+filename, category)) # ploting a graph for the statistics collected plot_graph()
[ "matplotlib" ]
5361ada6ba3864bab2697a0dd9699cfea1e4cf22
Python
Eddie-MG/covid-transmission
/simulate.py
UTF-8
9,481
2.65625
3
[]
no_license
import numpy as np import time import random import pandas as pd import congif as cgf from people import Dude from networks import Group from tools import build_df import plotly.express as px class Simulate: def __init__(self, comm_size): self.comm_size = comm_size self.houses = [] self.outer_circles = [] self.open_networks = [] self.peeps = [] self.networks = [] self.cumulative_cases = {'day': [0, 0, 0], 'cases': [0, 0, 0], 'type': ['total', 'infected-a', 'infected-s']} self.total_cases = 0 self.total_asymp = 0 self.total_symp = 0 self.total_deaths = 0 self.total_recoveries = 0 self.built = False def create_houses(self): for i in range(0, self.comm_size): rate = random.random() size = random.randint(1, 4) grp = Group(size, rate, i, 'inner') self.houses.append(grp) return self.houses def init_peeps(self): for i in range(0, len(self.houses)): job = random.choice(cgf.job_type) age = random.randint(18, 80) person = Dude(job, age, i, network=[self.houses[i]]) self.houses[i].members.append(person) self.peeps.append(person) return self.peeps def populate_houses(self): pep_cnt = len(self.peeps) for house in self.houses: job = house.members[0].job for new_member in range(0, house.size - 1): age = abs(house.members[0].age + random.randint(-5, 5)) person = Dude(job, age, pep_cnt, network=[house]) house.members.append(person) self.peeps.append(person) pep_cnt += 1 return def genesis(self): self.houses = self.create_houses() self.peeps = self.init_peeps() self.populate_houses() return self.houses, self.peeps def outer_circle_gen(self): # Number of outer circles, dependent on inner circle count ocircle_count = int(len(self.peeps) * 0.0675) sze = 0 for i in range(0, ocircle_count): # Randomly create a large or small group if round(random.random()) == 1: # Lower rates for larger outer circles rate = random.uniform(0.01, 0.4) size = int(random.gauss(40, 30)) else: rate = random.uniform(0.2, 0.65) size = int(random.gauss(15, 12)) grp = Group(size, rate, i, 'outer') self.outer_circles.append(grp) sze += size # print(sze) self.open_networks = self.outer_circles.copy() for pepe in self.peeps: if len(self.open_networks) <= 3: break nets = random.sample(self.open_networks, random.randint(1, 3)) for net in nets: cnt = 0 solo = False # If network is full, find another one! while len(net.members) >= net.size: try: self.open_networks.remove(net) except ValueError: break cnt += 1 if cnt > len(self.open_networks): # This needs to be verified as could try multiple times solo = True break else: net = random.choice(self.open_networks) if solo: break else: net.members.append(pepe) pepe.network.append(net) return self.outer_circles def get_open_networks(self): circles = [net for net in self.outer_circles if len(net.members) < net.size] # for net in self.outer_circles: # if len(net.members) < net.size: # circles.append(net) return circles def begin_sim(self): # Begin by infecting one person r_pep = random.choice(self.peeps) print("Person {} was infected first\n".format(r_pep.name)) r_pep.infect() def day(self): # Iterate over all people and decide whether they will transmit to their repsective groups # And if they have reached their recovery time what whill happen to them. for person in self.peeps: if (person.state == cgf.states[1]) or (person.state == cgf.states[2]): person.elapsed_infected += 1 for net in person.network: net.plastic() if person.elapsed_infected >= person.r_time: person.recover(np.random.choice([3, 4], p=[0.95, 0.05])) # Using the new infected count of each Group transmit it accordingly new_cases = 0 for n in self.networks: new_cases += n.infected_count if n.infected_count > 0: n.transmit() ss = build_df([self.peeps], 'p')['state'].value_counts() for s in cgf.states: if s not in ss: ss[s] = 0 self.total_cases += new_cases self.total_asymp += ss['infected-a'] self.total_symp += ss['infected-s'] print("----------Virus Report----------\n") print("Today's new cases: {}".format(new_cases)) prop = ((ss['infected-s'] + ss['infected-a']) / len(self.peeps)) * 100 print("Total Infected: {} ({:.1f}%)".format(ss['infected-s'] + ss['infected-a'], prop)) print("Asymptomatic Cases:", ss['infected-a']) print("Symptomatic Cases:", ss['infected-s']) print("Total Recoveries:", ss['recovered']) print("Total Deaths:", ss['dead']) print("Stay Home, Save Lives\n") def remove_network(self, person, networks): # Remove person from networks and networks from person person.network = [net for net in person.network if net not in networks] for net in networks: net.members = [mem for mem in net.members if mem != person] def isolate_phase_one(self): # First set of isolation and social distancing print("\n-----------SELF ISOLATION PHASE ONE-----------\n") total_members = 0 for net in self.outer_circles: total_members += len(net.members) print("Original Average Network Size:", total_members / len(self.outer_circles)) for person in self.peeps: if len(person.network) == 0: print("Do nothing") break elif len(person.network) <= 2: isolated_networks = [person.network.pop(-1)] else: isolated_networks = [person.network.pop(-1), person.network.pop(-1)] self.remove_network(person, isolated_networks) total_members = 0 for net in self.outer_circles: total_members += len(net.members) print("New Average Network Size: {}\n".format(total_members / len(self.outer_circles))) def setup(self): # Create Houses print("Creating dwellings and populating them") start = time.time() houses, peeps = self.genesis() d = time.time() - start if d > 60: print("Houses populated. It took {:.2f}mins".format(d/60)) else: print("Houses populated. It took {:.1f}seconds".format(d)) # Create Outer Circles start = time.time() outer_circles = self.outer_circle_gen() self.networks = houses + outer_circles d = time.time() - start if d > 60: print("Total Population Size: {} Total Outer Networks: {}. Time taken: {:.2f}mins".format(len(self.peeps), len(self.outer_circles), (time.time()-start)/60)) else: print("Total Population Size: {} Total Outer Networks: {}. Time taken: {:.1f}secs".format(len(self.peeps), len(self.outer_circles), time.time()-start)) self.built = True def day_iterate(self, duration): # Simulate daily transmissions for a month for i in range(0, duration): print("Day", i) if i == 0: self.begin_sim() else: if i == int(duration*0.75): # When we reach the half was mark begin basic self isolation self.isolate_phase_one() self.day() # Add cumulative stats # Total self.cumulative_cases['day'].append(i) self.cumulative_cases['cases'].append(self.total_cases) self.cumulative_cases['type'].append('total') # Asymptomatic self.cumulative_cases['day'].append(i) self.cumulative_cases['cases'].append(self.total_asymp) self.cumulative_cases['type'].append('infected-a') # Symptomatic self.cumulative_cases['day'].append(i) self.cumulative_cases['cases'].append(self.total_symp) self.cumulative_cases['type'].append('infected-s') def run_simulation(self, duration): if not self.built: self.setup() print("Running simulation!!\n") self.day_iterate(duration) def report(self): fig = px.line(pd.DataFrame(self.cumulative_cases), x='day', y='cases', color='type') fig.show()
[ "plotly" ]
10140ada00958fbd5362271045a952306aa462b5
Python
zhangjiahui56/leaf_square
/count_area.py
UTF-8
6,771
3.046875
3
[]
no_license
import os from skimage import io from skimage.color import rgb2hsv from skimage.filters import threshold_otsu from skimage.filters.rank import median from skimage.morphology import disk import matplotlib.pyplot as plt import cv2 import csv import pandas as pd import itertools import shutil import scipy.misc def is_blurred(img): ''' Detects if the image is blurred :param img: np.ndarray :return: boolean, True if blurred ''' variance = cv2.Laplacian(img, cv2.CV_64F).var() return variance < 40 def remove_blurred(areas, images): ''' Replaces area value of blurred images with average of its neighbors :param areas: array of (7) arrays for every plant. Each contains areas measurements :param images: generator object :return: areas ''' areas_to_remove = [] desk_number = 0 for desk in images: if is_blurred(desk['image']): areas_to_remove.append(desk_number) desk_number += 1 for plant in range(len(areas)): for area in list(reversed(sorted(areas_to_remove))): if area == 0 or area == (len(areas[plant]) - 1): del areas[plant][area] else: areas[plant][area]['area'] = (areas[plant][area - 1]['area'] + areas[plant][area + 1]['area']) / 2 return areas def split_into_9_parts(image): ''' Splits image into 9 parts |0|1|2| |3|4|5| |6|7|8| :param image: numpy.ndarray :return: list of 9 numpy.ndarrays ''' vert = image.shape[0] // 3 hor = image.shape[1] // 3 ls = [] for col in range(3): for row in range(3): ls.append(image[vert * col: vert * (col + 1), hor * row: hor * (row + 1)]) return ls def count_green_pixels(img): ''' Counts pixels in the image with high saturation using Otsu threshold Asserts that image background if white! :param img: np.ndarray :return: int ''' hsv_image = rgb2hsv(img) saturation = hsv_image[:, :, 1] threshold = threshold_otsu(saturation) saturation = saturation > threshold * 0.8 saturation = median(saturation, disk(2)) # filtering pixels_count = saturation.mean() * saturation.shape[0] * saturation.shape[1] / saturation.max() return pixels_count def count_pixel_square(img): ''' :param img: ndarray, - image with 2 reference squares :return: one pixel square (cm^2) ''' one_square = count_green_pixels(img) // 2 return 1 / one_square def write_areas_to_file(array, plant_number): ''' Writes plant area series to [plant_number].csv file :param array: array of areas :param plant_number: :return: filename ''' file = str(plant_number) + '_plant_areas.csv' with open(file, 'w', newline='') as csvfile: time = ['time'] area = ['area'] for measurement in range(len(array)): time.append(array[measurement]['time']) area.append(array[measurement]['area']) rows = zip(time, area) writer = csv.writer(csvfile) for row in rows: writer.writerow(row) return file def read_areas_from_file(plant_number, type='pandas_series'): file = str(plant_number) + '_plant_areas.csv' if type == 'array': areas_array = [] with open(file, newline='') as csvfile: reader = csv.reader(csvfile) for row in reader: areas_array.append(row[1]) areas_array.pop(0) return [float(s) for s in areas_array] # return pd.read_csv(file, header=0) return pd.Series.from_csv(file, header=0) def calculate_squares(images, write_to_file=True): ''' Adds calculated squares of plants' leafs from the desk to the storage |0|1|2| |3| | | |4|5|6| i.e. excluding reference square and empty part :param images: generator object, series of images of a desk with plants :param write_to_file: boolean, if True data would be written to file :return: array of areas ''' init_images, images = itertools.tee(images) plants_growth = [[] for i in range(7)] for desk in images: parts = split_into_9_parts(desk['image']) pixels_count = [] pixel_square = count_pixel_square(parts[4]) for n in range(9): if (n == 4) or (n == 5): # skipping reference square and empty part continue pixels_count.append(count_green_pixels(parts[n])) # # saving images and masks to file # m = n # if n >= 4: # m -= 1 # # if n >= 5: # m -= 1 # # mask = make_mask(parts[n]) # # scipy.misc.imsave(os.path.join('camera_emulator', str(n + 1) + '_cell', desk['time'] + 'im.jpg'), parts[n]) # scipy.misc.imsave(os.path.join('camera_emulator', str(n + 1) + '_cell', desk['time'] + 'mask.jpg'), mask) squares = [c * pixel_square for c in pixels_count] for plant in range(len(squares)): plants_growth[plant].append({ 'time': desk['time'], 'area': squares[plant] }) plants_growth = remove_blurred(plants_growth, init_images) if write_to_file: for plant in range(len(plants_growth)): write_areas_to_file(plants_growth[plant], plant) return plants_growth def calculate_single_plant(images, plant_number, write_to_file=True): ''' Calculates square of plants' leafs from one of the desks' parts[0...3, 6..8] :param images: generator object, series of one desk images :param plant_number: :param write_to_file: boolean, if True data would be written to file :return: series of plants' area ''' area_series = [] for desk in images: parts = split_into_9_parts(desk['image']) pixel_square = count_pixel_square(parts[4]) # area_series.append(count_green_pixels(parts[plant_number]) * pixel_square) area_series.append({ 'time': desk['time'], 'area': (count_green_pixels(parts[plant_number]) * pixel_square) }) if write_to_file: write_areas_to_file(area_series, plant_number) return area_series def make_mask(img): ''' Makes a mask that contains green pixels :param img: np.ndarray :return: np.ndarray ''' hsv_image = rgb2hsv(img) saturation = hsv_image[:, :, 1] threshold = threshold_otsu(saturation) saturation = saturation > threshold * 0.8 saturation = median(saturation, disk(2)) # filtering binary = [[[255, 255, 255] if pxl == 0 else [0, 0, 0] for pxl in row] for row in saturation] return binary
[ "matplotlib" ]
0ea2ce6a0f937e1d6617d7e3a078df950da74f15
Python
git-sthg/mktreview
/show_industry.py
UTF-8
3,274
2.875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue Nov 10 09:10:20 2020 @author: FTAsset """ import os import datetime import akshare as ak import pandas as pd import numpy as np import matplotlib.pyplot as plt today = datetime.datetime.today() - datetime.timedelta(days=0) yearsb4 = today - datetime.timedelta(days=40*30+1) # 依据华泰金工研报,A股周期在40个月左右 start_str = yearsb4.strftime('%Y-%m-%d') end_str = today.strftime('%Y-%m-%d') def get_index_daily(index_code, start_date, end_date): """ index_code: str, 6位申万一级行业代码 如:801010 start_date: str, 开始日期 yyyy-mm-dd end_date: str, 结束日期 yyyy-mm-dd ---------------------------------------------- return: pd.DataFrame, 指数名称、涨跌幅(%)、流通市值、换手率分位数(%)、市盈率分位数(%) """ print('\r正在获取指数代码:%s' % index_code, end="") sw_index_df = ak.sw_index_daily_indicator(index_code=index_code, start_date=start_date, end_date=end_date, data_type="Day") pct = pd.concat([ sw_index_df.loc[sw_index_df['date']==end_str, ['index_name']], sw_index_df.loc[sw_index_df['date']==end_str, ['chg_pct']].astype(float), sw_index_df.loc[sw_index_df['date']==end_str, 'float_mv'].apply(lambda x: float(x.replace(',',''))), # 流通市值 sw_index_df[['turn_rate', 'pe']].rank(method='min', pct=True).loc[sw_index_df['date']==end_str]*100 # 换手率和市盈率分位数 ], axis='columns') return(pct) sw_index_spot_df = ak.sw_index_spot() index_pct = pd.concat( [get_index_daily(code, start_str, end_str) for row, code in enumerate(sw_index_spot_df['指数代码'])], ignore_index=True) print() if index_pct.shape[0] > 0: # 作图 x = index_pct['chg_pct'] y = index_pct['pe'] c = index_pct['turn_rate'] s = (index_pct['float_mv']/min(index_pct['float_mv']))*10 a = index_pct['index_name'] fig, ax = plt.subplots(figsize=(10, 6)) scatter = ax.scatter(x, y, c=c, s=s, alpha=0.5, cmap='cool') # 添加数据点标签 for i in range(index_pct.shape[0]): plt.annotate(a.iloc[i], xy = (x[i], y[i]), xytext = (x[i]+0.1, y[i]+0.1)) # 添加颜色图例 legend1 = ax.legend(*scatter.legend_elements(num=5), loc="upper right", bbox_to_anchor=(1.2, 1), title='换手率3年分位数(%)') ax.add_artist(legend1) # 添加大小图例 kw = dict(prop="sizes", num=6, color=scatter.cmap(0.5), func=lambda s: (s/10)*min(index_pct['float_mv'])) legend2 = ax.legend(*scatter.legend_elements(**kw), loc="lower right", bbox_to_anchor=(1.2, 0), title="行业流通市值(亿元)") ax.set_xlabel('行业涨跌幅(%)', fontsize=15) ax.set_ylabel("PE 3年分位数(%)", fontsize=15) ax.set_title('申万一级行业收益分布%s' % today.strftime('%Y%m%d')) ax.grid(True) fig.tight_layout() save_dir = './report_daily/%s/' % today.strftime('%Y%m%d') if not os.path.exists(save_dir): os.makedirs(save_dir) plt.savefig('%sindustry_%s.jpg' % (save_dir, today.strftime('%Y%m%d'))) # plt.show() plt.close() else: raise ValueError('无当日行情数据')
[ "matplotlib" ]
302d8fce7ee7e058f0da8a340249df781dc5891d
Python
jortvangorkum/Network-Science-Hierarchical-Dendrogram
/src/results/dendrogram.py
UTF-8
4,243
2.890625
3
[ "MIT" ]
permissive
import networkx as nx from itertools import chain, combinations import matplotlib.pyplot as plt from scipy.cluster.hierarchy import dendrogram def scipy_to_dendrogram(Z): dendrogram(Z, count_sort=True, leaf_font_size=11) plt.show() # Code by: https://stackoverflow.com/questions/59821151/plot-the-dendrogram-of-communities-found-by-networkx-girvan-newman-algorithm def networkx_to_dendrogram(G, communities): # building initial dict of node_id to each possible subset: node_id = 0 init_node2community_dict = {node_id: communities[0][0].union(communities[0][1])} for comm in communities: for subset in list(comm): if subset not in init_node2community_dict.values(): node_id += 1 init_node2community_dict[node_id] = subset # turning this dictionary to the desired format in @mdml's answer node_id_to_children = {e: [] for e in init_node2community_dict.keys()} for node_id1, node_id2 in combinations(init_node2community_dict.keys(), 2): for node_id_parent, group in init_node2community_dict.items(): if len(init_node2community_dict[node_id1].intersection(init_node2community_dict[node_id2])) == 0 and group == init_node2community_dict[node_id1].union(init_node2community_dict[node_id2]): node_id_to_children[node_id_parent].append(node_id1) node_id_to_children[node_id_parent].append(node_id2) # also recording node_labels dict for the correct label for dendrogram leaves node_labels = dict() for node_id, group in init_node2community_dict.items(): if len(group) == 1: node_labels[node_id] = list(group)[0] else: node_labels[node_id] = '' # also needing a subset to rank dict to later know within all k-length merges which came first subset_rank_dict = dict() rank = 0 for e in communities[::-1]: for p in list(e): if tuple(p) not in subset_rank_dict: subset_rank_dict[tuple(sorted(p))] = rank rank += 1 subset_rank_dict[tuple(sorted(chain.from_iterable(communities[-1])))] = rank # my function to get a merge height so that it is unique (probably not that efficient) def get_merge_height(sub): sub_tuple = tuple(sorted([node_labels[i] for i in sub])) n = len(sub_tuple) other_same_len_merges = {k: v for k, v in subset_rank_dict.items() if len(k) == n} min_rank, max_rank = min(other_same_len_merges.values()), max(other_same_len_merges.values()) range = (max_rank-min_rank) if max_rank > min_rank else 1 return float(len(sub)) + 0.8 * (subset_rank_dict[sub_tuple] - min_rank) / range # finally using @mdml's magic, slightly modified: G = nx.DiGraph(node_id_to_children) nodes = G.nodes() leaves = set( n for n in nodes if G.out_degree(n) == 0 ) inner_nodes = [ n for n in nodes if G.out_degree(n) > 0 ] # Compute the size of each subtree subtree = dict( (n, [n]) for n in leaves ) for u in inner_nodes: children = set() node_list = list(node_id_to_children[u]) while len(node_list) > 0: v = node_list.pop(0) children.add( v ) node_list += node_id_to_children[v] subtree[u] = sorted(children & leaves) inner_nodes.sort(key=lambda n: len(subtree[n])) # <-- order inner nodes ascending by subtree size, root is last # Construct the linkage matrix leaves = sorted(leaves) index = dict( (tuple([n]), i) for i, n in enumerate(leaves) ) Z = [] k = len(leaves) for i, n in enumerate(inner_nodes): children = node_id_to_children[n] x = children[0] for y in children[1:]: z = tuple(sorted(subtree[x] + subtree[y])) i, j = index[tuple(sorted(subtree[x]))], index[tuple(sorted(subtree[y]))] Z.append([i, j, get_merge_height(subtree[n]), len(z)]) # <-- float is required by the dendrogram function index[z] = k subtree[z] = list(z) x = z k += 1 dendrogram(Z, count_sort=True, leaf_font_size=11, labels=[node_labels[node_id] for node_id in leaves]) plt.show()
[ "matplotlib" ]
c080322a574f0c787c1b6911c8ed949294059d7a
Python
sung3r/Machine-Learining-Security
/web安全之机器学习入门/8-2-LogisticRegression-demo.py
UTF-8
1,070
3.078125
3
[]
no_license
from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression import numpy as np import matplotlib.pyplot as plt def main(): # 加载数据集,只加载两个特征 iris = load_iris() x = iris.data[:, :2] y = iris.target h = .02 # 逻辑回归训练并预测 lr = LogisticRegression(C=1e5) lr.fit(x, y) # 返回坐标矩阵 x_min, x_max = x[:, 0].min() - .5, x[:, 0].max() + .5 y_min, y_max = x[:, 1].min() - .5, x[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = lr.predict(np.c_[xx.ravel(), yy.ravel()]) # 结果可视化 Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show() if __name__ == "__main__": main()
[ "matplotlib" ]
b98ba331bb807a987c8e268b856ac2d001e18a5e
Python
kiteloopdesign/kiteloop
/kiteloop/parse_html.py
UTF-8
2,362
2.609375
3
[]
no_license
#!/usr/bin/env python # import numpy as np import sys sys.path.append("/home/pmora/bin/python_libs/beautifulsoup4-4.3.2/build/lib") import bs4 from bs4 import BeautifulSoup import subprocess import matplotlib.pyplot as plt from time import strftime # TODO: specify name in wget command rather than here, as the default name might change filename = 'VAL.html' #filename = 'TOR.html' # change made with pycharm dates = [] number = [] alert = [] wind = [] dir = [] hours = [] # date and time today_str = strftime("%d_%m_%Y@%Hh_%Mm") # Mapa viento. HIRLAM-AEMET 0.05 # url = 'http://www.aemet.es/es/eltiempo/prediccion/modelosnumericos/hirlam005?opc2=val&opc3=vi' # url = 'http://static.puertos.es/pred_simplificada/Predolas/Tablas/Med/TOR.html' # url = 'http://static.puertos.es/pred_simplificada/Predolas/Tablas/Med/VAL.html' url = 'http://static.puertos.es/pred_simplificada/Predolas/Tablas/?p=622028053&name=Valencia' cmd = ['wget',url] process = subprocess.Popen(cmd,True,stdout=subprocess.PIPE) process.wait() status = process.returncode if status != 0: print('*E, ERROR: Data not downloaded. Wrong URL?') sys.exit() f = open(filename,'r') parsed_html = BeautifulSoup(f) table_body = parsed_html.findAll('table')[2] #TODO: There are two tables on the page ... This might change in the future and script will break rows = table_body.find_all('tr') location = rows[0].find('th').text.strip().lower() # Scrape the brains out of this MOFO! :D for row in rows: cols = row.find_all('td') if cols: # avoid empty rows dates.append ( cols[0].text.strip() ) number.append( cols[1].text.strip() ) alert.append ( cols[2].text.strip() ) wind.append ( cols[3].text.strip() ) dir.append ( cols[4].text.strip() ) #yyyymmddhh days = [] days.append(dates[0][6:8]) #hour = time[0][8:10] # how many days are there so we can plot per day for index,date in enumerate(dates): if days[-1] not in date[6:8]: days.append(date[6:8]) wind = [int(round(float(i)*1.94384,0)) for i in wind ] line, = plt.plot(number, wind, label='wind',color='green',linewidth=2) plt.grid() plt.hold(True) plt.legend(loc='best') plt.title('{0}, {1}'.format(location, today_str)) plt.ylabel('Knots') plt.xlabel('Time(hours)') plt.savefig('{0}_{1}.png'.format(location,today_str),bbox_inches='tight') # TODO: save inside db ? plt.show()
[ "matplotlib" ]
d4bf3718844296a23b48a3bc37e99fdf9f944511
Python
Tommy-somen/coursera_tesorflow
/2_Convolutional Neural Networks in TensorFlow/004_Exercise_4_Multi_class_classifier_Question-FINAL.py
UTF-8
5,352
3.328125
3
[]
no_license
########################マルチクラス分類_CNN######################### # ATTENTION: Please do not alter any of the provided code in the exercise. Only add your own code where indicated # ATTENTION: Please do not add or remove any cells in the exercise. The grader will check specific cells based on the cell position. # ATTENTION: Please use the provided epoch values when training. #モジュールのインポート import csv import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from os import getcwd #csvファイルからのデータセット取得関数 def get_data(filename): with open(filename) as training_file: reader = csv.reader(training_file,delimiter=',') imgs = [] labels = [] #1行目はカラムのタイトルなので、1行スキップさせる next(reader,None) #行ごとにラベルと、画像データを取得していく。 for row in reader: label = row[0] data = row[1:] #画像データはそのままではCNNに突っ込めないので、np.array()でnumpyに変換→好きな画像サイズにreshape img = np.array(data).reshape((28,28)) imgs.append(img) labels.append(label) #ラベルと画像データをnumpy変換して、float型にする images = np.array(imgs).astype(float) labels = np.array(labels).astype(float) return images, labels print(training_images.shape) print(training_labels.shape) print(testing_images.shape) print(testing_labels.shape) # Their output should be: # (27455, 28, 28) # (27455,) # (7172, 28, 28) # (7172,) # In this section you will have to add another dimension to the data # So, for example, if your array is (10000, 28, 28) # You will need to make it (10000, 28, 28, 1) # Hint: np.expand_dims #画像データに1次元追加するnp.expand_dimsを使用 training_images = np.expand_dims(training_images,axis=3) testing_images = np.expand_dims(testing_images,axis=3) #ImageDataGeneratorで標準化、オーグメントを実施 # Create an ImageDataGenerator and do Image Augmentation train_datagen = ImageDataGenerator(rescale=1.0/255.0, rotation_range=40, width_shift_range = 0.2, height_shift_range = 0.2, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True, fill_mode = "nearest" ) #テストデータも同様に。 validation_datagen = ImageDataGenerator(rescale=1.0/255.0) # Keep These print(training_images.shape) print(testing_images.shape) # Their output should be: # (27455, 28, 28, 1) # (7172, 28, 28, 1) #CNNモデルの構築 # Define the model # Use no more than 2 Conv2D and 2 MaxPooling2D model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(32,(3,3),activation="relu",input_shape=(28,28,1)),#reshapeしたサイズに合わせること tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(32,(3,3),activation="relu"), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(1024,activation="relu"), tf.keras.layers.Dense(26,activation="softmax")]) #複数分類はsoftmaxで #モデルのコンパイル # Compile Model. model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", #複数分類なのでカテゴリカル系を使用 metrics = ["accuracy"]) train_generator = train_datagen.flow(training_images, training_labels, batch_size = 64) validation_generator = validation_datagen.flow(testing_images, testing_labels, batch_size = 64) # Train the Model #モデルのフィッティング history = model.fit_generator(train_generator, epochs = 20, validation_data = validation_generator)#validation_steps=50) model.evaluate(testing_images, testing_labels, verbose=0) #####################モデル評価の可視化######################### # Plot the chart for accuracy and loss on both training and validation %matplotlib inline import matplotlib.pyplot as plt acc = history.history['accuracy']# Your Code Here val_acc = history.history['val_accuracy']# Your Code Here loss = history.history['loss']# Your Code Here val_loss = history.history['val_loss']# Your Code Here epochs = range(len(acc)) plt.plot(epochs, acc, 'r', label='Training accuracy') plt.plot(epochs, val_acc, 'b', label='Validation accuracy') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'r', label='Training Loss') plt.plot(epochs, val_loss, 'b', label='Validation Loss') plt.title('Training and validation loss') plt.legend() plt.show()
[ "matplotlib" ]
ccdf5159de9cbe2a3c0523d0bf970f4f1f5f674c
Python
PadmaGnanapriya/A_Basic_Python
/Mathpotlab_DataVisualization/plot05_barGraph.py
UTF-8
81
2.578125
3
[]
no_license
import matplotlib.pyplot as plt plt.bar([1.5, 2.5,4.5],[40,30,89]) plt.show()
[ "matplotlib" ]
ce699469dd8343d15db0977d0761354cddf497d9
Python
zoharmot2/GIScience-CV-old-drawings
/process.py
UTF-8
17,528
2.734375
3
[]
no_license
import numpy as np import cv2 import matplotlib.pyplot as plt import csv import glob import math # ********** # Calculate true and pixel distances between features # ********** def correlate_features(features, depth_val): result = ['id', 'sym_s', 'x_s', 'y_s', 'pixel_x_s', 'pixel_y_s', 'calc_pixel_x_s', 'calc_pixel_y_s', 'sym_t', 'x_t', 'y_t', 'pixel_x_t', 'pixel_y_t', 'calc_pixel_x_t', 'calc_pixel_y_t', 'dis_m_x', 'dis_m_y', 'dis_m', 'dis_pix_x', 'dis_pix_y', 'dis_pix', 'dis_c_pix_x', 'dis_c_pix_y', 'dis_c_pix', 'bear_pix', 'dis_depth_pix', 'bear_c_pix', 'dis_depth_c_pix'] results = [] results.append(result) count = 1 i = 0 j = 0 features.remove(features[0]) # remove the headers features.sort() # sort alphabethically for f1 in features: i = j while i < len(features): if f1[1] != features[i][1]: dis_m_x = int(features[i][3]) - int(f1[3]) dis_m_y = int(features[i][4]) - int(f1[4]) dis_m = math.sqrt(math.pow(dis_m_x,2) + math.pow(dis_m_y,2)) if f1[5] != 0 and features[i][5] != 0: dis_pix_x = int(features[i][5]) - int(f1[5]) dis_pix_y = int(features[i][6]) - int(f1[6]) else: dis_pix_x = 0 dis_pix_y = 0 dis_pix = math.sqrt(math.pow(dis_pix_x, 2) + math.pow(dis_pix_y, 2)) if features[i][7] != 0 and f1[7] != 0: dis_c_pix_x = int(features[i][7]) - int(f1[7]) dis_c_pix_y = int(features[i][8]) - int(f1[8]) else: dis_c_pix_x = 0 dis_c_pix_y = 0 dis_c_pix = math.sqrt(math.pow(dis_c_pix_x,2) + math.pow(dis_c_pix_y,2)) bear_pix = calc_bearing(f1[5], f1[6], features[i][5], features[i][6]) if bear_pix != 0 and bear_pix <= 180: dis_depth_pix = (abs(bear_pix-90)/90 + depth_val) * dis_pix elif bear_pix != 0 and bear_pix > 180: dis_depth_pix = (abs(bear_pix - 270) / 90 + depth_val) * dis_pix else: dis_depth_pix = 0 bear_c_pix = calc_bearing(f1[7], f1[8], features[i][7], features[i][8]) if bear_c_pix != 0 and bear_c_pix <= 180: dis_depth_c_pix = (abs(bear_c_pix - 90) / 90 + depth_val) * dis_c_pix elif bear_c_pix != 0 and bear_c_pix > 180: dis_depth_c_pix = (abs(bear_c_pix - 270) / 90 + depth_val) * dis_c_pix else: dis_depth_c_pix = 0 result = [str(count), f1[1], f1[3], f1[4], f1[5], f1[6], f1[7], f1[8],features[i][1], features[i][3], features[i][4], features[i][5], features[i][6], features[i][7], features[i][8], dis_m_x, dis_m_y, dis_m, dis_pix_x, dis_pix_y ,dis_pix, dis_c_pix_x, dis_c_pix_y, dis_c_pix, bear_pix, dis_depth_pix, bear_c_pix, dis_depth_c_pix] results.append(result) count += 1 i += 1 j += 1 return results # ********** # Calculation of the bearing from point 1 to point 2 # ********** def calc_bearing (x1, y1, x2, y2): if x1 == 0 or x2 == 0 or y1 == 0 or y2 == 0: degrees_final = 0 else: deltaX = x2 - x1 deltaY = y2 - y1 degrees_temp = math.atan2(deltaX, deltaY) / math.pi * 180 if degrees_temp < 0: degrees_final = 360 + degrees_temp else: degrees_final = degrees_temp if degrees_final < 180: degrees_final = 180 - degrees_final else: degrees_final = 360 + 180 - degrees_final return degrees_final # ********** # Camera calibration process # ********** def calibrate_camera(size): CHECKERBOARD = (6, 9) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, size, 0.001) # was 30 objpoints = [] # Creating vector to store vectors of 3D points for each checkerboard image imgpoints = [] # Creating vector to store vectors of 2D points for each checkerboard image # Defining the world coordinates for 3D points objp = np.zeros((1, CHECKERBOARD[0] * CHECKERBOARD[1], 3), np.float32) objp[0, :, :2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2) prev_img_shape = None images = glob.glob('.\camera_calibration\images\*.jpg') # TODO: change the path according to the path in your environmrnt for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chess board corners # If desired number of corners are found in the image then ret = true ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE) if ret == True: objpoints.append(objp) # refining pixel coordinates for given 2d points. corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) imgpoints.append(corners2) # Draw and display the corners img = cv2.drawChessboardCorners(img, CHECKERBOARD, corners2, ret) print(fname) cv2.waitKey(0) cv2.destroyAllWindows() h, w = img.shape[:2] ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) return ret, mtx, dist, rvecs, tvecs # ********** # Find homographies function # ********** def find_homographies(recs, camera_locations, im, show, ransacbound, outputfile): pixels = [] pos3ds = [] symbols = [] for r in recs: pixels.append(r['pixel']) pos3ds.append(r['pos3d']) symbols.append(r['symbol']) pixels = np.array(pixels) pos3ds = np.array(pos3ds) symbols = np.array(symbols) loc3ds = [] grids = [] for cl in camera_locations: grids.append(cl['grid_code']) loc3ds.append(cl['pos3d']) grids = np.array(grids) loc3ds = np.array(loc3ds) num_matches = np.zeros((loc3ds.shape[0],2)) scores = [] for i in range(0, grids.shape[0], 1): # 50 if grids[i] >= grid_code_min: if show: print(i,grids[i],loc3ds[i]) num_matches[i, 0], num_matches[i, 1] = find_homography(recs, pixels, pos3ds, symbols, loc3ds[i], im, show, ransacbound, outputfile) else: num_matches[i, :] = 0 score = [i+1, num_matches[i, 0], num_matches[i, 1], grids[i], loc3ds[i][0], loc3ds[i][1], loc3ds[i][2]] scores.append(score) if show is False: outputCsv = output.replace(".png","_location.csv") csvFile = open(outputCsv, 'w', newline='', encoding='utf-8') csvWriter = csv.writer(csvFile) csvWriter.writerow(['location_id', 'min_score', 'max_score', 'grid_code', 'Z', 'X', 'Y']) for s in scores: csvWriter.writerow(s) return num_matches # ********** # Find homography function # ********** def find_homography(recs, pixels, pos3ds, symbols, camera_location, im, show, ransacbound, outputfile): pos2 = np.zeros((pixels.shape[0],2)) good = np.zeros(pixels.shape[0]) for i in range(pixels.shape[0]): good[i] = pixels[i,0]!=0 or pixels[i,1]!=0 p = pos3ds[i,:] - camera_location p = np.array([p[2],p[1],p[0]]) p = p/p[2] pos2[i,:]=p[0:2] M, mask = cv2.findHomography(pos2[good==1],pixels[good==1], cv2.RANSAC,ransacbound) M = np.linalg.inv(M) if show: print('M',M,np.sum(mask)) if show: plt.figure(figsize=(40, 20)) plt.imshow(im) for rec in recs: symbol = rec['symbol'] pixel = rec['pixel'] if pixel[0]!= 0 or pixel[1]!=0: plt.text(pixel[0],pixel[1],symbol, color='yellow',fontsize=38, weight ='bold') #plt.text(pixel[0],pixel[1],symbol, style='italic',fontsize=30, weight ='bold', bbox=dict(boxstyle="round", ec=(1., 0.5, 0.5), fc=(1., 0.8, 0.8),)) err1 = 0 err2 = 0 feature = ['id', 'symbol', 'name', 'x', 'y', 'pixel_x', 'pixel_y', 'calc_pixel_x', 'calc_pixel_y'] features = [] features.append(feature) for i in range(pos2[good == 1].shape[0]): p1 = pixels[good == 1][i, :] pp = np.array([pos2[good == 1][i,0],pos2[good == 1][i, 1], 1.0]) pp2 = np.matmul(np.linalg.inv(M),pp) pp2 = pp2/pp2[2] P1 = np.array([p1[0],p1[1],1.0]) PP2 = np.matmul(M,P1) PP2 = PP2/PP2[2] P2 = pos2[good==1][i,:] if show and good[i]: print(i) print(mask[i]==1,p1,pp2[0:2],np.linalg.norm(p1-pp2[0:2])) print(mask[i]==1,P2,PP2[0:2],np.linalg.norm(P2-PP2[0:2])) if mask[i] == 1: err1 += np.linalg.norm(p1-pp2[0:2]) err2 += np.linalg.norm(P2-PP2[0:2]) if show: color = 'green' if mask[i] == 1 else 'red' plt.plot([p1[0],pp2[0]],[p1[1],pp2[1]],color = color, linewidth=6) plt.plot(p1[0], p1[1], marker = 'X', color=color, markersize=10) plt.plot(pp2[0], pp2[1], marker='o', color=color, markersize=10) sym = '' name = '' for r in recs: px = r['pixel'].tolist() if px[0] == p1[0] and px[1] == p1[1]: sym = r['symbol'] name = r['name'] x = r['pos3d'][0] y = r['pos3d'][1] break feature = [i, sym, name, x, y, p1[0], p1[1], pp2[0], pp2[1]] features.append(feature) i = -1 for r in recs: # Extracting features that were not noted on the image (pixel_x and pixel_y are 0) i += 1 p1 = pixels[i,:] if p1[0] == 0 and p1[1] == 0: pp = np.array([pos2[i,0],pos2[i,1],1.0]) pp2 = np.matmul(np.linalg.inv(M),pp) pp2 = pp2/pp2[2] if show: plt.text(pp2[0],pp2[1],r['symbol'],color='black',fontsize=38, style='italic', weight='bold') plt.plot(pp2[0],pp2[1],marker='s', markersize=10, color='black') x = r['pos3d'][0] y = r['pos3d'][1] feature = [i, recs[i]['symbol'], recs[i]['name'], x, y, 0, 0, pp2[0], pp2[1]] features.append(feature) if show: outputCsv = output.replace(".png", "_accuracies.csv") csvFile = open(outputCsv, 'w', newline='', encoding='utf-8') csvWriter = csv.writer(csvFile) for f in features: csvWriter.writerow(f) # send features to the function that correlates between the feature themsrlves results = correlate_features(features, 1) # get the results and write to a nother CSV file outputCsv = output.replace(".png", "_correlations.csv") csvFile = open(outputCsv, 'w', newline='', encoding='utf-8') csvWriter = csv.writer(csvFile) for r in results: csvWriter.writerow(r) print('Output file: ',outputfile) plt.savefig(outputfile, dpi=300) plt.show() err2 += np.sum(1-mask)*ransacbound if show: print ('err',err1,err1/np.sum(mask),err2,err2/np.sum(mask)) return err1,err2 # ********** # read data from the features file # ********** def read_points_data(filename,pixel_x,pixel_y,scale): with open(filename) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 recs = [] for row in csv_reader: if line_count == 0: print(f'Column names are {", ".join(row)}') line_count += 1 names = row indx = names.index(pixel_x) indy = names.index(pixel_y) else: line_count += 1 symbol = row[6] pixel = np.array([int(row[indx]),int(row[indy])])/scale height = float(row[5]) + float(row[2]) pos3d = np.array([float(row[3]),float(row[4]),height]) name = row[1] rec = {'symbol' : symbol, 'pixel' : pixel, 'pos3d' : pos3d, 'name' : name} recs.append(rec) print(f'Processed {line_count} lines.') return recs # ********** # read data from the potential camera locations file # ********** def read_camera_locations(): with open(camera_locations) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 recs = [] for row in csv_reader: if line_count == 0: print(f'Column names are {", ".join(row)}') line_count += 1 names = row else: line_count += 1 grid_code = int(row[2]) height = float(row[5]) + 2.0 # addition of 2 meters as the observer height pos3d = np.array([height,float(row[3]),float(row[4])]) rec = {'grid_code' : grid_code, 'pos3d' : pos3d} recs.append(rec) print(f'Processed {line_count} lines.') return recs # ********** # Main function # ********** def do_it(image_name, features, pixel_x, pixel_y, output, scale): im = cv2.imread(image_name) im2 = np.copy(im) im[:,:,0] = im2[:,:,2] im[:,:,1] = im2[:,:,1] im[:,:,2] = im2[:,:,0] plt.figure(figsize=(11.69, 8.27)) # 40,20 plt.imshow(im) recs = read_points_data(features,pixel_x,pixel_y,scale) locations = read_camera_locations() pixels = [] for rec in recs: symbol = rec['symbol'] pixel = rec['pixel'] if pixel[0] != 0 or pixel[1] != 0: plt.text(pixel[0],pixel[1],symbol,color='red',fontsize=38) pixels.append(pixel) num_matches12 = find_homographies(recs, locations, im, False, 120.0, output) num_matches2 = num_matches12[:, 1] #print(np.min(num_matches2[num_matches2 > 0])) #print(np.max(num_matches2[num_matches2 > 0])) num_matches2[num_matches2 == 0] = 1000000 print(np.min(num_matches2)) theloci = np.argmin(num_matches2) # theloci contains the best location for the camera print('location id: ' + str(theloci) + ' - ' + str(locations[theloci])) find_homographies(recs, [locations[theloci]], im, True, 120.0, output) # Orig = 120.0 #img = '0539' #img = '0518' img = 'Henn' #img = 'Broyn' #img = 'Tirion' #img = 'Laboard_b' camera_locations = '' grid_code_min = 7 if img == '0539': ret, mtx, dist, rvecs, tvecs = calibrate_camera(23) img = cv2.imread('DSC_0539.tif') h, w = img.shape[:2] newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h)) dst = cv2.undistort(img, mtx, dist, None, newcameramtx) # un-distort cv2.imwrite('tmpDSC_0539.png', dst) image_name = 'tmpDSC_0539.png' features = 'features.csv' camera_locations = 'potential_camera_locations_3D.csv' pixel_x = 'Pixel_x_DSC_0539' pixel_y = 'Pixel_y_DSC_0539' output = 'zOutput_DSC_0539.png' scale = 1.0 elif img == '0518': ret, mtx, dist, rvecs, tvecs = calibrate_camera(23) img = cv2.imread('DSC_0518.tif') h, w = img.shape[:2] newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h)) dst = cv2.undistort(img, mtx, dist, None, newcameramtx) # un-distort cv2.imwrite('tmpDSC_0518.png', dst) image_name = 'tmpDSC_0518.png' features = 'features.csv' camera_locations = 'potential_camera_locations_3D.csv' pixel_x = 'Pixel_x_DSC_0518' pixel_y = 'Pixel_y_DSC_0518' output = 'zOutput_DSC_0518.png' scale = 1.0 elif img == 'Henn': image_name = 'NNL_Henniker.jpg' features = 'features.csv' camera_locations = 'potential_camera_locations_3D.csv' pixel_x = 'Pixel_x_Henniker' pixel_y = 'Pixel_y_Henniker' output = 'zOutput_Henniker.png' scale = 1.0 elif img == 'Broyn': image_name = 'de-broyn-1698.tif' features = 'features.csv' camera_locations = 'potential_camera_locations_3D.csv' pixel_x = 'Pixel_x_Broyin' pixel_y = 'Pixel_y_Broyin' output = 'zOutput_Broyin.png' scale = 1.0 elif img == 'Tirion': image_name = 'Tirion-1732.tif' features = 'features.csv' camera_locations = 'potential_camera_locations_3D.csv' pixel_x = 'Pixel_x_Tirion' pixel_y = 'Pixel_y_Tirion' output = 'zOutput_Tirion.png' scale = 1.0 elif img == 'Laboard_b': image_name = 'laboard_before.tif' features = 'features_tiberias.csv' camera_locations = 'potential_camera_locations_tiberias_3D.csv' pixel_x = 'Pixel_x_Laboard_b' pixel_y = 'Pixel_y_Laboard_b' output = 'zOutput_Laboard_b.png' scale = 1.0 else: print('No file was selected') do_it(image_name,features,pixel_x,pixel_y,output,scale) print ('**********************') # print ('ret: ') # print (ret) # print ('mtx: ') # print (mtx) # print ('dist: ') # print (dist) # print('rvecs: ') # print(rvecs) # print ('tvecs: ') # print(tvecs) print ('Done!')
[ "matplotlib" ]
052d66b16ed175c1dd982e8f0cee348fa9a5e72a
Python
philipdongfei/ML_TW
/DL_Math_Map/ch02-2.py
UTF-8
967
3.125
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt from IPython.display import set_matplotlib_formats set_matplotlib_formats('png', 'pdf') def f(x): return x**2 + 1 x = np.linspace(-3, 3, 601) y = f(x) x1 = np.linspace(-3, 3, 7) y1 = f(x1) plt.figure(figsize=(6,6)) plt.ylim(-2, 10) plt.plot([-3, 3], [0,0], c='k') plt.plot([0, 0], [-2,10], c='k') plt.scatter(x1,y1,c='k',s=50) plt.grid() plt.xlabel('x', fontsize=14) plt.ylabel('y',fontsize=14) plt.show() x2 = np.linspace(-3, 3, 31) y2 = f(x2) plt.figure(figsize=(6,6)) plt.ylim(-2, 10) plt.plot([-3, 3], [0,0], c='k') plt.plot([0, 0], [-2,10], c='k') plt.scatter(x2,y2,c='k',s=50) plt.grid() plt.xlabel('x', fontsize=14) plt.ylabel('y',fontsize=14) plt.show() plt.figure(figsize=(6,6)) plt.plot(x,y,c='k') plt.ylim(-2,10) plt.plot([-3, 3], [0,0], c='k') plt.plot([0, 0], [-2,10], c='k') plt.scatter([1,2],[2,5],c='k',s=50) plt.grid() plt.xlabel('x', fontsize=14) plt.ylabel('y',fontsize=14) plt.show()
[ "matplotlib" ]
7ceb77e35dd668656135c5b6a7f8ade4220024ac
Python
maxhenderson23/MODpy
/plot_dat.py
UTF-8
7,656
2.609375
3
[ "MIT" ]
permissive
#This is the file to produce data plot #You will need the proper effective_luminosity_by_trigger.csv under MODpy folder with entries of .dat files to be processed #You can put input in plot_input.csv under MODpy folder import numpy as np import matplotlib.pyplot as pl import os from operator import add import csv import math # default_range = {"hardest_pT": (0, 2000), "mul_pre_SD": (0, 100), "hardest_eta": (-5, 5), "hardest_phi": (0, 2*math.pi), "hardest_area": (0.68, 1.1)} # default_title = {"hardest_pT": "hardest jet $p_T$", "mul_pre_SD": "mul. of the hardest jet", "hardest_eta": "hardest jet $\eta$", "hardest_phi": "hardest jet $\phi$", "hardest_area": "hardest jet area"} # default_axis_labels = {"hardest_pT": ("hardest jet $p_T$ $[GeV]$", "diff. cross-section $[\mu b/GeV]$"), "mul_pre_SD": ("multiplicity", "diff. cross-section $[\mu b]$"), "hardest_eta": ("hardest jet $\eta$", "diff. cross-section $[\mu b]$"), "hardest_phi": ("hardest jet $\phi$", "diff. cross-section $[\mu b]$"), "hardest_area": ("hardest jet area", "diff. cross-section $[\mu b]$")} get_symbol = {"hardest_pT": "$p_T^\mathrm{hardest\; jet}$", "jet_quality": "JQ", "hardest_eta": "$\eta^\mathrm{hardest\; jet}$"} get_unit = {"hardest_pT": " GeV", "jet_quality": "", "hardest_eta": ""} #This function load effective lumi info and calculate the weight to convert data count to diff. cross section, stored in scaling_factors def load_effective_lumi(effective_lumi_file_dir, data_files): data_file_list = [data_file.replace(".dat", ".mod") for data_file in data_files] total_effective_lumi = {"HLT_Jet30": 0.0, "HLT_Jet60": 0.0, "HLT_Jet80": 0.0, "HLT_Jet110": 0.0, "HLT_Jet150": 0.0, "HLT_Jet190": 0.0, "HLT_Jet240": 0.0, "HLT_Jet300": 0.0, "HLT_Jet370": 0.0} effective_lumi_file = csv.reader(open(effective_lumi_file_dir), delimiter=',') #We look for effective lumi for each key, and add them up into total effective lumi for row in effective_lumi_file: if len(row) == 3: if row[0] in data_file_list: total_effective_lumi[row[1]] += float(row[2]) print(total_effective_lumi) #We scale by inverse the total lumi scaling_factors = {} for x in total_effective_lumi: scaling_factors[x] = 1.0/total_effective_lumi[x] return scaling_factors #This function produces a list of data values, and another list of scaling weights to scale from event count to diff. cross section def read_dat_to_list(var_name, effective_lumi_dic_for_DAT_file, DAT_file, constraints): var_list = [] scale_list = [] column_keys = {} for row in DAT_file: if row[0]=="#": for i, key in enumerate(row[1:]): column_keys[key] = i else: constraints_satisfied = True for key in constraints: if not constraints[key][0] <= float(row[column_keys[key]]) <= constraints[key][1]: constraints_satisfied = False break if constraints_satisfied: var_list.append(float(row[column_keys[var_name]])) scale_list.append(scaling_factors[row[column_keys["trigger_fired"]]]) return (var_list, scale_list) ################################################################################################################################################################################## eta_range_check_2point4 = False hardest_pT_lower_bound = 0.0 #plot_data is a list of data to be plotted, which is a dic {<data directory>, <label>, <format>} plot_data = [] # constraints is a dictionary of contraints, with ranges as entries constraints ={} plot_input = csv.reader(open("./plot_input.csv"), delimiter=',') for row in plot_input: try: if row[0] == "Settings": var_name = row[1] plot_name = row[2] plot_title = row[3] x_axis = row[4] y_axis = row[5] x_range = (float(row[6].split(":")[0][1:]), float(row[6].split(":")[1][:-1])) no_of_bins = int(row[7]) if row[8] == "True": y_scale_log = True else: y_scale_log = False for constraint in row[9:]: constraints[constraint.split(":")[0]] = (float(constraint.split(":")[1]), float(constraint.split(":")[2])) elif row[0] == "Data": plot_data.append({"dir":row[1], "label":row[2], "fmt":row[3]}) except: pass ####################################################################################################################################################### pl.figure(plot_name) pl.title(plot_title) ################################################################################################################### for data in plot_data: data_files = os.listdir(data["dir"]) data_files = [os.path.split(data_file)[1] for data_file in data_files if ".dat" in os.path.split(data_file)[1]] scaling_factors = load_effective_lumi("./effective_luminosity_by_trigger.csv", data_files) hist_data = [] bin_edges = [] sum_squared_weights = [] count = 0 for i in range(no_of_bins): hist_data.append(0.0) sum_squared_weights.append(0.0) for data_file in data_files: DAT_file = csv.reader(open(data["dir"] + data_file), delimiter=' ', skipinitialspace = 1) (var_list, scale_list) = read_dat_to_list(var_name, scaling_factors, DAT_file, constraints) (current_hist_data, bin_edges) = np.histogram(var_list, bins=no_of_bins, range = x_range, weights = [x*no_of_bins/(x_range[1]-x_range[0]) for x in scale_list]) hist_data = list(map(add, current_hist_data, hist_data)) (current_sum_squared_weights, whatever) = np.histogram(var_list, bins=no_of_bins, range = x_range, weights = [(x*no_of_bins/(x_range[1]-x_range[0])) * (x*no_of_bins/(x_range[1]-x_range[0])) for x in scale_list]) sum_squared_weights = list(map(add, sum_squared_weights, current_sum_squared_weights)) count += len(var_list) pl.errorbar((bin_edges[:-1] + bin_edges[1:])/2, hist_data, yerr=np.sqrt(sum_squared_weights), label=data["label"], fmt = data["fmt"]) print("the total cross section is " + str(sum(hist_data)*(x_range[1]-x_range[0])/no_of_bins)) print("the number of events plotted for files in " + data["dir"] + " is " + str(count)) ###################################################################################################################################################### def stringify_number(number): bound_for_float = 7.0 if -bound_for_float<number<bound_for_float and number!=0.0: return str(number) return str(int(number)) pl.xlabel(x_axis) pl.ylabel(y_axis) if y_scale_log: pl.yscale('log') pl.legend(loc='best') constraint_text_horizontal_position = 0.94 - len(plot_data)*0.07 for key in constraints: constraint_text = get_symbol[key] if math.isinf(constraints[key][1]): if math.isinf(constraints[key][0]): continue else: constraint_text += "$\geq$" + stringify_number(constraints[key][0]) + get_unit[key] else: if not math.isinf(constraints[key][0]): constraint_text = stringify_number(constraints[key][0]) + get_unit[key] + "$\leq$" + constraint_text constraint_text += "$\leq$" + stringify_number(constraints[key][1]) + get_unit[key] pl.text(0.97, constraint_text_horizontal_position, constraint_text, horizontalalignment='right', transform=pl.gca().transAxes) constraint_text_horizontal_position -= 0.07 pl.grid() pl.show()
[ "matplotlib" ]
be2274d5b9257f532c24a5b684b754f016dc7987
Python
wuqiling97/ANN-Course-hw1
/plot.py
UTF-8
894
3
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np def __plot(x, y, xlabel, ylabel, title): plt.plot(x, y, '-') plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) plt.show() def plot_loss(x, title=''): plt.plot(x, y, '-') plt.xlabel('iterations over epoch') plt.ylabel('loss') plt.title(title) plt.ylim(ymin=0) plt.show() def plot_2loss(xtrain, ytrain, xtest, ytest, title=''): plt.plot(xtrain, ytrain, '-', label='Training') plt.plot(xtest, ytest, '.-', label='Testing') plt.xlabel('iterations over epoch') plt.ylabel('loss') plt.legend(loc='upper center', framealpha=0.5, ncol=3) plt.title(title) plt.ylim(ymin=0) plt.show() def plot_acc(x, y, title=''): plt.plot(x, y, '.-') plt.xlabel('iterations over epoch') plt.ylabel('accuracy') plt.title(title) plt.ylim(ymax=1) plt.show()
[ "matplotlib" ]
06a13be8424ccb43462c438771c9866ec413bde5
Python
DidiMilikina/DataCamp
/Data Scientist with Python - Career Track /15. Interactive Data Visualization with Bokeh/02. Layouts, Interactions, and Annotations/11. Adding a hover tooltip.py
UTF-8
1,230
4.15625
4
[]
no_license
''' Adding a hover tooltip Working with the HoverTool is easy for data stored in a ColumnDataSource. In this exercise, you will create a HoverTool object and display the country for each circle glyph in the figure that you created in the last exercise. This is done by assigning the tooltips keyword argument to a list-of-tuples specifying the label and the column of values from the ColumnDataSource using the @ operator. The figure object has been prepared for you as p. After you have added the hover tooltip to the figure, be sure to interact with it by hovering your mouse over each point to see which country it represents. Instructions 100 XP Import the HoverTool class from bokeh.models. Use the HoverTool() function to create a HoverTool object called hover and set the tooltips argument to be [('Country','@Country')]. Use p.add_tools() with your HoverTool object to add it to the figure. ''' SOLUTION # Import HoverTool from bokeh.models from bokeh.models import HoverTool # Create a HoverTool object: hover hover = HoverTool(tooltips=[('Country', '@Country')]) # Add the HoverTool object to figure p p.add_tools(hover) # Specify the name of the output_file and show the result output_file('hover.html') show(p)
[ "bokeh" ]
7fdf83bd679921fcaa371554bd52decd1b6ac541
Python
SynProboszcza/Wizualizacja-Danych
/Zadania/matplotlib2.py
UTF-8
1,542
2.984375
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib import cm #Zad1 # fig = plt.figure() # ax = fig.gca(projection='3d') # # z = np.linspace(0, 2*np.pi, 100) # x = np.sin(z) # y = 2*np.cos(z) # # ax.plot(x, y, z) # plt.show() #Zad2 # np.random.seed(18912837) # # def randrange(n, vmin, vmax): # return (vmax - vmin) * np.random.rand(n) + vmin # # fig = plt.figure() # ax = fig.add_subplot(projection='3d') # n = 100 # # for c, m, zlow, zhigh in [('tan', '.', 1, 2),('indigo', '1', 3, 4),('mediumturquoise', '*', 5, 6),('aquamarine', '*', 7, 8),('lime', '*', 9, 10)]: # xs = randrange(n, 23, 32) # ys = randrange(n, 0, 100) # zs = randrange(n, zlow, zhigh) # ax.scatter(xs, ys, zs, c=c, marker=m) # # ax.set_xlabel('x') # ax.set_ylabel('y') # ax.set_zlabel('z') # # plt.show() #Zad3 # fig = plt.figure() # ax = fig.gca(projection='3d') # # X = np.arange(-5, 5, 0.25) # Y = np.arange(-5, 5, 0.25) # X, Y = np.meshgrid(X, Y) # R = np.sqrt(X**2 + Y**2) # Z = np.sin(R) # # #lista kolorów do wylosowania # #losuje żeby nie powtarzać kodu 5 razy # kolorki = [cm.prism, cm.ocean, cm.terrain, cm.brg, cm.jet] # # surf = ax.plot_surface(X, Y, Z, cmap=kolorki[np.random.randint(0,len(kolorki)-1)], linewidth=0, antialiased=False) # # ax.set_zlim(-1.01, 1.01) # ax.zaxis.set_major_locator(LinearLocator(10)) # ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # # fig.colorbar(surf, shrink=0.5, aspect=5) # plt.show()
[ "matplotlib" ]
9694c2b1b2fbb4657e187b5bd637f04a537b8a15
Python
xico2001pt/feup-fpro
/ch02.py
UTF-8
1,125
2.65625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation def update( frameNum, img, world, N ) : newWorld = world.copy( ) for i in range (N): for j in range (N): total= (world[(i-1)%N][(j-1)%N]+world[(i-1)%N][j]+world[(i-1)%N][(j+1)%N]+ world[i][(j-1)%N]+world[i][(j+1)%N]+ world[(i+1)%N][(j-1)%N]+ world[(i+1)%N][j]+ world[(i+1)%N][(j+1)%N])/255 if world[i][j]== 255: if total>3 or total<2: newWorld[i][j]= 0 else: if total == 3: newWorld[i][j] = 255 img.set_data( newWorld ) world[:] = newWorld[:] return img N = 50 SPEED = 100 PROB_LIFE = 40 world= np.random.choice([0,255], N*N, p=[1-((PROB_LIFE)/100),(PROB_LIFE)/100]).reshape(N,N) fig, ax = plt.subplots( ) img = ax.imshow( world, interpolation='nearest' ) ani = animation.FuncAnimation( fig, update, fargs = ( img, world, N ), frames = 10, interval = SPEED, save_count = 50 ) plt.show( )
[ "matplotlib" ]
ec9e37df43433ceb839330c0ba61e9c498d8f69d
Python
sallllly0307/RL_repo
/bandit_problem/bandit.py
UTF-8
2,449
2.875
3
[]
no_license
import random import numpy as np import pandas as pd import numpy.random as rd import matplotlib.pyplot as plt import datetime from tqdm import tqdm from utils import EpsilonGreedy, UCB1, ThompsonSampling from utils import BernoulliArm from testdata import exponential def test_algorithm(algo, arms, num_sims, horizon): chosen_arms = np.zeros(num_sims * horizon) rewards = np.zeros(num_sims * horizon) cumulative_rewards = np.zeros(num_sims * horizon) sim_nums = np.zeros(num_sims * horizon) times = np.zeros(num_sims * horizon) for sim in tqdm(range(num_sims)): sim = sim + 1 algo.initialize(len(arms)) for t in range(horizon): t = t + 1 index = (sim - 1) * horizon + t - 1 sim_nums[index] = sim times[index] = t chosen_arm = algo.select_arm() chosen_arms[index] = chosen_arm reward = arms[chosen_arm].draw() rewards[index] = reward if t == 1: cumulative_rewards[index] = reward else: cumulative_rewards[index] = cumulative_rewards[index - 1] + reward algo.update(chosen_arm, reward) return [sim_nums, times, chosen_arms, rewards, cumulative_rewards] def run(algo, label): print(label) algo.initialize(n_arms) results = test_algorithm(algo, arms, num_sims=NUM_SIMS, horizon=HORIZON) df = pd.DataFrame({"times": results[1], "rewards": results[3]}) grouped = df["rewards"].groupby(df["times"]) plt.plot(grouped.mean(), label=label) plt.legend(loc="best") if __name__ == '__main__': NUM_SIMS = 100 # 選択数設定 HORIZON = 1000 # 試行回数設定 # 問題設定: 腕:100本のうち、あたりは1つとする theta = np.array(exponential) n_arms = len(theta) arms = map(lambda x: BernoulliArm(x), theta) arms = list(arms) # EpsilonGreedyのepsilonの値設定 algos = { 'random': EpsilonGreedy([], [], epsilon=1), 'Eps0.3': EpsilonGreedy([], [], epsilon=0.3), 'Eps0.6': EpsilonGreedy([], [], epsilon=0.6), 'UCB1': UCB1([], []), 'TS': ThompsonSampling([], [])} for key, algo in algos.items(): run(algo, label=key) # グラフを現在時刻をつけて保存 now = datetime.datetime.now() plt.xlim(0, 1000) plt.ylim(-1, 1) plt.savefig('bandit' + str(now) + '.png')
[ "matplotlib" ]
a9346e0c4ad9c3aad37ba117c3ac80123dd2229e
Python
Takatsuki0204/python_test
/Graph_plot/pandas_test.py
UTF-8
1,300
2.875
3
[]
no_license
#! /usr/bin/python # encoding: utf-8 import datetime, sqlite3 import numpy as np import pandas as pd import matplotlib.pyplot as plt data = pd.read_json("http://192.168.10.121:3000/monitoring/122?date=20160523") #connector = sqlite3.connect("C:\Users\TAKATSUKI\Documents\環境BOX\sqlite_db\environment.db") #data = pd.read_sql("select * from test", con=connector) print data.head(10) # 先頭10行を表示 print data.tail(20) # 後尾20行を表示 print data["light"] # 単独カラムのみ表示 print data[["temperature", "humidity"]] # 複数カラムの表示 print data["temperature"].sum() # 温度カラムの合計を表示(mean:平均, median:中央値) print data.describe() # 平均、分散など print data["temperature"].mean() # 温度の平均 print data.ix[10:100, ["light", "temperature"]] # ix:列名と列番号が使える。10行目から100行目までの照度、温度を表示 print data.query("light == 193 & humidity == 50") # 条件文(&:and, |:or) print data.query("index in [10, 20]") # 特定の行の表示 print data[["temperature", "humidity"]].sum(axis=0) # axis=1:横方向に計算 print data.sort("humidity", ascending=False) # 降順でソート # data.to_csv("log.csv") # csv形式で保存
[ "matplotlib" ]
864eb5623d9799817f4ac69d9852f3d052102eee
Python
xavier-rp/Betti_scm
/exact_chi_square.py
UTF-8
23,719
2.828125
3
[]
no_license
import numpy as np from scipy.stats import chi2 import scipy as sp from loglin_model import * import time import itertools import json import os import csv import matplotlib.pyplot as plt ######### tests préliminaires def mle_multinomial_from_table(cont_table): n = np.sum(cont_table) p_list = [] for element in cont_table.flatten(): p_list.append(element/n) return p_list def multinomial_cont_table(nb_trials, nb_categories): probabilities = [1 / float(nb_categories)] * nb_categories return np.random.multinomial(nb_trials, probabilities, 1).reshape(2, 2) def multinomial_problist_cont_table(nb_trials, prob_list): return np.random.multinomial(nb_trials, prob_list, 1).reshape(2, 2) def multinomial_problist_cont_cube(nb_trials, prob_list): return np.random.multinomial(nb_trials, prob_list, 1).reshape(2, 2, 2) def multinomial_cont_cube(nb_trials, nb_categories): probabilities = [1 / float(nb_categories)] * nb_categories return np.random.multinomial(nb_trials, probabilities, 1).reshape(2, 2, 2) def sample_mult_cont_table(nb_samples, nb_trials, nb_categories): samples = [] for i in range(nb_samples): samples.append(multinomial_cont_table(nb_trials, nb_categories)) return samples def sample_mult_cont_table_prob(nb_samples, nb_trials, problist): samples = [] for i in range(nb_samples): samples.append(multinomial_problist_cont_table(nb_trials, problist)) return samples def sample_mult_cont_cube(nb_samples, nb_trials, nb_categories): samples = [] for i in range(nb_samples): samples.append(multinomial_cont_cube(nb_trials, nb_categories)) return samples def chisq_stats(sample_list, observed): chisqlist = [] for sample in sample_list: chisqlist.append(chisq_formula(observed, sample)) return chisqlist def chisq_formula(cont_tab, expected): #Computes the chisquare statistics and its p-value for a contingency table and the expected values obtained #via MLE or iterative proportional fitting. if float(0) in expected: test_stat = 0 else: test_stat = np.sum((cont_tab - expected) ** 2 / expected) return test_stat def sampled_chisq_test(cont_table, expected_table, sampled_array): if float(0) in expected_table: test_stat = 0 pval = 1 else: test_stat = np.sum((cont_table - expected_table) ** 2 / expected_table) cdf = np.sum((sampled_array < test_stat) * 1) / len(sampled_array) pval = 1 - cdf return test_stat, pval def chisq_test(cont_tab, expected): #Computes the chisquare statistics and its p-value for a contingency table and the expected values obtained #via MLE or iterative proportional fitting. df = 3 test_stat = np.sum((cont_tab-expected)**2/expected) p_val = chi2.sf(test_stat, df) return test_stat, p_val if __name__ == '__main__': ##################### Find all the pvalues with exact distribution for all ##################### tables in the data : def to_occurrence_matrix(matrix, savepath=None): """ Transform a matrix into a binary matrix where entries are 1 if the original entry was different from 0. Parameters ---------- matrix (np.array) savepath (string) : path and filename under which to save the file Returns ------- The binary matrix or None if a savepath is specified. """ if savepath is None: return (matrix > 0) * 1 else: np.save(savepath, (matrix > 0) * 1) def get_cont_table(u_idx, v_idx, matrix): #Computes the 2X2 contingency table for the occurrence matrix row_u_present = matrix[u_idx, :] row_v_present = matrix[v_idx, :] row_u_not_present = 1 - row_u_present row_v_not_present = 1 - row_v_present # u present, v present table00 = np.dot(row_u_present, row_v_present) # u present, v NOT present table01 = np.dot(row_u_present, row_v_not_present) # u NOT present, v present table10 = np.dot(row_u_not_present, row_v_present) # u NOT present, v NOT present table11 = np.dot(row_u_not_present, row_v_not_present) return np.array([[table00, table01], [table10, table11]]) ###### TO COUNT THE NUMBER OF DIFFERENT TABLES matrix1 = np.loadtxt('final_OTU.txt', skiprows=0, usecols=range(1, 39)) matrix1 = to_occurrence_matrix(matrix1, savepath=None) table_set = set() ########### Count number of different tables : #for one_simplex in itertools.combinations(range(matrix1.shape[0]), 2): # computed_cont_table = get_cont_table(one_simplex[0], one_simplex[1], matrix1) # table_str = str(computed_cont_table[0, 0]) + '_' + str(computed_cont_table[0, 1]) + '_' + str( # computed_cont_table[1, 0]) + '_' + str(computed_cont_table[1, 1]) # if table_str not in table_set: # table_set.add(table_str) #table_set = list(table_set) #print('How many different tables : ', len(table_set)) #print(table_set) #json.dump(table_set, open("table_list.json", 'w')) #exit() ########### Count number of different cubes. NEED TO HAVE A CSV FILE def get_cont_cube(u_idx, v_idx, w_idx, matrix): # Computes the 2X2X2 contingency table for the occurrence matrix row_u_present = matrix[u_idx, :] row_v_present = matrix[v_idx, :] row_w_present = matrix[w_idx, :] row_u_not = 1 - row_u_present row_v_not = 1 - row_v_present row_w_not = 1 - row_w_present #All present : table000 =np.sum(row_u_present*row_v_present*row_w_present) # v absent table010 = np.sum(row_u_present*row_v_not*row_w_present) # u absent table100 = np.sum(row_u_not*row_v_present*row_w_present) # u absent, v absent table110 = np.sum(row_u_not*row_v_not*row_w_present) # w absent table001 = np.sum(row_u_present*row_v_present*row_w_not) # v absent, w absent table011 = np.sum(row_u_present*row_v_not*row_w_not) # u absent, w absent table101 = np.sum(row_u_not*row_v_present*row_w_not) # all absent table111 = np.sum(row_u_not*row_v_not*row_w_not) return np.array([[[table000, table010], [table100, table110]], [[table001, table011], [table101, table111]]], dtype=np.float64) #with open('exact_chi1_triangles_001_final_otu.csv', 'r') as csvfile: # reader = csv.reader(csvfile) # next(reader) # for row in reader: # computed_cont_table = get_cont_cube(int(row[0]), int(row[1]), int(row[2]), matrix1) # table_str = str(int(computed_cont_table[0, 0, 0])) + '_' + str(int(computed_cont_table[0, 0, 1])) + '_' + str(int(computed_cont_table[0, 1, 0])) + '_' + str(int(computed_cont_table[0, 1, 1])) + '_' + str(int(computed_cont_table[1, 0, 0])) + '_' + str(int(computed_cont_table[1, 0, 1])) + '_' + str(int(computed_cont_table[1, 1, 0])) + '_' + str(int(computed_cont_table[1, 1, 1])) # if table_str not in table_set: # table_set.add(table_str) #table_set = list(table_set) #print('How many different tables : ', len(table_set)) #print(table_set) #json.dump(table_set, open("exact_chi1_cube_list.json", 'w')) #exit() #with open('table_list.json') as json_file: # table_set = json.load(json_file) # #### From the different tables : generate the chisqdist : # pvaldictio = {} # #TODO iterate over all the tables # # Max index used in range() : # lastrange = 1950 # maxrange = 2000 # for it in range(lastrange, maxrange): # table_id = table_set[it] # table = np.random.rand(2,2) # table_id_list = str.split(table_id, '_') # table[0, 0] = int(table_id_list[0]) # table[0, 1] = int(table_id_list[1]) # table[1, 0] = int(table_id_list[2]) # table[1, 1] = int(table_id_list[3]) # N = np.sum(table) # expected = mle_2x2_ind(table) # problist = mle_multinomial_from_table(expected) # chisqlist = [] # start = time.clock() # for it in range(1000000): # #print(it) # sample = multinomial_problist_cont_table(N, problist) # chisqlist.append(chisq_formula(sample, expected)) # pvaldictio[table_id] = sampled_chisq_test(table, expected, chisqlist) # print('Time for one it : ', time.clock()-start) # json.dump(pvaldictio, open("exact_chisq\pvaldictio_" + str(lastrange) + "_" + str(maxrange) + ".json", 'w')) def pvalue_AB_AC_BC(cont_cube): expected = iterative_proportional_fitting_AB_AC_BC_no_zeros(cont_cube) if expected is not None: return chisq_test(cont_cube, expected)[1] else: return expected def chisq_test(cont_tab, expected): # Computes the chisquare statistics and its p-value for a contingency table and the expected values obtained # via MLE or iterative proportional fitting. df = 1 test_stat = np.sum((cont_tab - expected) ** 2 / expected) p_val = chi2.sf(test_stat, df) return test_stat, p_val with open('exact_chi1_cube_list.json') as json_file: table_set = json.load(json_file) #### From the different tables : generate the chisqdist : pvaldictio = {} # TODO iterate over all the tables # Max index used in range() : no_mle_table_count = 0 for it in range(len(table_set)): table_id = table_set[it] table = np.random.rand(2, 2, 2) table_id_list = str.split(table_id, '_') table[0, 0, 0] = int(table_id_list[0]) table[0, 0, 1] = int(table_id_list[1]) table[0, 1, 0] = int(table_id_list[2]) table[0, 1, 1] = int(table_id_list[3]) table[1, 0, 0] = int(table_id_list[4]) table[1, 0, 1] = int(table_id_list[5]) table[1, 1, 0] = int(table_id_list[6]) table[1, 1, 1] = int(table_id_list[7]) pval = pvalue_AB_AC_BC(table) if pval is not None: if pval < 0.001: print(pvalue_AB_AC_BC(table)) no_mle_table_count +=1 #N = np.sum(table) #expected_original = iterative_proportional_fitting_AB_AC_BC_no_zeros(table) N = np.sum(table) expected_original = iterative_proportional_fitting_AB_AC_BC_no_zeros(table) if expected_original is not None: print(it) problist = mle_multinomial_from_table(expected_original) chisqlist = [] start = time.clock() for it in range(1000000): # print(it) sample = multinomial_problist_cont_cube(N, problist) expected = iterative_proportional_fitting_AB_AC_BC_no_zeros(sample) if expected is not None: chisqlist.append(chisq_formula(sample, expected)) else: print('Shyte') pvaldictio[table_id] = sampled_chisq_test(table, expected_original, chisqlist) print('Time for one it : ', time.clock() - start) print(no_mle_table_count) exit() json.dump(pvaldictio, open("exact_chisq_1deg_cc\cube_pvaldictio.json", 'w')) #np.save(os.path.join('exact_chisq', table_id), chisqlist_prob) exit() #################################################### ############## Build the entire dictionary #import os #with open(r'C:\Users\Xavier\Desktop\Notes de cours\Maîtrise\Projet OTU\Betti_scm-master (1)\Betti_scm-master\exact_chisq\pvaldictio_0_200.json') as jsonfile: # data = json.load(jsonfile) # print(data) #complete_pval_dictionary = {} #directory = 'exact_chisq' #for filename in os.listdir(directory): # if filename.endswith(".json"): # with open(os.path.join(directory, filename)) as json_file: # print(os.path.join(directory, filename)) # data = json.load(json_file) # complete_pval_dictionary.update(data) #json.dump(complete_pval_dictionary, open("exact_chisq\complete_pval_dictionary.json", 'w')) #exit() ##### Load dictio #with open(r'exact_chisq/complete_pval_dictionary.json') as jsonfile: # data = json.load(jsonfile) # print(len(data)) #exit() ##### Méthode pour extraire la distribution exacte : #computed_cont_table = np.array([[2, 0], [ 0, 36]]) #N = np.sum(computed_cont_table) #expected = mle_2x2_ind(computed_cont_table) #problist = mle_multinomial_from_table(expected) #chisqlist_prob = [] #for it in range(1000000): # print(it) # sample = multinomial_problist_cont_table(N, problist) # chisqlist_prob.append(chisq_formula(sample, expected)) #np.save(str(computed_cont_table[0,0]) + '_' + str(computed_cont_table[0,1]) + '_' + str(computed_cont_table[1,0]) + '_' + str(computed_cont_table[1,1]), chisqlist_prob) ###### Pour compter le nombre de tables différentes : #computed_cont_table = np.array([[2, 0], [0, 36]]) #table_set = set() #table_str = str(computed_cont_table[0, 0]) + '_' + str(computed_cont_table[0, 1]) + '_' + str( # computed_cont_table[1, 0]) + '_' + str(computed_cont_table[1, 1]) #if table_str not in table_set: # table_set.add(table_str) ##### #exit() import matplotlib.pyplot as plt #fig, ax = plt.subplots(1, 1) #chisqlist = [] ##for i in range(1000000): ## print(i) ## sample = multinomial_problist_cont_table(38, [1/4, 1/4, 1/4, 1/4]) ## expected = mle_2x2_ind(sample) ## chisqlist.append(chisq_formula(sample, expected)) ##np.save('chisq38', np.array(chisqlist)) #chisqlist = np.load('chisq38.npy') #print(chisqlist) #bins6 = np.arange(0, max(chisqlist), 0.1) ## print(max(chisqlist)) #counts, bins = np.histogram(chisqlist, len(np.arange(0, max(chisqlist), 0.5))) #print(bins) #plt.hist(bins[:-1], bins, weights=counts/np.sum(counts)) ##plt.show() ##hist = plt.hist(chisqlist, bins=bins6, alpha=0.5, label='10mil') #x = np.arange(0, 100, 0.01) ## ax.plot(x, chi2.pdf(x, df), 'r-', label='chi2 pdf') ##ax.plot(x, chi2.pdf(x, df), label='Asympt degree 3') #ax.plot(x, chi2.pdf(x, 1), label='degree 1') ## bins2 = np.arange(0, max(chisqlist) + 5, 1) ## print(max(chisqlist)) ## plt.hist(chisqlist, bins=bins2, alpha=0.5) #plt.legend() #plt.xlim([0, 20]) #plt.ylim([0, 1]) #plt.show() #exit() #plist = [] #for i in range(1000): # contable = multinomial_cont_table(38, 4) # plist.append(mle_multinomial_from_table(contable)[0]) #print(np.sum(plist)/1000) #contable = multinomial_cont_table(38, 4) #print(contable) #plist = mle_multinomial_from_table(contable) #print(plist) #exit() #fig, ax = plt.subplots(1, 1) #x = np.linspace(chi2.ppf(0.01, 1), # chi2.ppf(0.99, 1), 100) #ax.plot(x, chi2.pdf(x, 1), # 'r-', lw=5, alpha=0.6, label='chi2 pdf') #plt.show() ######### Temps linéaire : #timelist = [] #itlist = [] #for it in [1, 10, 100, 1000, 10000, 100000, 1000000, 5000000]: # print(it) # start = time.time() # sample_mult_cont_table(int(it), 38, 4) # timelist.append(time.time()-start) # itlist.append(int(it)) #plt.plot(itlist, timelist) #plt.show() #exit() ######## Différence Chi2 réelle, Chi2 multinomial 1/4, Chi2 multinomiale MLE #samples = sample_mult_cont_table(1000000, 38, 4) #sam = np.array([[2, 0], [ 0, 36]]) #expected = mle_2x2_ind(sam) #problist = mle_multinomial_from_table(expected) ##chisqlist = [] #chisqlist_prob = [] #for it in range(1000000): # print(it) # sample = multinomial_problist_cont_table(38, problist) # chisqlist_prob.append(chisq_formula(sample, expected)) #for sample in samples: # expected = mle_2x2_ind(sample) # if expected is not None: # chisqlist.append(chisq_formula(sample, expected)) #for sample in samplesprob: # chisqlist_prob.append(chisq_formula(sample, expected)) #np.save('exact_chi3_forpval', chisqlist_prob) #np.save('exact_chisqlist380000_10millions', chisqlist_prob) #exit() df = 3 #TODO : df = 3 semble être plus pr de la distribution asymptotique #fig, ax = plt.subplots(1, 1) #chisqlist_1000 = np.load('exact_chi3.npy') #bins = np.arange(0, max(chisqlist_1000) + 5, 0.1) ## print(max(chisqlist)) #plt.hist(chisqlist_1000, bins=bins, alpha=0.5, density=True, label='un quart') #plt.show() ##### Différence entre les pvalues # np.array([[21, 9], [3, 5]]) # prob # np.array([[512, 234], [103, 151]]) #lorsque 1000 # np.array([[5120, 2340], [1030, 1510]]) # lorsque 10000 # np.array([[1, 5], [5, 27]]) # probanother # np.array([[ 2, 0], [ 0, 36]]) problowpval avec 0 et 753 pval de e-10, phi = 1 #exact_chisqlist10mil = np.load('exact_chisqlist380000_10millions.npy') #exact_chisqlist = np.load('exact_chisqlist.npy') #exact_chisqlist380000 = np.load('exact_chisqlist380000.npy') #exact_chisqlist38000000 = np.load('exact_chisqlist38000000.npy') #chisqlist_unquart = np.load('chisqlist_unquart.npy') #chisqlist_prob = np.load('chisqlist_prob.npy') #chisqlist_probanother = np.load('chisqlist_probanother.npy') chisqlist_chi3 = np.load('exact_chi3.npy') chisqlist_chi3_pre = np.load('exact_chi3_precise.npy') chisqlist_chi3_forpval = np.load('exact_chi3_forpval.npy') cont = np.array([[ 2, 0], [ 0, 36]]) # problowval expec = mle_2x2_ind(cont) #print(expec) #pvalue_exact = sampled_chisq_test(cont, expec, exact_chisqlist) #pvalunquart = sampled_chisq_test(cont, expec, chisqlist_unquart) #pvalueprob = sampled_chisq_test(cont, expec, chisqlist_prob) #pval = chisq_test(cont, expec) print(sampled_chisq_test(cont, expec, chisqlist_chi3), sampled_chisq_test(cont, expec, chisqlist_chi3_forpval)) #print(cont, expec, chisq_test(cont, expec)) #print(pval, pvalunquart, pvalueprob) #print('EXACT : ', pvalue_exact) #print('WRONG DIST : ', sampled_chisq_test(cont, expec, chisqlist_problowpval)) print('ASYMPT : ', chisq_test(cont, expec)) #exit() ##### différences dans l'allure des courbes fig, ax = plt.subplots(1, 1) #bins = np.arange(0, max(chisqlist_unquart) + 5, 0.1) ## print(max(chisqlist)) #plt.hist(chisqlist_unquart, bins=bins, alpha=0.5, density=True, label='un quart') bins2 = np.arange(0, max(chisqlist_chi3) + 1, 0.5) bins3 = np.arange(0, max(chisqlist_chi3_pre), 0.05) # print(max(chisqlist)) plt.hist(chisqlist_chi3, bins=bins2, weights=np.repeat(1/len(chisqlist_chi3), len(chisqlist_chi3)), alpha=0.5, label='EXACT') plt.hist(chisqlist_chi3_forpval, bins=bins2, weights=np.repeat(1 / len(chisqlist_chi3_forpval), len(chisqlist_chi3_forpval)), alpha=0.5, label='EXACT_less') #plt.hist(chisqlist_chi3_pre, bins=bins3, alpha=0.5, density=True, label='Precise') #bins3 = np.arange(0, max(chisqlist_prob) + 5, 0.1) ## print(max(chisqlist)) #plt.hist(chisqlist_probanother, bins=bins3, alpha=0.5, density=True, label='probanother') #bins4 = np.arange(0, max(chisqlist_problowpval) + 5, 0.5) # print(max(chisqlist)) #plt.hist(chisqlist_problowpval, bins=bins4, alpha=0.5, density=True, label='WRONG') #bins4 = np.arange(0, max(exact_chisqlist380000) + 5, 0.1) # print(max(chisqlist)) #plt.hist(exact_chisqlist380000, bins=bins4, alpha=0.5, density=True, label='380000') #bins5 = np.arange(0, max(exact_chisqlist38000000) + 5, 0.01) # print(max(chisqlist)) #plt.hist(exact_chisqlist38000000, bins=bins5, alpha=0.5, density=True, label='380000') #bins6 = np.arange(0, max(exact_chisqlist10mil) + 5, 0.01) # print(max(chisqlist)) #plt.hist(exact_chisqlist10mil, bins=bins6, alpha=0.5, density=True, label='10mil') x = np.arange(0, 100, 0.01) # ax.plot(x, chi2.pdf(x, df), 'r-', label='chi2 pdf') ax.plot(x, chi2.pdf(x, df), label='Asympt degree 3') #ax.plot(x, chi2.pdf(x, 1), label='degree 1') # bins2 = np.arange(0, max(chisqlist) + 5, 1) # print(max(chisqlist)) # plt.hist(chisqlist, bins=bins2, alpha=0.5) plt.legend() plt.xlim([0, 20]) plt.ylim([0, 1]) plt.show() exit() #chisqlist = [] #for sample in samples: # expected = iterative_proportional_fitting_AB_AC_BC_no_zeros(sample, delta=0.000001) # if expected is not None : # chisqlist.append(chisq_formula(sample, expected)) #print('Sampling time : ', time.time() - start) #start = time.time() #chisqlist = np.array(chisqlist) #np.save('chisqlist2x2x2100000', chisqlist) #print('To array time : ', time.time() - start) #print(max(chisqlist)) #exit() chisqlist = np.load('chisqlist.npy') #stat = 1 #start = time.time() #difflist = [] #cdflist = [] #print(len(chisqlist)) #for stat in np.arange(0.1, 100, 0.1): # cdflist.append(np.sum((chisqlist < stat)*1)/len(chisqlist)) # #difflist.append(np.abs(chi2.cdf(stat, 1) - np.sum((chisqlist < stat)*1)/1000000)) # #difflist.append(chi2.cdf(stat, 1) - np.sum((chisqlist < stat) * 1) / 1000000) # #print('Sampled cumulative prob for chi = ' + str(stat) + 'is :', np.sum((chisqlist < stat)*1)/1000000, 'CHI2 cumulative prob : ', chi2.cdf(stat, 1)) #print('Probability time : ', time.time() - start) ##plt.plot(np.arange(0.1, 100, 0.1), difflist) #plt.plot(np.arange(0.1, 100, 0.1), cdflist) #plt.plot(np.arange(0.1, 100, 0.1), chi2.cdf(np.arange(0.1, 100, 0.1), 1)) #print(cdflist[-1]) #plt.show() print(chisq_formula(np.array([[38,0], [0,0]]),np.array([[38,0], [0,0]]))) #chisqlist = chisq_stats(samples, np.array([[38,0], [0,0]])) #for chi in chisqlist: # print(chi) exit() #print('HERE') #for chi in chisqlist: # if type(chi) != np.float64: # print(chi) df = 1 fig, ax = plt.subplots(1, 1) bins = np.arange(0, max(chisqlist)+5, 0.1) #print(max(chisqlist)) plt.hist(chisqlist, bins=bins, alpha=0.5, density=True) x = np.arange(min(chisqlist), max(chisqlist), 0.01) #ax.plot(x, chi2.pdf(x, df), 'r-', label='chi2 pdf') ax.plot(x, chi2.pdf(x, df)) ax.plot(x, chi2.pdf(x, 1)) #bins2 = np.arange(0, max(chisqlist) + 5, 1) #print(max(chisqlist)) #plt.hist(chisqlist, bins=bins2, alpha=0.5) plt.show()
[ "matplotlib" ]
00c66cb800d3f89dc0c2fc1b74acbb963cc05ea4
Python
johndpope/animeface
/implementations/gan_utils/utils.py
UTF-8
5,252
2.78125
3
[ "MIT" ]
permissive
import os import warnings import torch import torchvision as tv from PIL import Image # device specification def get_device(): return torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # noise sampler # normal distribution def sample_nnoise(size, mean=0., std=1., device=None): if device == None: device = get_device() return torch.empty(size, device=device).normal_(mean, std) # uniform distribution def sample_unoise(size, from_=0., to=1., device=None): if device == None: device = get_device() return torch.empty(size, device=device).uniform_(from_, to) # exponential moving average @torch.no_grad() def update_ema(G, G_ema, decay=0.999): G.eval() param_ema = dict(G_ema.named_parameters()) param = dict(G.named_parameters()) for key in param_ema.keys(): param_ema[key].data.mul_(decay).add_(param[key].data, alpha=(1 - decay)) G.train() class GANTrainingStatus: '''GAN training status helper''' def __init__(self): self.losses = {'G' : [], 'D' : []} self.batches_done = 0 def append_g_loss(self, g_loss): '''append generator loss''' if isinstance(g_loss, torch.Tensor): g_loss = g_loss.item() self.losses['G'].append(g_loss) def append_d_loss(self, d_loss): '''append discriminator loss''' if isinstance(d_loss, torch.Tensor): d_loss = d_loss.item() self.losses['D'].append(d_loss) self.batches_done += 1 def add_loss(self, key): '''define additional loss''' if not isinstance(key, str): raise Exception('Input a String object as the key. Got type {}'.format(type(key))) self.losses[key] = [] def append_additional_loss(self, **kwargs): '''append additional loss''' for key, value in kwargs.items(): try: self.losses[key].append(value) except KeyError as ke: warnings.warn('You have tried to append a loss keyed as \'{}\' that is not defined. Please call add_loss() or check the spelling.'.format(key)) def append(self, g_loss, d_loss, **kwargs): '''append loss at once''' self.append_g_loss(g_loss) self.append_d_loss(d_loss) self.append_additional_loss(**kwargs) def plot_loss(self, filename='./loss.png'): '''plot loss''' import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt add_loss = [key for key in self.losses if key not in ['G', 'D']] G_loss = self.losses['G'] D_loss = self.losses['D'] plt.figure(figsize=(12, 8)) for key in add_loss: plt.plot(self.losses[key]) plt.plot(G_loss) plt.plot(D_loss) plt.title('Model Loss') plt.xlabel('iter') plt.ylabel('loss') plt.legend([key for key in add_loss] + ['Generator', 'Discriminator'], loc='upper left') plt.tight_layout() plt.savefig(filename) plt.close() def save_image(self, folder, image_tensor, filename=None, nrow=5, normalize=True, range=(-1, 1)): '''simple save image save_image func with sampling images, and only args that I use frequently ''' if filename == None: filename = '{}.png'.format(self.batches_done) tv.utils.save_image( image_tensor, os.path.join(folder, filename), nrow=nrow, normalize=normalize, value_range=range ) def __str__(self): '''print the latest losses when calling print() on the object''' partial_msg = [] partial_msg += [ '{:6}'.format(self.batches_done), '[D Loss : {:.5f}]'.format(self.losses['D'][-1]), '[G Loss : {:.5f}]'.format(self.losses['G'][-1]), ] # verbose additinal loss add_loss = [key for key in self.losses if key not in ['D', 'G']] if len(add_loss) > 0: for key in add_loss: if self.losses[key] == []: # skip when no entry continue partial_msg.append( '[{} : {:.5f}]'.format(key, self.losses[key][-1]) ) return '\t'.join(partial_msg) def gif_from_files(image_paths, filename='out.gif', optimize=False, duration=500, loop=0): images = [] for path in image_paths: images.append(Image.open(str(path))) images[0].save(filename, save_all=True, append_images=images[1:], optimize=optimize, duration=duration, loop=loop) if __name__ == "__main__": '''TEST''' # device = get_device() # print(sample_nnoise((3, 64), 0, 0.02).size()) # print(sample_nnoise((3, 64), 0, 0.02, torch.device('cpu')).size()) # print(sample_nnoise((3, 64), 0, 0.02, device).size()) # print(sample_unoise((3, 64), 0, 3).size()) # print(sample_unoise((3, 64), 0, 3, torch.device('cpu')).size()) # print(sample_unoise((3, 64), 0, 3, device).size()) status = GANTrainingStatus() status.add_loss('real') status.add_loss('fake') import math for i in range(100): status.append(math.sin(i), math.cos(i), real=-i/10, fake=i/10) print(status) status.plot_loss()
[ "matplotlib" ]
0cf5475a86e73b165096d60798a7c67896da9bbb
Python
amRsching/kaggle-jane-street-market-prediction
/pytorch_tutorials/pytorch_nn_hello_world.py
UTF-8
1,621
3.015625
3
[]
no_license
import torch import torch.nn as nn from torch import optim import matplotlib.pyplot as plt t_c = [0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0] t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4] t_c = torch.tensor(t_c).unsqueeze(1) t_u = torch.tensor(t_u).unsqueeze(1) plt.scatter(x=t_u, y=t_c) def reshape(x): return x.reshape(x.shape[0], 1) def training_loop(n_epochs, optimizer, model, loss_fn, t_u_train, t_u_val, t_c_train, t_c_val): for epoch in range(1, n_epochs + 1): t_p_train = model(t_u_train) loss_train = loss_fn(t_p_train, t_c_train) t_p_val = model(t_u_val) loss_val = loss_fn(t_p_val, t_c_val) optimizer.zero_grad() loss_train.backward() optimizer.step() print(f"Epoch {epoch}, Training loss {loss_train.item():.4f}," f" Validation loss {loss_val.item():.4f}") t_un = 0.1 * t_u t_cn = 0.1 * t_c linear_model = nn.Linear(1, 1) optimizer = optim.SGD(linear_model.parameters(), lr=1e-2) training_loop( n_epochs=1000, optimizer=optimizer, model=linear_model, loss_fn=nn.MSELoss(), t_u_train=t_un, t_u_val=t_un, t_c_train=t_cn, t_c_val=t_cn) print() print(linear_model.weight) print(linear_model.bias) t_range = torch.arange(20., 90.).unsqueeze(1) fig = plt.figure(dpi=600) plt.xlabel("Fahrenheit") plt.ylabel("Celsius") plt.plot(t_u.numpy(), t_c.numpy(), 'o') plt.plot(t_range.numpy(), linear_model(t_range * 0.1).detach().numpy(), 'c-') plt.plot(t_u.numpy(), linear_model(t_u * 0.1).detach().numpy(), 'kx') plt.show()
[ "matplotlib" ]
b0831bfed9318879ab8b66a7a126bfb51ba11d87
Python
JOThurgood/SimpleCFD
/linear_advection/2D/plot_advect_2d.py
UTF-8
719
2.765625
3
[ "MIT" ]
permissive
import numpy as np import matplotlib.pyplot as plt xc = np.fromfile('xc.dat', dtype = np.float64) yc = np.fromfile('yc.dat', dtype = np.float64) a = np.fromfile('a.dat', dtype = np.float64) a = a.reshape(yc.size, xc.size) plt.clf() plt.contour(xc, yc, a, 10) plt.grid(True) plt.xlabel('x') plt.ylabel('y') plt.title('a(x,y,t_end)') #plt.show() plt.savefig('output_contour.png') plt.clf() plt.contourf(xc, yc, a, 255, cmap = plt.cm.bone) plt.colorbar() plt.grid(False) plt.xlabel('x') plt.ylabel('y') plt.title('a(x,y,t_end)') #plt.show() plt.savefig('output_contourf.png') plt.clf() plt.imshow(a) plt.xlabel('x') plt.ylabel('y') plt.title('a(x,y,t_end)') plt.colorbar() plt.savefig('output_pixels.png')
[ "matplotlib" ]
7657039eee772dff0f8416b7b08c00873dfc1321
Python
egg-west/random-search-for-control-problem
/misc/es.py
UTF-8
1,315
3.1875
3
[ "MIT" ]
permissive
import numpy as np import gym import numpy.random as random import matplotlib.pyplot as plt ''' try to generate a good policy with evolution strategy ''' npop = 50 # population size sigma = 0.1 # noise standard deviation alpha = 0.001 # learning rate MAX_EPOTCH = 10000 env = gym.make('CartPole-v0') w_size = env.observation_space.shape[0] w = random.random(w_size) epoch_reward = 0. all_reward = [0] for ep in range(MAX_EPOTCH): observation = env.reset() ### generate weight candidate_weight = random.random(w_size) * 0.01 + w for t in range(1000): # env.render() weighted_sum = np.dot(candidate_weight, observation) if weighted_sum >= 0: action = 1 else: action = 0 observation, reward, done, info = env.step(action) epoch_reward += reward if done: ### if reward is saytisfying, update the weight ( policy ) if epoch_reward < 150 and epoch_reward > all_reward[-1]: w = candidate_weight all_reward.append(epoch_reward) print('epoch: ', ep+1 , ', total reward: ', epoch_reward) epoch_reward = 0 break plt.title('CartPole-v0-evolution-strategy') plt.plot(all_reward) plt.show()
[ "matplotlib" ]
3fa94f60ed9790b576387c2f02b6dd189ecc8fff
Python
sandialabs/sibl
/geo/examples/pixlet.py
UTF-8
5,893
2.5625
3
[ "MIT", "LicenseRef-scancode-other-permissive", "Python-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "LicenseRef-scancode-unknown-license-reference" ]
permissive
import numpy as np import matplotlib.pyplot as plt from matplotlib import rc from mpl_toolkits.mplot3d import Axes3D from skimage.morphology import skeletonize_3d from pathlib import Path from typing import NamedTuple, Tuple from ptg.pixel_shape import PixelSphere as ps # utilities serialize = False latex = False if latex: rc("font", **{"family": "serif", "serif": ["Computer Modern Roman"]}) rc("text", usetex=True) # alphabet class Letter(NamedTuple): """Create the letter index (x=0, y, z) position, in units of inkdrop, as a namedtuple, with the following attributes: """ name: str path_x: Tuple[int, ...] path_y: Tuple[int, ...] path_z: Tuple[int, ...] letter_I = Letter( name="I", path_x=(0, 1, 2, 3, 4, 5, 6), path_y=(4, 4, 4, 4, 4, 4, 4), path_z=(4, 4, 4, 4, 4, 4, 4), ) letter_J = Letter( name="J", path_x=(4, 3, 2, 1, 2, 3, 4, 5, 6), path_y=(6, 6, 5, 4, 3, 2, 2, 2, 2), path_z=(4, 4, 4, 4, 4, 4, 4, 4, 4), ) letter = letter_J assert len(letter.path_x) == len(letter.path_y) == len(letter.path_z) # letters make with 5x5 grid of possible inkdrops # droplet_grid_len = 5 # shape marching cadence diam = 3 # pixels, diameter ppl = 1 # pixels per length stride = 1 # pixels, distance between sequential anchors # n_shapes = 5 # int, number of sequential shapes added to world n_shapes = len(letter.path_x) # int, number of sequential shapes added to world # world_bounds = (n_shapes - 1) * stride + diam * ppl world_bounds = ( max(map(lambda i: max(i), (letter.path_x, letter.path_y, letter.path_z))) + diam ) # pixels nsd = 3 # number of space dimensions # world (n_layers_x, n_cols_y, n_rows_z) = tuple(map(lambda x: world_bounds, range(nsd))) world = np.zeros([n_layers_x, n_cols_y, n_rows_z], dtype=np.uint8) inx, iny, inz = np.indices([n_layers_x, n_cols_y, n_rows_z]) # fountain pen metaphor, ink in the shapes to the world # for i in range(n_shapes): for i, (xi, yi, zi) in enumerate(zip(letter.path_x, letter.path_y, letter.path_z)): # anchor_x_i = i * stride # item = ps(anchor_x=anchor_x_i, diameter=diam, pixels_per_len=ppl, verbose=True) item = ps( anchor_x=xi, anchor_y=yi, anchor_z=zi, diameter=diam, pixels_per_len=ppl, verbose=True, ) mask = item.mask ox, oy, oz = item.anchor.x, item.anchor.y, item.anchor.z # offsets (npix_x, npix_y, npix_z) = item.mask.shape for xx in range(npix_x): for yy in range(npix_y): for zz in range(npix_z): world[xx + ox, yy + oy, zz + oz] = ( world[xx + ox, yy + oy, zz + oz] + mask[xx, yy, zz] ) # visualization of world + shapes # camera_elevation, camera_azimuth = -160, 160 # degrees n_fig_rows, n_fig_cols = 1, 2 # fig = plt.figure(figsize=(8, 8)) fig = plt.figure() # view_center = (h, r, r) # view_radius = r + 1 view_radius = int(np.max(world.shape) // 2 + 1) view_center = (view_radius, view_radius, view_radius) ix, iy, iz = 0, 1, 2 xlim = (view_center[ix] + view_radius, view_center[ix] - view_radius) ylim = (view_center[iy] + view_radius, view_center[iy] - view_radius) zlim = (view_center[iz] + view_radius, view_center[iz] - view_radius) index = 1 ax = fig.add_subplot(n_fig_rows, n_fig_cols, index, projection=Axes3D.name) # ax.view_init(elev=camera_elevation, azim=camera_azimuth) ax.voxels(world, linewidth=0.25, edgecolor="black", alpha=0.9) ax.set_title("(a)") ax.set_xlabel(r"$x$") ax.set_ylabel(r"$y$") ax.set_zlabel(r"$z$") ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_zlim(zlim) # fig.tight_layout() # plt.show() # skeletonize # https://scikit-image.org/docs/dev/auto_examples/edges/plot_skeleton.html # Use the Lee 1994 algorithm for 3D shapes # References # [Lee94] T.-C. Lee, R.L. Kashyap and C.-N. Chu, Building skeleton models # via 3-D medial surface/axis thinning algorithms. # Computer Vision, Graphics, and Image Processing, 56(6):462-478, 1994. # [Zha84] A fast parallel algorithm for thinning digital patterns, # T. Y. Zhang and C. Y. Suen, Communications of the ACM, # March 1984, Volume 27, Number 3. skeleton = skeletonize_3d(world) # fig = plt.figure(figsize=(8, 8)) index += 1 ax = fig.add_subplot(n_fig_rows, n_fig_cols, index, projection=Axes3D.name) # ax.view_init(elev=camera_elevation, azim=camera_azimuth) # ax.voxels(world, linewidth=0.25, edgecolor="black", alpha=0.9) ax.voxels(skeleton, linewidth=0.25, edgecolor="black", alpha=0.9) ax.set_title("(b)") ax.set_xlabel(r"$x$") ax.set_ylabel(r"$y$") ax.set_zlabel(r"$z$") ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_zlim(zlim) fig.tight_layout() plt.show() # plt.show(block=False) if serialize: extension = ".pdf" filename = ( Path(__file__).stem + "_" + letter.name + "_drop_" + str(n_shapes) + "_diam_" + str(diam) + "_stri_" + str(stride) + extension ) fig.savefig(filename, bbox_inches="tight", pad_inches=0) print(f"Serialized to {filename}") """ Copyright 2023 Sandia National Laboratories Notice: This computer software was prepared by National Technology and Engineering Solutions of Sandia, LLC, hereinafter the Contractor, under Contract DE-NA0003525 with the Department of Energy (DOE). All rights in the computer software are reserved by DOE on behalf of the United States Government and the Contractor as provided in the Contract. You are authorized to use this computer software for Governmental purposes but it is not to be released or distributed to the public. NEITHER THE U.S. GOVERNMENT NOR THE CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. This notice including this sentence must appear on any copies of this computer software. Export of this data may require a license from the United States Government. """
[ "matplotlib" ]
5ac88f2b85246055ae79227b5f134743f3c10fcd
Python
shjwjj/test
/project6.py
UTF-8
29,735
2.8125
3
[]
no_license
# coding: utf-8 # In[89]: # import packages import matplotlib.pyplot as plt import matplotlib.image as mping import numpy as np #import cv2 import cv2 import glob import pickle get_ipython().magic('matplotlib inline') # In[90]: # Read in an imgae image = mping.imread('./test_images/test1.jpg')#RGB格式 plt.imshow(image) # image2 = cv2.imread('./test_images/test1.jpg') #BGR格式 # plt.figure() # plt.subplot(1,2,1) # plt.imshow(image1) # plt.subplot(1,2,2) # plt.imshow(image2) # In[91]: ## camera calibration # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((6*9,3), np.float32) objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images image_cal = glob.glob('./camera_cal/calibration*.jpg') # images = mping.imread('./camera_cal/calibration*.jpg') #Step through the list and search for chessboard corners for fname in image_cal: img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (9,6),None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners img = cv2.drawChessboardCorners(img, (9,6), corners, ret) plt.imshow(img) cv2.imshow('img',img) cv2.waitKey(500) cv2.destroyAllWindows() #销毁我们创建的所有窗口 # In[92]: # Distortion correction import pickle get_ipython().magic('matplotlib inline') # Test undistortion on an image img = cv2.imread('camera_cal/calibration5.jpg') img_size = (img.shape[1], img.shape[0]) # Do camera calibration given object points and image points ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size,None,None) dst = cv2.undistort(img, mtx, dist, None, mtx) cv2.imwrite('camera_cal/test_undist.jpg',dst) # Save the camera calibration result for later use (we won't worry about rvecs / tvecs) dist_pickle = {} dist_pickle["mtx"] = mtx dist_pickle["dist"] = dist #以二进制格式打开一个文件只用于写入。如果该文件已存在则打开文件, #并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。 pickle.dump( dist_pickle, open( "camera_cal/wide_dist_pickle.p", "wb" ) ) #dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB) # Visualize undistortion f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10)) ax1.imshow(img) ax1.set_title('Original Image', fontsize=30) ax2.imshow(dst) ax2.set_title('Undistorted Image', fontsize=30) # In[ ]: # In[93]: image_undistorted = cv2.undistort(image, mtx, dist, None, mtx) plt.imshow(image_undistorted) # In[94]: f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10)) ax1.imshow(image) ax1.set_title('Original Image', fontsize=30) ax2.imshow(image_undistorted) ax2.set_title('Undistorted Image', fontsize=30) # In[95]: # 画图 def plot2images(image1, image2, title1, title2, image1cmap=None, image2cmap='gray', save_filename=None): f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9)) f.tight_layout() ax1.imshow(image1, cmap=image1cmap) ax1.set_title(title1, fontsize= 30) ax2.imshow(image2, cmap=image2cmap) ax2.set_title(title2, fontsize= 30) plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.) if save_filename: plt.savefig(save_filename) plt.show() # In[96]: # rgb通道 def rgb_select(img, r_thresh, g_thresh, b_thresh): r_channel = img[:,:,0] g_channel=img[:,:,1] b_channel = img[:,:,2] r_binary = np.zeros_like(r_channel) r_binary[(r_channel > r_thresh[0]) & (r_channel <= r_thresh[1])] = 1 g_binary = np.zeros_like(g_channel) g_binary[(r_channel > g_thresh[0]) & (r_channel <= g_thresh[1])] = 1 b_binary = np.zeros_like(b_channel) b_binary[(r_channel > b_thresh[0]) & (r_channel <= b_thresh[1])] = 1 combined = np.zeros_like(r_channel) combined[((r_binary == 1) & (g_binary == 1) & (b_binary == 1))] = 1 return combined # In[97]: plt.imshow(image_undistorted) # In[98]: luv= cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2LUV) hls = cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2HLS) hsv = cv2.cvtColor(image_undistorted,cv2.COLOR_RGB2HSV) lab=cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2LAB) s_channel = hsv[:,:,1] b_channel=lab[:,:,2] l_channel = luv[:,:,0] v_channel= hsv[:,:,2] print(s_channel.shape) # In[99]: def mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)): # Calculate gradient magnitude # Convert to grayscale gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Take both Sobel x and y gradients sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # Calculate the gradient magnitude gradmag = np.sqrt(sobelx**2 + sobely**2) # Rescale to 8 bit scale_factor = np.max(gradmag)/255 gradmag = (gradmag/scale_factor).astype(np.uint8) # Create a binary image of ones where threshold is met, zeros otherwise mag_binary = np.zeros_like(gradmag) mag_binary[(gradmag >= mag_thresh[0]) & (gradmag <= mag_thresh[1])] = 1 #plot2images(image1=image, image2=mag_binary, title1='Original Image', title2='Thresholded Magnitude', save_filename='output_images/thresholded_magnitude.png') # Return the binary image return mag_binary # In[100]: def abs_sobel_thresh(image, orient='x', sobel_kernel=3, thresh=(0, 255)): # Calculate directional gradient # Convert to grayscale gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Apply x or y gradient with the OpenCV Sobel() function # and take the absolute value if orient == 'x': abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)) if orient == 'y': abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)) # Rescale back to 8 bit integer scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel)) # Create a copy and apply the threshold grad_binary = np.zeros_like(scaled_sobel) # Here I'm using inclusive (>=, <=) thresholds, but exclusive is ok too grad_binary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1 #plot2images(image1=image, image2=grad_binary, title1='Original Image', title2='thresholded y-derivative', save_filename='output_images/thresholdedy-derivative.png') # Return the result return grad_binary # In[101]: def color_thresh(img, s_thresh, l_thresh, b_thresh, v_thresh): luv= cv2.cvtColor(image, cv2.COLOR_RGB2LUV) hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) hsv = cv2.cvtColor(image,cv2.COLOR_RGB2HSV) lab=cv2.cvtColor(image, cv2.COLOR_RGB2LAB) s_channel = hsv[:,:,1] b_channel=lab[:,:,2] l_channel = luv[:,:,0] v_channel= hsv[:,:,2] s_binary = np.zeros_like(s_channel) s_binary[(s_channel > s_thresh[0]) & (s_channel <= s_thresh[1])] = 1 b_binary = np.zeros_like(b_channel) b_binary[(s_channel > b_thresh[0]) & (s_channel <= b_thresh[1])] = 1 l_binary = np.zeros_like(l_channel) l_binary[(s_channel > l_thresh[0]) & (s_channel <= l_thresh[1])] = 1 v_binary = np.zeros_like(v_channel) v_binary[(s_channel > v_thresh[0]) & (s_channel <= v_thresh[1])] = 1 combined = np.zeros_like(s_channel) combined[((s_binary == 1) & (b_binary == 1) & (l_binary == 1) & (v_binary == 1))] = 1 return combined # In[102]: def color_gradient_threshold(image_undistorted): ksize = 15 luv= cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2LUV) hls = cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2HLS) hsv = cv2.cvtColor(image_undistorted,cv2.COLOR_RGB2HSV) lab=cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2LAB) # s_channel = hsv[:,:,1] # b_channel=lab[:,:,2] # l_channel = luv[:,:,0] # v_channel= hsv[:,:,2] # mag_binary = mag_thresh(image_undistorted, sobel_kernel=ksize, mag_thresh=(150, 255)) gradx=abs_sobel_thresh(image_undistorted,orient='x',sobel_kernel=ksize,thresh=(50,90)) grady=abs_sobel_thresh(image_undistorted,orient='y',sobel_kernel=ksize,thresh=(30,90)) c_binary=color_thresh(image_undistorted,s_thresh=(70,100),l_thresh=(60,255),b_thresh=(50,255),v_thresh=(150,255)) rgb_binary=rgb_select(image_undistorted,r_thresh=(225,255),g_thresh=(225,255),b_thresh=(0,255)) combined_binary = np.zeros_like(s_channel) # preprocessImage[((gradx==1) & (grady==1)) | (c_binary==1) | (rgb_binary==1)] =255 # combined_binary[((gradx == 1) & (grady == 1) | (c_binary == 1) | (mag_binary == 1))] = 255 combined_binary[((gradx == 1) & (grady == 1) | (c_binary == 1) | (rgb_binary==1))] = 255 color_binary = combined_binary return color_binary, combined_binary color_binary, combined_binary = color_gradient_threshold(image_undistorted ) plot2images(image1 =image , image2 = combined_binary, title1='Original Image', title2='color_gradient_threshold Image') # In[103]: R = image[:,:,0] G = image[:,:,1] B = image[:,:,2] # In[104]: hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) H = hls[:,:,0] L = hls[:,:,1] S = hls[:,:,2] # In[105]: plt.imshow(S, cmap='gray') # In[106]: # 透视变换 def perspective_transform(image_undistorted, combined_binary): top_left = [560, 470] top_right = [730, 470] bottom_right = [1080, 720] bottom_left = [200, 720] top_left_dst = [200,0] top_right_dst = [1100,0] bottom_right_dst = [1100,720] bottom_left_dst = [200,720] # gray = cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2GRAY) img_size = (image_undistorted.shape[1], image_undistorted.shape[0]) src = np.float32([top_left,top_right, bottom_right, bottom_left] ) dst = np.float32([top_left_dst, top_right_dst, bottom_right_dst, bottom_left_dst]) M = cv2.getPerspectiveTransform(src, dst) Minv = cv2.getPerspectiveTransform(dst, src) # warped = warped = cv2.warpPerspective(image_undistorted, M, img_size) warped = cv2.warpPerspective(combined_binary, M, img_size) return warped, Minv warped, Minv = perspective_transform(image_undistorted, combined_binary) plot2images(image1 = image, image2 = warped, title1='Original Image', title2='perspective_Imag') # In[107]: histogram = np.sum(warped[:,:], axis=0) # 将warped中从360行开始加到720行; #histogram = np.sum(warped[warped.shape[0]//2:,:], axis=0) plt.plot(histogram) # In[108]: ## test print(warped.shape[0]) #print([warped.shape[0]//2:,:]) print(np.sum(warped[warped.shape[0]//2:,:], axis=0).shape) out_img = np.dstack((warped, warped, warped))*255 print(out_img.shape) print(histogram.shape) print(warped.shape) warped2 = np.dstack((warped,warped,warped))*0.002 print(warped2.nonzero()[1]) # In[109]: # 将warped中从360行开始加到720行; histogram2 = np.sum(warped[warped.shape[0]//2:,:], axis=0) out_img = np.dstack((warped, warped, warped))*255 midpoint = np.int(histogram2.shape[0]/2) leftx_base = np.argmax(histogram2[:midpoint]) rightx_base = np.argmax(histogram2[midpoint:])+midpoint nwindows = 1 window_height = np.int(warped.shape[0]/nwindows) nonzero = warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) leftx_current = leftx_base rightx_current = rightx_base margin = 100 minpix = 50 left_lane_inds = [] right_lane_inds = [] for window in range(nwindows): win_y_low = warped.shape[0]-(window+1)*window_height win_y_high = warped.shape[0]-window*window_height win_xleft_low = leftx_current-margin win_xleft_high = leftx_current+margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high), (0,255,0), 2) cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high), (0,255,0), 2) good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] print(good_left_inds) good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] print(good_right_inds) left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) print(nonzero[0]) left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) ploty = np.linspace(0, warped.shape[0]-1, warped.shape[0] ) left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] # out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] # In[110]: good_left_inds.shape #good_right_inds.shape # In[111]: def finding_line(warped): # 将warped中从360行开始加到720行; histogram2 = np.sum(warped[warped.shape[0]//2:,:], axis=0) out_img = np.dstack((warped, warped, warped))*255 midpoint = np.int(histogram2.shape[0]/2) leftx_base = np.argmax(histogram2[:midpoint]) rightx_base = np.argmax(histogram2[midpoint:])+midpoint nwindows = 5 window_height = np.int(warped.shape[0]/nwindows) nonzero = warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) leftx_current = leftx_base rightx_current = rightx_base margin = 100 minpix = 50 left_lane_inds = [] right_lane_inds = [] for window in range(nwindows): win_y_low = warped.shape[0]-(window+1)*window_height win_y_high = warped.shape[0]-window*window_height win_xleft_low = leftx_current-margin win_xleft_high = leftx_current+margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high), (0,255,0), 2) cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high), (0,255,0), 2) good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) if len(good_left_inds) > minpix: leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > minpix: rightx_current = np.int(np.mean(nonzerox[good_right_inds])) left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) ploty = np.linspace(0, warped.shape[0]-1, warped.shape[0] ) left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] # out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] # 找出左车道线附近的像素点序号; left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))) # 找出右车道线附近的像素点序号; right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))) print(left_lane_inds) print(right_lane_inds) return left_fitx, right_fitx,out_img, left_fit, right_fit,left_lane_inds,right_lane_inds # In[112]: plt.imshow(warped) # In[113]: left_fitx, right_fitx, out_img,left_fit, right_fit,left_lane_inds,right_lane_inds = finding_line(warped) ploty = np.linspace(0, warped.shape[0]-1, warped.shape[0] ) plt.imshow(out_img) plt.plot(left_fitx, ploty, color='yellow') plt.plot(right_fitx, ploty, color='yellow') # 设置坐标轴的刻度范围 # plt.xlim(0, 1280) # plt.ylim(720, 0) # In[114]: plt.imshow(warped) # In[115]: left_fit right_fit # In[116]: binary_warped = warped # In[117]: nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) margin = 100 # 找出左车道线附近的像素点序号; left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))) # 找出右车道线附近的像素点序号; right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))) # 找到车道线像素点的位置 leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] ) left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] # 产生一张空图 out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255 window_img = np.zeros_like(out_img) # 画图的颜色 out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] # Generate a polygon to illustrate the search window area # And recast the x and y points into usable format for cv2.fillPoly() left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))]) left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))]) left_line_pts = np.hstack((left_line_window1, left_line_window2)) right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))]) right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))]) right_line_pts = np.hstack((right_line_window1, right_line_window2)) # In[118]: def sliding_window(binary_warped,left_fit,right_fit): nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) margin = 100 # 找出左车道线附近的像素点序号; left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))) # 找出右车道线附近的像素点序号; right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))) # 找到车道线像素点的位置 leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # 重新拟合出一条二次曲线 #left_fit = np.polyfit(lefty, leftx, 2) #right_fit = np.polyfit(righty, rightx, 2) # 产生画图的点 ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] ) left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] # 产生一张空图 out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255 window_img = np.zeros_like(out_img) # 画图的颜色 out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] # Generate a polygon to illustrate the search window area # And recast the x and y points into usable format for cv2.fillPoly() left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))]) left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))]) left_line_pts = np.hstack((left_line_window1, left_line_window2)) right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))]) right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))]) right_line_pts = np.hstack((right_line_window1, right_line_window2)) return left_fitx, right_fitx, left_line_pts,right_line_pts,window_img, out_img,left_lane_inds,right_lane_inds # Draw the lane onto the warped blank image left_fitx, right_fitx, left_line_pts,right_line_pts,window_img, out_img, left_lane_inds, right_lane_inds =sliding_window(binary_warped,left_fit,right_fit) cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0)) cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0)) result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0) plt.imshow(result) # plt.plot(left_fitx, ploty, color='yellow') # plt.plot(right_fitx, ploty, color='yellow') # plt.xlim(0, 1280) # plt.ylim(720, 0) print(left_lane_inds) print(right_lane_inds) # In[119]: left_fit right_fit # In[120]: def CalculateCurvature(binary_image, left_fit, right_fit, l_lane_inds, r_lane_inds): # Define y-value where we want radius of curvature # I'll choose the maximum y-value, corresponding to the bottom of the image img_size = (binary_image.shape[1], binary_image.shape[0]) #h = binary_image.shape[0] ploty = np.linspace(0, img_size[1]-1, img_size[1]) y_eval = np.max(ploty) # left_curverad = ((1 + (2*left_fit[0]*y_eval + left_fit[1])**2)**1.5) / np.absolute(2*left_fit[0]) # right_curverad = ((1 + (2*right_fit[0]*y_eval + right_fit[1])**2)**1.5) / np.absolute(2*right_fit[0]) #print(left_curverad, right_curverad) # Example values: 1926.74 1908.48 # Define conversions in x and y from pixels space to meters ###RESUBMIT # 70ft dashed space + dashed line + dashed space ym_per_pix = 30/720 # ym_per_pix = 21.34/385 # meters per pixel in y dimension # 12ft lane in 500 pixels xm_per_pix = 3.7/960 # meters per pixel in y dimension ### ym_per_pix = 30/720 # # meters per pixel in y dimension ### xm_per_pix = 3.7/700 # meters per pixel in x dimension ###RESUBMIT - END # 找到图像中不为零的所有像素点的像素坐标 nonzero = binary_image.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # 将这些不为零的像素点坐标分成x,y车道线中 leftx = nonzerox[l_lane_inds] lefty = nonzeroy[l_lane_inds] rightx = nonzerox[r_lane_inds] righty = nonzeroy[r_lane_inds] # 将这些像素点对应到世界坐标系中,然后拟合成二次曲线 left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2) right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2) # 计算曲线的曲率 left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0]) right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0]) # 左右车道线曲率平均 avg_curverad = (left_curverad + right_curverad) / 2 ## 以下计算本车在车道线中心的位置 dist_from_center = 0.0 # assume the camera is centered in the vehicle ###camera_pos = img_size[1] / 2 if right_fit is not None: if left_fit is not None: # 摄像头位于图像中间,也是本车的中心 camera_pos = img_size[0] / 2 ###RESUBMIT - END # find where the right and left lanes intersect the bottom of the frame # left_lane_pix = np.polyval(left_fit, img_size[1]) # right_lane_pix = np.polyval(right_fit, img_size[1]) # 左右车道线最底端x坐标 left_lane_pix = np.polyval(left_fit, binary_image.shape[0]) right_lane_pix = np.polyval(right_fit, binary_image.shape[0]) # 左右车道线中点x坐标 center_of_lane_pix = (left_lane_pix + right_lane_pix) / 2 # 摄像头(本车中心)与车道线中心的距离 dist_from_center = (camera_pos - center_of_lane_pix) * 3.7/960 #print(dist_from_center, 'm') return avg_curverad, dist_from_center # CalculateCurvature(binary_image, left_fit, right_fit, l_lane_inds, r_lane_inds) avg_curverad, dist_from_center = CalculateCurvature(binary_warped,left_fit, right_fit, left_lane_inds, right_lane_inds) # In[121]: def region_of_interest(img, vertices): """ Applies an image mask. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. """ #defining a blank mask to start with mask = np.zeros_like(img) #defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 #filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) #returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def apply_region_of_interest_mask(image): x_factor = 40 y_factor = 60 vertices = np.array([[ (0,image.shape[0]), (((image.shape[1]/2)- x_factor), (image.shape[0]/2)+ y_factor), (((image.shape[1]/2) + x_factor), (image.shape[0]/2)+ y_factor), (image.shape[1],image.shape[0])]], dtype=np.int32) #print (vertices) return region_of_interest(image, vertices) # In[122]: avg_curverad, dist_from_center # In[123]: def overlay_text_on_image (image, avg_curverad, dist_from_center): new_img = np.copy(image) #h = new_img.shape[0] font = cv2.FONT_HERSHEY_SIMPLEX font_color = (255,255,255) num_format = '{:04.2f}' text = 'Radius of Curvature: ' + num_format.format(avg_curverad) + 'm' cv2.putText(new_img, text, (40,70), font, 1.5, font_color, 2, cv2.LINE_AA) direction = 'left' if dist_from_center > 0: direction = 'right' abs_dist = abs(dist_from_center) text = 'Vehicle is ' + num_format.format(abs_dist) + ' m ' + direction + ' of center' cv2.putText(new_img, text, (40,120), font, 1.5, font_color, 2, cv2.LINE_AA) return new_img new_img = overlay_text_on_image (image, avg_curverad, dist_from_center) plt.imshow(new_img) # # pipline # In[125]: import os # # test pipline # In[126]: image = mping.imread('./test_images/test2.jpg') result = main_pipline(image) plt.imshow(result) # In[127]: def read_all_images2(): input = "test_images/" output = "output_images/" all_files = os.listdir(input) for file_name in all_files: #read images = mping.imread(input+file_name) result2 = main_pipline(images) plt.figure() plt.imshow(result2) cv2.imwrite(output + file_name, result2) read_all_images2() # result2 = pipline(images) # # Test on video # # In[36]: from moviepy.editor import VideoFileClip from IPython.display import HTML # In[37]: def process_image(image): # NOTE: The output you return should be a color image (3 channel) for processing video below # TODO: put your pipeline here, # you should return the final output (image where lines are drawn on lanes) result = main_pipline(image) return result # In[38]: white_output = './project_video.mp4.mp4' ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds #clip1 = VideoFileClip("test_videos/solidWhiteRight.mp4").subclip(0,5) clip1 = VideoFileClip("project_video.mp4") white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!! get_ipython().magic('time white_clip.write_videofile(white_output, audio=False)') # In[ ]: # In[ ]:
[ "matplotlib" ]
c5a3da0c7ce414c0bbf3e7eb1497008385dc0c90
Python
wsgan001/Thesis-11
/oligos/over_representation_check.py
UTF-8
2,722
2.625
3
[]
no_license
#!/usr/bin/python import sys import matplotlib.pyplot as plt import math def get_total(string): args = string.strip().split("\t") if args[0] == "@total": return int(args[1]) return -1 args = sys.argv[1:] if len(args) < 3: print "usage: [--plot] input_file control_file output_file" sys.exit(1) plot = False if args[0] == "--plot": plot = True del args[0] input_file_path = args[0] del args[0] control_file_path = args[0] del args[0] output_file_path = args[0] del args[0] with open(control_file_path, "r") as control_file: dummy = control_file.readline() #skip header ctrl_tot = get_total(control_file.readline()) if ctrl_tot == -1: print "Error: @total not found" sys.exit(1) #Create lookup table lookup = {} for line in control_file: (kmer, count, freq) = line.strip().split("\t") lookup[kmer] = (count, freq) differential_kmer = {} differential_kmer_log = {} kmer_total = 0 diff_total = 0.0 with open(input_file_path, "r") as input_file: dummy = input_file.readline() #skip header input_tot = get_total(input_file.readline()) if input_tot == -1: print "Error: @total not found" sys.exit(1) for line in input_file: (kmer, count, freq) = line.strip().split("\t") if lookup.has_key(kmer): (ctrl_count, ctrl_freq) = lookup[kmer] else: (ctrl_count, ctrl_freq) = (1, float(1) / ctrl_tot) #calculate pseudo frequence diff = float(freq) / float(ctrl_freq) kmer_total = kmer_total + 1 diff_total = diff_total + math.log(diff,2) differential_kmer[kmer] = (count, freq, ctrl_count, ctrl_freq, diff) differential_kmer_log[kmer] = math.log(diff, 2) diff_mean = diff_total / kmer_total if plot: fig, ax = plt.subplots() ax.bar(range(len(differential_kmer_log)), differential_kmer_log.values(), align='center', color='#cc3300', edgecolor='#cc3300') #Mean ax.plot((0,len(differential_kmer_log)), (diff_mean,diff_mean), color='#3366ff') ax.plot((0,len(differential_kmer_log)), (0,0), color='white') ax.axes.get_xaxis().set_visible(False) fig.savefig(output_file_path + ".pdf", format='pdf') output_file = open(output_file_path + ".txt", "w") output_file.write("k-mer\tcount\tfreq\tcontrol_count\tcontrol_freq\tdifference\tdifference_log2\n") for kmer, log_diff in sorted(differential_kmer_log.items(), key=lambda x: x[1], reverse = True): (count, freq, ctrl_count, ctrl_freq, diff) = differential_kmer[kmer] output_file.write(str(kmer) + "\t" + str(count) + "\t" + str(freq) + "\t" + str(ctrl_count) + "\t" + str(ctrl_freq) + "\t" + str(diff) + "\t" + str(log_diff) + "\n") output_file.close()
[ "matplotlib" ]
5230ffd1375203e42523d38a7275582a91a8425e
Python
thkim0211/MachineLearning
/HW1.py
UTF-8
3,293
2.90625
3
[]
no_license
import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt from matplotlib.axes._axes import _log as matplotlib_axes_logger matplotlib_axes_logger.setLevel('ERROR') #Tae Hwan Kim #I pledge my honor that I have abided by the Stevens Honor System. iris = load_iris() df= pd.DataFrame(data= np.c_[iris['data'], iris['target']], columns= iris['feature_names'] + ['target']) df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names) X = df.iloc[0:150, [1, 2]].values y = df.iloc[0:150, 5].values # set output lable value to 1 if it is Virginca and 0 if Other. y = np.where(y == 'virginica', 1, 0) X_std = np.copy(X) X_std[:,0] = (X_std[:,0] - X_std[:,0].mean()) / X_std[:,0].std() X_std[:,1] = (X_std[:,1] - X_std[:,1].mean()) / X_std[:,1].std() print(y) X_train,X_test,y_train,y_test = train_test_split(X_std,y,test_size = 0.2) def sigmoid(X, theta): z = np.dot(X, theta[1:]) + theta[0] return 1.0 / ( 1.0 + np.exp(-z)) def lrCostFunction(y, hx): j = -y.dot(np.log(hx)) - ((1 - y).dot(np.log(1-hx))) return j def error(X_std,theta,y): hx = sigmoid(X_std,theta) c = lrCostFunction(y, hx) e = hx - y return e, c def lrGradient(X_std, y, theta, alpha, num_iter): # empty list to store the value of the cost function over number of iterations cost = [] for i in range(num_iter): e,c = error(X_std,theta,y) grad = X_std.T.dot(e) theta[0] = theta[0] - alpha * e.sum() theta[1:] = theta[1:] - alpha * grad cost.append(c) return cost,theta theta = np.zeros(3) alpha = 0.01 num_iter = 5000 cost,theta = lrGradient(X_train,y_train, theta, alpha, num_iter) plt.plot(range(1, len(cost) + 1), cost) plt.xlabel('Iterations') plt.ylabel('Cost') print ('\n Logisitc Regression bias(intercept) term :', theta[0]) print ('\n Logisitc Regression estimated coefficients :', theta[1:]) plt.show() def lrPredict(X_std,theta): return np.where(sigmoid(X_std,theta) >= 0.5,1, 0) from matplotlib.colors import ListedColormap def pdb(x,y,theta): ps = x label = y figure = plt.figure() graph = figure.add_subplot(1, 1, 1) x_a = [] y_a = [] for index, labelValue in enumerate(label): pltx = ps[index][0] x_a.append(pltx) plty = ps[index][1] y_a.append(plty) if labelValue == 0: graph.scatter(pltx, plty, c='b', marker="x", label='X') else: graph.scatter(pltx, plty, c='r', marker="o", label='O') pdb(X_test,y_test,theta) plt.title('Decision Boundary') plt.xlabel('sepal length ') plt.ylabel('sepal width ') plt.show() def accuracy(x,theta,y): n_correct = 0 m = len(x) pred = lrPredict(x,theta) for i in range(m): if y[i] == pred[i]: n_correct += 1 print(f"Accuracy:{n_correct/len(y)}") accuracy(X_test,theta,y_test) accuracy(X_train,theta,y_train)
[ "matplotlib" ]
ae5b2d5a672ba85d121288618382efb1eede5e8a
Python
ysun996/SinoatrialPacemaker
/old files/HyperPolarizedPhaseResponseCurve.py
UTF-8
10,710
2.78125
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt import bisect from scipy.integrate import odeint ##################################################################################################### # This Input file was set to create a graph of the hyperpolarized phase-response curve. # To see the depolarized phase-resposne curve simply set HyperPolarYN = 1 ##################################################################################################### #####Gating variable equations and individual current equations def dzdt(a,b,z): hill=a/(a+b) timeC=1/(a+b) rVal=(hill-z)/timeC return rVal def am(Vm): max_a_m = 1 a_m = max_a_m * ((Vm + 47) / (1 - np.exp(-(Vm + 47) / 10))) return a_m def an(Vm): a_n=0.01*(Vm+55)/(1-np.exp(-(Vm+55/10))) return a_n def As(v): a_s=0.05*(v+28)/(1-np.exp(-(v+28)/5)) return a_s def bs(v): b_s=0.00025*np.exp(-(v+28)/14.93) return b_s def bn(Vm): bn=0.125*np.exp((-Vm+65)/80) return bn def bm(Vm): max_b_m = 40 b_m = max_b_m * np.exp(-(Vm + 72) / 17.86) return b_m def ah(Vm): max_a_h = 0.0085 a_h = max_a_h * np.exp(-(Vm + 71) / 5.43) return a_h def bh(Vm): max_b_h = 2.5 b_h = max_b_h / (1 + np.exp(-(Vm + 10) / 12.2)) return b_h def ad(Vm): max_a_d = 0.005 a_d = max_a_d * ((Vm + 34) / (1 - np.exp(-(Vm + 34) / 10))) return a_d def bd(Vm): max_b_d = 0.05 b_d = max_b_d * (np.exp(-(Vm + 34) / 6.67)) return b_d def not_d(Vm): ### d' variable needed for the slow inward current not_d = 1/(1+np.exp(-(Vm+15)/6.67)) return not_d def af(Vm): max_a_f = 0.002468 a_f = max_a_f * np.exp(-(Vm + 47) / 20) return a_f def bf(Vm): max_b_f = 0.05 b_f = max_b_f / (1 + np.exp(-(Vm + 13) / 11.49)) return b_f def ax1(Vm): max_a_x1 = 0.0025 a_x1 = (max_a_x1 * np.exp((Vm + 30) / 12.11)) / (1 + np.exp((Vm + 30) / 50)) return a_x1 def bx1(Vm): max_b_x1 = 0.0065 b_x1 = max_b_x1 * (np.exp(-(Vm - 20) / 16.67)) / (1 + np.exp(-(Vm - 20) / 25)) return b_x1 def l_bar_x1(Vm): l_bar = 2.25 * ((np.exp((Vm + 95)/25)-1)/(np.exp((Vm + 45)/25))) return l_bar def ay(Vm): #Polynomial Regression w=0.03375000000000002 if isinstance(Vm,float)==True: a = [1.4557319134e-12,4.0945641782e-10,4.6549818992e-08,2.4903140216e-06,6.1460577425e-05,4.7453248494e-04,\ 2.5019715465e-03] a_y = a[0]*Vm**6+a[1]*Vm**5+a[2]*Vm**4+a[3]*Vm**3+a[4]*Vm**2+a[5]*Vm+a[6] if a_y <= 0: a_y = 0.00001 else: a = [1.4557319134e-12,4.0945641782e-10,4.6549818992e-08,2.4903140216e-06,6.1460577425e-05,4.7453248494e-04,\ 2.5019715465e-03] a_y = a[0]*Vm**6+a[1]*Vm**5+a[2]*Vm**4+a[3]*Vm**3+a[4]*Vm**2+a[5]*Vm+a[6] for i in range(len(Vm)): if a_y[i] <= 0: a_y[i] = 0.00001 a_y = a_y*w #Modified version of the original equation #max_a_y = 0.00005 #a_y = (max_a_y * np.exp(-(Vm + 14.25) / 14.93))/3 return a_y def by(Vm): #Polynomial Regression w=0.03375000000000002 if isinstance(Vm,float)==True: a = [3.5607174324e-13,3.9587887660e-11,-6.9345321240e-09,-8.8541673551e-07,4.5605591007e-05,9.4190808268e-03,\ 3.3771510156e-01] b_y = a[0]*Vm**6+a[1]*Vm**5+a[2]*Vm**4+a[3]*Vm**3+a[4]*Vm**2+a[5]*Vm+a[6] if b_y <= 0: b_y = 0.00001 else: a = [3.5607174324e-13,3.9587887660e-11,-6.9345321240e-09,-8.8541673551e-07,4.5605591007e-05,9.4190808268e-03,\ 3.3771510156e-01] b_y = a[0]*Vm**6+a[1]*Vm**5+a[2]*Vm**4+a[3]*Vm**3+a[4]*Vm**2+a[5]*Vm+a[6] for i in range(len(Vm)): if b_y[i] <= 0: b_y[i] = 0.00001 b_y = b_y*w #Modified version of the original equation #max_b_y = 0.001 #b_y = (max_b_y * (Vm + 14.25) / (1 - np.exp(-(Vm + 14.25) / 5)))/3 return b_y #####Time-independent background potassium current (I_k1) def i_k1(Vm): IPot=1.3*(np.exp((Vm+110)/25)-1)/(np.exp((Vm+60)/12.5)+np.exp((Vm+60)/25))+\ 0.26*(Vm+30)/(1-np.exp(-(Vm+30)/25)) return IPot #Parameters gNa = 4.4 gnNa = 0.066 gSi = 0.5175 gnSi = 0.161 gfNa = 1.2 ENa = 40 ESi = 70 EK = -93 Cm = 6 I = 0 parameters = [gNa, gnNa, gSi, gnSi, gfNa, ENa, ESi, EK, Cm, I] ###Pacemaker Function def PacemakerODE(state, t, parameters): gNa = parameters[0] gnNa = parameters[1] gSi = parameters[2] gnSi = parameters[3] gfNa = parameters[4] ENa = parameters[5] ESi = parameters[6] EK = parameters[7] Cm = parameters[8] I = parameters[9] v = state[0] d = state[1] f = state[2] m = state[3] h = state[4] x1 = state[5] y = state[6] Isi = (gSi * d * f + gnSi * not_d(v)) * (v - ESi) Ina = (gNa * (m**3)*h + gnNa) * (v - ENa) Ix1 = x1 * l_bar_x1(v) Ik1 = i_k1(v) If = (y**2 * gfNa) * (v - ENa) + (v-EK) * y**2 * (-120/EK) Ii = Isi + Ina + Ix1 + Ik1 + If + I dv = -Ii/Cm dd = (ad(v) * (1-d)) - (bd(v) * d) df = (af(v) * (1-f)) - (bf(v) * f) dm = (am(v) * (1-m)) - (bm(v) * m) dh = (ah(v) * (1-h)) - (bh(v) * h) dx1 = (ax1(v) * (1-x1)) - (bx1(v) * x1) dy = (ay(v) * (1-y)) - (by(v) * y) rstate = [dv, dd, df, dm, dh, dx1, dy] return rstate #Function to find individual current values of PacemakerODE def currentVals(state, t, parameters): gNa = parameters[0] gnNa = parameters[1] gSi = parameters[2] gnSi = parameters[3] gfNa = parameters[4] ENa = parameters[5] ESi = parameters[6] EK = parameters[7] Cm = parameters[8] I = parameters[9] v = state[0] d = state[1] f = state[2] m = state[3] h = state[4] x1 = state[5] y = state[6] Isi = (gSi * d * f + gnSi * not_d(v)) * (v - ESi) Ina = (gNa * (m**3)*h + gnNa) * (v - ENa) Ix1 = x1 * l_bar_x1(v) Ik1 = i_k1(v) If = y**2*(gfNa * (v - ENa) + (v-EK) * (-120/EK)) Ii = Isi + Ina + Ix1 + Ik1 + If + I return [Isi,Ina,Ix1,Ik1,If,Ii] #Function to find local maxima and cycle length def cycle_len(t,s): logic1 = True localMax = [0] for i in range(2500,5000): if logic1 and s[i,0] > -20 and s[i,0] < s[(i-1),0]: localMax.append(i - 1) logic1=False elif s[i,0] > -20 and s[(i-1),0] < -20: logic1=True cyclelen = t[localMax[2]]-t[localMax[1]] return cyclelen,localMax #Pulse function def pulseFnc(s0,t,p,phase,stim): for x in [0,1]: if x == 0: tIndexL=bisect.bisect_left(t,phase) t1=t[0:tIndexL] tplot=t1 s = odeint(PacemakerODE, s0, t1, args=(parameters,)) stateFinal = s else: CycleValue=len(t) stimCycleValue=phase + 50 tIndexR=bisect.bisect_left(t,CycleValue) tIndexStim=bisect.bisect_left(t,stimCycleValue) p[9] = stim t1=t[tIndexL:tIndexStim] tplot=np.append(tplot,t1) state1=s[-1,:] s = odeint(PacemakerODE, state1, t1, args=(parameters,)) stateFinal = np.concatenate((stateFinal,s),axis=0) p[9]=0 t1=t[tIndexStim:tIndexR] tplot=np.append(tplot,t1) state1=s[-1,:] s = odeint(PacemakerODE, state1, t1, args=(parameters,)) stateFinal = np.concatenate((stateFinal,s),axis=0) tIndexL=tIndexR return stateFinal #Function to find Time Constant def timeC(a,b): r = 1/(a+b) return r #Initial state state0=[-1.26312652e+01, 6.73685294e-01, 5.28447665e-01, 9.60815694e-01, 4.83891944e-07, 3.70080101e-02, 1.24208141e-01] parameters[9] = 0 #Time tmax = 2019 dt = 0.4 t = np.arange(0, tmax, dt) ######################################################################################### # Phase Response Curves. Set HyperPolarYN to 1 for hyperpolarized phase-response curve or 0 for depolarized phase response # Curve. PhaseResetYN = 1 HyperPolarYN = 1 if HyperPolarYN == 1: PolPulse = [0.5,2.0,3.5] elif HyperPolarYN == 0: PolPulse = [-0.6,-1.3,-1.9,-2.8] if PhaseResetYN == 1: state = odeint(PacemakerODE, state0, t, args=(parameters,)) cycleLength, localMx = cycle_len(t,state) print(cycleLength) phasePercent = np.arange(0.05,1,0.025) for w in PolPulse: print('now on '+str(w)) phaseChange = np.zeros(len(phasePercent)) for i in range(len(phasePercent)): phase = t[localMx[1]]+cycleLength*phasePercent[i] statePulsed = pulseFnc(state0,t,parameters,phase,w) cyclePulsedLength, localPulsedMx = cycle_len(t,statePulsed) phaseChange[i] = (cyclePulsedLength-cycleLength)/cycleLength*100 plt.plot(phasePercent*100,phaseChange, 'o',label=str(w) + '\u03BC'+'A/c$m^2$') plt.legend() plt.ylabel('\u0394'+'$\phi$'+' (%)') plt.xlabel('% of Cycle ($\phi$)') ############################################################################################# ############################################################################################# #v vs. dv vdvYN = 0 if vdvYN == 1: state = odeint(PacemakerODE, state0, t, args=(parameters,)) dstate=[[0,0,0,0,0,0,0]] for w in range(len(state[:,0])): d1state=[PacemakerODE(state[w,:],t,parameters)] dstate=np.concatenate((dstate,d1state),axis=0) plt.plot(state[:,0],dstate[1:,0]) plt.ylabel('dV/dt') plt.xlabel('V') ############################################################################################# ############################################################ # Currents CurrentYN = 0 if CurrentYN == 1: parameters[9] = 0 state = odeint(PacemakerODE, state0, t, args=(parameters,)) dstate=[[0,0,0,0,0,0]] for w in range(len(state[:,0])): d1state=[currentVals(state[w,:],t,parameters)] dstate=np.concatenate((dstate,d1state),axis=0) Ilabels=['Isi','Ina','Ix1','Ik1','If','Ii'] for w in range(0,5): plt.plot(t,dstate[1:,w],label=Ilabels[w]) plt.legend() plt.ylabel('Current') plt.xlabel('t') plt.xlim(250,1250) ############################################################ ############################################################ #Action potential ActionPotentialYN = 0 if ActionPotentialYN == 1: state = odeint(PacemakerODE, state0, t, args=(parameters,)) plt.plot(t,state[:,0]) plt.ylabel('V') plt.xlabel('t') plt.xlim(250,1250) ############################################################# plt.show()
[ "matplotlib" ]
0d1597c881c35e2e677eeb34a9da0457c107bf16
Python
l-johnston/unit_system
/doc/examples/labels_graph.py
UTF-8
456
3.03125
3
[ "MIT" ]
permissive
"""Example showing matplotlib unit interface Generate a graph showing default labels """ import matplotlib.pyplot as plt from unit_system.predefined_units import m, s plt.style.use("./doc/examples/report.mplstyle") def main(): """Generate graph""" x = [1, 2, 3] * s y = [4, 5, 6] * m / s fig, ax = plt.subplots() ax.plot(x, y, "k-") fig.savefig("./doc/examples/default_labels_graph.png") if __name__ == "__main__": main()
[ "matplotlib" ]
58d5e7cb17bf24ecd28fff2e566dce034cc61eb8
Python
ee2110/Reinforcement-Learning
/RL_Comparison_Performances_Gym/Taxi-v3/SARSA.py
UTF-8
4,915
2.921875
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt import gym import pandas as pd import argparse import time import os parser = argparse.ArgumentParser(description='Hyperparameter for SARSA agent') parser.add_argument('--lr', type=float, help="learning rate", default=1e-4) parser.add_argument('--gamma', type=float, help="discount factor", default=0.9) parser.add_argument('--eps', type=float, help="initial epsilon", default=1.0) parser.add_argument('--eps_decay', type=float, help="epsilon decay rate", default=0.999999) parser.add_argument('--eps_min', type=float, help="minimum epsilon", default=0.1) parser.add_argument('--num_games', type=float, help="train on how many games?", default=20000) parser.add_argument('-v', '--verbose', type=int, default=2, help="print out episode") args = parser.parse_args() class SARSA_Agent(): def __init__(self, alpha, gamma, n_actions, n_states, eps_start, eps_min, eps_dec): self.learning_rate = alpha self.discount_factor = gamma self.n_actions = n_actions self.n_states = n_states self.epsilon = eps_start self.min_epsilon = eps_min self.eps_dec = eps_dec self.Q = {} # initialize q self.init_Q() def init_Q(self): for state in range(self.n_states): for action in range(self.n_actions): self.Q[(state, action)] = 0.0 def choose_action(self, state): if np.random.random() < self.epsilon: action = np.random.choice([i for i in range(self.n_actions)]) else: actions = np.array([self.Q[(state, a)] for a in range(self.n_actions)]) #if can, better reindex the action before choose action = np.argmax(actions) return action def decrement_epsilon(self): self.epsilon = self.epsilon * self.eps_dec if self.epsilon > self.min_epsilon else self.min_epsilon def learn(self, state, action, reward, state_, action_): self.Q[(state, action)] += self.learning_rate * (reward + self.discount_factor*self.Q[(state_, action_)]-self.Q[(state, action)]) self.decrement_epsilon() def plot_result(r, avg_r): plt.plot(r, color='b') plt.plot(avg_r, color='r') plt.title('Scores obtained by SARSA agent') plt.ylabel('Score') plt.xlabel('Games') plt.legend(['Scores per game', 'Average Scores'], loc='upper left') plt.show() def export_result(avg_r): if os.path.exists('./agent_scores.csv'): print('csv file exists') result = pd.read_csv('agent_scores.csv') result['SARSA'] = pd.Series(avg_r) result.to_csv('agent_scores.csv', index=False) print('results saved!') else: print('csv file not exists, creating new file.') column = {'SARSA':pd.Series(avg_r)} table = pd.DataFrame(column) table.to_csv('agent_scores.csv') print('results saved!') if __name__ == '__main__': env = gym.make('Taxi-v3') agent = SARSA_Agent(alpha=args.lr, gamma=args.gamma, n_actions=env.nA, n_states=env.nS, eps_start=args.eps, eps_min=args.eps_min, eps_dec=args.eps_decay) scores = [] avg_scores_list = [] n_games = args.num_games start_time = time.time() for i in range(n_games): done = False observation = env.reset() score = 0 action = agent.choose_action(observation) while not done: #env.render() # the info may be replaced with _ observation_, reward, done, info = env.step(action) # In SARSA as on-policy, agent choose next action based on next state action_ = agent.choose_action(observation) # SARSA will learn from the transition state, action, reward, state_, action_ agent.learn(observation, action, reward, observation_, action_) score += reward observation = observation_ # Agent is confirm to choose that action action = action_ scores.append(score) avg_scores = np.mean(scores[-100:]) avg_scores_list.append(avg_scores) if i % 100 == 0: if args.verbose == 2: print('episode',i, 'average scores on last 100 games %.2f' % avg_scores, 'epsilon %.2f' % agent.epsilon) elif args.verbose == 1: print('Training episode',i, 'win percentage %.2f' % avg_scores) else: print('Overall Average reward: ',np.mean(avg_scores)) end_time = time.time() duration = end_time - start_time plot_result(scores, avg_scores_list) print('Overall mean reward: ',np.mean(scores)) print('Time Taken: ',duration) export_result(avg_scores_list)
[ "matplotlib" ]
0410ce77edd9953920ea8445837638a9040330c7
Python
Ikusaba-san/MystBot
/cogs/statistics.py
UTF-8
13,850
2.84375
3
[ "MIT" ]
permissive
import discord from discord.ext import commands import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import numpy as np import itertools import datetime from concurrent.futures import ThreadPoolExecutor import functools class Plots: """Commands which make graphs and other pretties.""" def __init__(self, bot): self.bot = bot self.threadex = ThreadPoolExecutor(max_workers=2) def pager(self, entries, chunk: int): for x in range(0, len(entries), chunk): yield entries[x:x + chunk] def hilo(self, numbers, indexm: int=1): highest = [index * indexm for index, val in enumerate(numbers) if val == max(numbers)] lowest = [index * indexm for index, val in enumerate(numbers) if val == min(numbers)] return highest, lowest def datetime_range(self, start, end, delta): current = start while current < end: yield current current += delta def get_times(self): # todo this is really bad so fix soon pls thanks kk weeeew fmt = '%H%M' current = datetime.datetime.utcnow() times = [] times2 = [] times3 = [] tcount = 0 rcurrent = current - datetime.timedelta(minutes=60) rcurrent2 = current - datetime.timedelta(minutes=30) for x in range(7): times.append(rcurrent + datetime.timedelta(minutes=tcount)) tcount += 10 tcount = 0 for x in range(7): times2.append(rcurrent2 + datetime.timedelta(minutes=tcount)) tcount += 5 tcount = 0 for t3 in range(26): times3.append(rcurrent + datetime.timedelta(minutes=tcount)) tcount += 60/25 times = [t.strftime(fmt) for t in times] times2 = [t.strftime(fmt) for t in times2] times3 = [t.strftime(fmt) for t in times3] return times, times2, times3, current def ping_plotter(self, data: (tuple, list)=None): # Base Data if data is None: numbers = list(self.bot._pings) else: numbers = data long_num = list(itertools.chain.from_iterable(itertools.repeat(num, 2) for num in numbers)) chunks = tuple(self.pager(numbers, 4)) avg = list(itertools.chain.from_iterable(itertools.repeat(np.average(x), 8) for x in chunks)) mean = [np.mean(numbers)] * 60 prange = int(max(numbers)) - int(min(numbers)) plog = np.log(numbers) t = np.sin(np.array(numbers) * np.pi*2 / 180.) xnp = np.linspace(-np.pi, np.pi, 60) # tmean = [np.mean(t)] * 60 # Spacing/Figure/Subs plt.style.use('ggplot') fig = plt.figure(figsize=(15, 7.5)) ax = fig.add_subplot(2, 2, 2, axisbg='aliceblue', alpha=0.3) # Right ax2 = fig.add_subplot(2, 2, 1, axisbg='thistle', alpha=0.2) # Left ax3 = fig.add_subplot(2, 1, 2, axisbg='aliceblue', alpha=0.3) # Bottom ml = MultipleLocator(5) ml2 = MultipleLocator(1) # Times times, times2, times3, current = self.get_times() # Axis's/Labels plt.title(f'Latency over Time (WebSocket) | {current} UTC') ax.set_xlabel(' ') ax.set_ylabel('Network Stability') ax2.set_xlabel(' ') ax2.set_ylabel('Milliseconds(ms)') ax3.set_xlabel('Time(HHMM)') ax3.set_ylabel('Latency(ms)') if min(numbers) > 100: ax3.set_yticks(np.arange(min(int(min(numbers)), 2000) - 100, max(range(0, int(max(numbers)) + 100)) + 50, max(numbers) / 12)) else: ax3.set_yticks(np.arange(min(0, 1), max(range(0, int(max(numbers)) + 100)) + 50, max(numbers) / 12)) # Labels ax.yaxis.set_minor_locator(ml2) ax2.xaxis.set_minor_locator(ml2) ax3.yaxis.set_minor_locator(ml) ax3.xaxis.set_major_locator(ml) ax.set_ylim([-1, 1]) ax.set_xlim([0, np.pi]) ax.yaxis.set_ticks_position('right') ax.set_xticklabels(times2) ax.set_xticks(np.linspace(0, np.pi, 7)) ax2.set_ylim([min(numbers) - prange/4, max(numbers) + prange/4]) ax2.set_xlim([0, 60]) ax2.set_xticklabels(times) ax3.set_xlim([0, 120]) ax3.set_xticklabels(times3, rotation=45) plt.minorticks_on() ax3.tick_params() highest, lowest = self.hilo(numbers, 2) mup = [] mdw = [] count = 0 p10 = mean[0] * (1 + 0.5) m10 = mean[0] * (1 - 0.5) for x in numbers: if x > p10: mup.append(count) elif x < m10: mdw.append(count) count += 1 # Axis 2 - Left ax2.plot(range(0, 60), list(itertools.repeat(p10, 60)), '--', c='indianred', linewidth=1.0, markevery=highest, label='+10%') ax2.plot(range(0, 60), list(itertools.repeat(m10, 60)), '--', c='indianred', linewidth=1.0, markevery=highest, label='+-10%') ax2.plot(range(0, 60), numbers, '-', c='blue', linewidth=1.0, label='Mark Up', alpha=.8, drawstyle='steps-post') ax2.plot(range(0, 60), numbers, ' ', c='red', linewidth=1.0, markevery=mup, label='Mark Up', marker='^') """ax2.plot(range(0, 60), numbers, ' ', c='green', linewidth=1.0, markevery=mdw, label='Mark Down', marker='v')""" ax2.plot(range(0, 60), mean, label='Mean', c='blue', linestyle='--', linewidth=.75) ax2.plot(list(range(0, 60)), plog, 'darkorchid', alpha=.9, linewidth=1, drawstyle='default', label='Ping') # Axis 3 - Bottom ax3.plot(list(range(0, 120)), long_num, 'darkorchid', alpha=.9, linewidth=1.25, drawstyle='default', label='Ping') ax3.fill_between(list(range(0, 120)), long_num, 0, facecolors='darkorchid', alpha=0.3) ax3.plot(range(0, 120), long_num, ' ', c='indianred', linewidth=1.0, markevery=highest, marker='^', markersize=12) ax3.text(highest[0], max(long_num) - 10, f'{round(max(numbers))}ms', fontsize=12) ax3.plot(range(0, 120), long_num, ' ', c='lime', linewidth=1.0, markevery=lowest, marker='v', markersize=12) ax3.text(lowest[0], min(long_num) - 10, f'{round(min(numbers))}ms', fontsize=12) ax3.plot(list(range(0, 120)), long_num, 'darkorchid', alpha=.5, linewidth=.75, drawstyle='steps-pre', label='Steps') ax3.plot(range(0, 120), avg, c='forestgreen', linewidth=1.25, markevery=.5, label='Average') # Axis - Right """ax.plot(list(range(0, 60)), plog1, 'darkorchid', alpha=.9, linewidth=1, drawstyle='default', label='Ping') ax.plot(list(range(0, 60)), plog2, 'darkorchid', alpha=.9, linewidth=1, drawstyle='default', label='Ping') ax.plot(list(range(0, 60)), plog10, 'darkorchid', alpha=.9, linewidth=1, drawstyle='default', label='Ping')""" ax.fill_between(list(range(0, 120)), .25, 1, facecolors='lime', alpha=0.2) ax.fill_between(list(range(0, 120)), .25, -.25, facecolors='dodgerblue', alpha=0.2) ax.fill_between(list(range(0, 120)), -.25, -1, facecolors='crimson', alpha=0.2) ax.fill_between(xnp, t, 1, facecolors='darkred') """ax.plot(list(range(0, 60)), t, 'darkred', linewidth=1.0, alpha=1, label='Stability') ax.plot(list(range(0, 60)), tmean, 'purple', linewidth=1.0, alpha=1, linestyle=' ') ax.plot(list(range(0, 60)), tp10, 'limegreen', linewidth=1.0, alpha=1, linestyle=' ') ax.plot(list(range(0, 60)), tm10, 'limegreen', linewidth=1.0, alpha=1, linestyle=' ')""" # Legend ax.legend(bbox_to_anchor=(.905, .97), bbox_transform=plt.gcf().transFigure) ax3.legend(loc='best', bbox_transform=plt.gcf().transFigure) # Grid ax.grid(which='minor') ax2.grid(which='both') ax3.grid(which='both') plt.grid(True, alpha=0.25) # Inverts ax.invert_yaxis() # File current = datetime.datetime.utcnow() save = current.strftime("%Y-%m-%d%H%M") plt.savefig(f'/home/myst/mystbot/pings/{save}', bbox_inches='tight') # !!!VPS!!! self.bot._latest_ping[save] = f'/home/myst/mystbot/pings/{save}.png' # !!!VPS!!! plt.clf() plt.close() return save def ram_plotter(self, data: (list, tuple)=None): current = datetime.datetime.utcnow() # Time Labels dts = [dt.strftime('%H%M') for dt in self.datetime_range(current - datetime.timedelta(minutes=30), current, datetime.timedelta(minutes=1))] test = list(self.bot._ram) chunks = tuple(self.pager(test, 2)) mind = min(test) maxd = max(test) mean = [np.mean(test)] * 120 avg = list(itertools.chain.from_iterable(itertools.repeat(np.average(x), 4) for x in chunks)) highest, lowest = self.hilo(test, 1) fig = plt.figure(figsize=(15, 7.5)) ax = fig.add_subplot(1, 1, 1, axisbg='whitesmoke', alpha=0.3) # Main plt.style.use('ggplot') plt.title(f'Usage over Time (RAM) | {current} UTC') ax.set_xlabel('Time (HHMM)') ax.set_ylabel('Usage (MiB)') minylim = mind - 15 if mind - 15 > 0 else 0 ax.set_xlim([0, 120]) ax.set_xticks(np.linspace(0, 120, 30)) ax.set_ylim([0, 120]) ax.set_yticks(np.linspace(mind, maxd + 15, 12)) ax.set_xticklabels(dts) ax.grid(which='both') plt.grid(True, alpha=0.25) # Plots ax.plot(list(range(0, 120)), test) ax.plot(list(range(0, 120)), test, '-', c='darkslategrey', linewidth=0.5, label='Usage') ax.fill_between(list(range(0, 240)), avg, facecolors='cyan', alpha=0.6) ax.fill_between(list(range(0, 120)), test, facecolors='teal', alpha=1) ax.plot(list(range(0, 120)), mean, '--', c='limegreen', label='Mean') ax.plot(range(0, 120), test, ' ', c='indianred', linewidth=1.0, markevery=highest, marker='^', markersize=12) ax.text(highest[0], max(test) - 10, f'{round(max(test))} MiB', fontsize=12) ax.plot(range(0, 120), test, ' ', c='lime', linewidth=1.0, markevery=lowest, marker='v', markersize=12) ax.plot(list(range(0, 120)), test, 'darkorchid', alpha=.5, linewidth=.75, drawstyle='steps-pre', label='Steps') ax.plot(range(0, 240), avg, c='cyan', linewidth=1.5, markevery=1, label='Average', alpha=0.5) ax.legend(loc='best', bbox_transform=plt.gcf().transFigure) save = current.strftime("%Y-%m-%d%H%M") plt.savefig(f'/home/myst/mystbot/rams/{save}', bbox_inches='tight') # !!!VPS!!! self.bot._latest_ram[save] = f'/home/myst/mystbot/rams/{save}.png' # !!!VPS!!! plt.clf() plt.close() return save @commands.command(name='wsping') async def _ping(self, ctx): """Ping. Shown as a pretty graph.""" current = datetime.datetime.utcnow().strftime('%Y-%m-%d%H%M') if len(self.bot._pings) < 60: return await ctx.send(f'Latency: **`{self.bot.latency * 1000}`**') await ctx.channel.trigger_typing() try: pfile = self.bot._latest_ping[current] return await ctx.send(file=discord.File(pfile)) except: pass getfile = functools.partial(self.ping_plotter) pfile = await self.bot.loop.run_in_executor(self.threadex, getfile) await ctx.send(file=discord.File(f'/home/myst/mystbot/pings/{pfile}.png')) # !!!VPS!!! @commands.command(name='ram') async def _ram(self, ctx): """Ram usage. Shown as a pretty graph.""" current = datetime.datetime.utcnow().strftime('%Y-%m-%d%H%M') if len(self.bot._ram) < 60: return await ctx.send(f'Ram Usage: **`{self.bot._ram[-1]}`**') await ctx.channel.trigger_typing() try: pfile = self.bot._latest_ram[current] return await ctx.send(file=discord.File(pfile)) except: pass getfile = functools.partial(self.ram_plotter) pfile = await self.bot.loop.run_in_executor(self.threadex, getfile) await ctx.send(file=discord.File(f'/home/myst/mystbot/rams/{pfile}.png')) # !!!VPS!!! async def sick(self, ctx, name: str=None): pass def setup(bot): bot.add_cog(Plots(bot))
[ "matplotlib" ]
320c458311fecae57c07d8f88d3e1509002e3989
Python
bhillmann/cluny
/cluny/augmented_dendrogram.py
UTF-8
533
2.546875
3
[]
no_license
from scipy.cluster.hierarchy import dendrogram import matplotlib.pyplot as plt def augmented_dendrogram(*args, **kwargs): ddata = dendrogram(*args, **kwargs) if not kwargs.get('no_plot', False): for i, d in zip(ddata['icoord'], ddata['dcoord']): x = 0.5 * sum(i[1:3]) y = d[1] plt.plot(x, y, 'ro') plt.annotate("%.3g" % y, (x, y), xytext=(0, -8), textcoords='offset points', va='top', ha='center') return ddata
[ "matplotlib" ]
a7d326dd18b72908d42524d7efb64a06bb3466a3
Python
prachichouksey/Project-Group-16
/bill-forecast/model.py
UTF-8
438
3.125
3
[]
no_license
import pandas as pd from sklearn import linear_model import matplotlib.pyplot as plt import pickle # Getdataset dataframe = pd.read_csv('data.csv') x_values = dataframe[['units']] y_values = dataframe[['price']] #train model on data model = linear_model.LinearRegression() model.fit(x_values, y_values) # save model with open('price-forecast-model.pickle','wb') as f: pickle.dump(model, f) print("model created")
[ "matplotlib" ]
64c14874b82c7299fccacd3edb311db992741c0e
Python
RyanLBuchanan/Multiple_Linear_Regression
/Multiple_Linear_Regression.py
UTF-8
3,303
4.03125
4
[]
no_license
# Multiple Linear Regression from Machine Learning A-Z - SuperDataScience # Input by Ryan L Buchanan 11SEP20 # Import the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Import the dataset dataset = pd.read_csv("50_Startups.csv") X = dataset.iloc[: , :-1].values # matrix of features -> predictors y = dataset.iloc[:, -1].values # independent variable print(X) # Encode categories from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder ct = ColumnTransformer(transformers = [('encoder', OneHotEncoder(), [3])], remainder = 'passthrough') X = np.array(ct.fit_transform(X)) print(X) # No need to apply feature scaling in multiple linear regression as the coefficients on each # independent variable will compensate to put everything on the same scale # Split dataset into training and test sets from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Train the Multiple Linear Regression model on the Training Set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) # Predict the Test set results y_pred = regressor.predict(X_test) np.set_printoptions(precision=2) print(np.concatenate((y_pred.reshape(len(y_pred), 1), y_test.reshape(len(y_test), 1)), 1)) # Making a single prediction (for example the profit of a startup with R&D Spend = 160000, Administration Spend = 130000, Marketing Spend = 300000 and State = 'California') print("Predicted startup profit = $ regressor.predict([[1,0,0,160000, 130000, 300000]])) # Therefore, our model predicts that the profit of a Californian startup which spent 160000 in R&D, 130000 in Administration and 300000 in Marketing is $ 181566,92. # Important note 1: Notice that the values of the features were all input in a double pair of square brackets. That's because the "predict" method always expects a 2D array as the format of its inputs. And putting our values into a double pair of square brackets makes the input exactly a 2D array. Simply put: # 1,0,0,160000,130000,300000→scalars # [1,0,0,160000,130000,300000]→1D array # [[1,0,0,160000,130000,300000]]→2D array # Important note 2: Notice also that the "California" state was not input as a string in the last column but as "1, 0, 0" in the first three columns. That's because of course the predict method expects the one-hot-encoded values of the state, and as we see in the second row of the matrix of features X, "California" was encoded as "1, 0, 0". And be careful to include these values in the first three columns, not the last three ones, because the dummy variables are always created in the first columns. print(regressor.coef_) print("Y-intercept or start profit = $", round(regressor.intercept_, 2)) # Therefore, the equation of our multiple linear regression model is: # Profit=86.6×Dummy State 1−873×Dummy State 2+786×Dummy State 3−0.773×R&D Spend+0.0329×Administration+0.0366×Marketing Spend+42467.53 # Important Note: To get these coefficients we called the "coef_" and "intercept_" attributes from our regressor object. Attributes in Python are different than methods and usually return a simple value or an array of values.
[ "matplotlib" ]
b7de338f6d270b15915aa994646117dea10009a3
Python
alihallal-DATA8/othellov2.1
/board.py
UTF-8
1,447
3.34375
3
[]
no_license
import time import numpy as np import matplotlib.pyplot as plt class Board: def __init__(self, arr = np.zeros((8,8), dtype='int'), message = 'Welcome! TO Othello....Red player Starts', **kwargs): self.arr = arr self.message = message def initialize(self): self.arr[3,3] = 1 self.arr[4,4] = 1 self.arr[3,4] = -1 self.arr[4,3] = -1 def count_score(self): rcount, _ = np.where(self.arr == 1) bcount, _ = np.where(self.arr == -1) return rcount, bcount def tellme(self): print(self.message) plt.xlabel(self.message, fontsize=10) rcount, bcount = self.count_score() plt.title(f"score \n Red : {len(rcount)}, Blue : {len(bcount)}") plt.draw() def createboard(self): plt.figure(figsize=(4,4), facecolor='green') plt.grid(True, which = 'major', lw = 2 , color = 'k') #plt.tick_params(axis ='both',which='minor') plt.xlim(-0.5,7.5) plt.xticks(np.arange(-0.5,8.5,1), labels=[]) plt.ylim(-0.5,7.5) plt.yticks(np.arange(-0.5,8.5,1), labels=[]) self.initialize() self.tellme() w_x, w_y = np.where(self.arr == 1) b_x, b_y = np.where(self.arr == -1) ph = plt.plot(w_x, w_y, 'r', lw ='0', marker = 'o', markersize=20) ph = plt.plot(b_x, b_y, 'b', lw ='0', marker = 'o', markersize=20)
[ "matplotlib" ]
63fc8904e2cc2274a0cd456c3dad4bcf883186e2
Python
jonborchardt/hack18
/gender_analysis/smooth.py
UTF-8
1,295
3.046875
3
[]
no_license
""" Usage: <file-name> --in=IN_FILE --out=OUT_FILE --window=WINDOW --poly=POLY [--debug] """ # External imports import logging import pdb from pprint import pprint from pprint import pformat from docopt import docopt from collections import defaultdict from operator import itemgetter from tqdm import tqdm from scipy.signal import savgol_filter import matplotlib.pyplot as plt # Local imports #=----- if __name__ == "__main__": # Parse command line arguments args = docopt(__doc__) inp_fn = args["--in"] poly = int(args["--poly"]) window = int(args["--window"]) out_fn = args["--out"] debug = args["--debug"] if debug: logging.basicConfig(level = logging.DEBUG) else: logging.basicConfig(level = logging.INFO) y = [] for line in open(inp_fn): try: y.append(float(line.strip())) except: pass logging.info("Read {} float values from {}".format(len(y), inp_fn)) y_smoothed = savgol_filter(y, window, poly) x = range(1970, 2018) plt.plot(x, y) plt.plot(x, y_smoothed, color="red") plt.show() logging.info("Writing output to {}".format(out_fn)) with open(out_fn, "w") as fout: fout.write("\n".join(map(str, y_smoothed))) logging.info("DONE")
[ "matplotlib" ]
b61ba8678212041fb02f52da4e5490fdbb223f38
Python
melissande/dhi-segmentation-buildings
/Data_Handle/patches_extraction_ghana.py
UTF-8
6,436
2.703125
3
[]
no_license
import tensorflow as tf import h5py import numpy as np from numpy import newaxis import cv2 import sys import os from image_utils import read_images,write_data_h5,read_labels #import matplotlib.pyplot as plt ''' patche_exctraction.py is used to generate patches from the satellite image of Accra provided by DHI Gras. This is image is around 12000x12000 pixels and the MS bands are also upsampled in this script. The patches, stored in .h5 format are stored as number_of_patches x width x heights x number of bands for panchro, pansharp, ms and groundtruth Arguments: python patche_extraction.py ../DATA_GHANA/RAW_DATA/ ../DATA_GHANA/RAW_PATCHES/120_x_120/ width_patch=120 The two first arguments are obligatory. '../DATA_GHANA/RAW_DATA/' contains the input folder where the files corresponding to the bands of the image should be stored under these names: 'panchro.tif' for the Panchromatic Image, 'pansharp.tif' for the Pansharpened image, 'ms.tif' for the Multi Spectral Bands Image and 'groundtruth.png' for the image containing the mask with building footprints (0 if not and 1 if there is a building). The second argument '../DATA_GHANA/RAW_PATCHES/120_x_120/' is the path of the folder where to store the patches. width_patch is the size of the patches to extract. ''' NAME_PANCHRO='panchro.tif' NAME_PANSHARP='pansharp.tif' NAME_MS='ms.tif' NAME_LABELS='groundtruth.png' WIDTH=128 STRIDE=128#needs to be equal to the width as we don't want overlapping patches ''' All the lines with display have been commented at the scripts were launched on command line remote server so the display was not available ''' def prepare_ms_hr(ms_lr,size_hr): ''' Prepares the upsampled MS image :ms_lr input image to upsample :size_hr to upsample the Low Resolution MS image to the dimension of the High Resolution panchromatic image ''' tf.reset_default_graph() ms_ph=tf.placeholder(tf.float64, [ms_lr.shape[0],ms_lr.shape[1],ms_lr.shape[2],ms_lr.shape[3]], name='ms_placeholder') ms_hr=tf.image.resize_images(ms_ph, [size_hr[0], size_hr[1]]) ms_hr=tf.cast(ms_hr,tf.float64,name='cast_ms_hr') with tf.Session() as sess: ms_hr= sess.run(ms_hr,feed_dict={ms_ph: ms_lr}) return ms_hr def extract_patches(data,width,stride): ''' Extract patches from images :data input image :width dimensiton of the patch :stride stride of patch selection on the image ''' tf.reset_default_graph() print('Patch extraction with stride=%d and width=%d begins'%(stride,width) ) data_pl=tf.placeholder(tf.float64, [data.shape[0],data.shape[1],data.shape[2],data.shape[3]], name='data_placeholder') data_o=tf.extract_image_patches(images=data_pl,ksizes=[1,width,width,1],strides=[1,stride,stride,1],rates=[1,1,1,1],padding='VALID') print('Patch extraction done') size_tot=data_o.get_shape().as_list() data_o=tf.reshape(data_o,[size_tot[1]*size_tot[2],width,width,data.shape[3]]) with tf.Session() as sess: Data_o= sess.run(data_o,feed_dict={data_pl: data}) print('%d patches of size %d x %d created as list'%(Data_o.shape[0],Data_o.shape[1],Data_o.shape[2])) return Data_o def save_patches(data,path_out): ''' Write the patches list to .h5 file format :data patches list :path_out where to save the patches ''' write_data_h5(path_out,data) if __name__ == '__main__': if len(sys.argv)<3: print('Specify all the paths of folder input and output') exit() #path='../DATA_GHANA/RAW_DATA/' path=sys.argv[1] #path_patches='../DATA_GHANA/RAW_PATCHES/120_x_120/' path_patches=sys.argv[2] if not os.path.exists(path_patches): os.makedirs(path_patches) for i in range(3, len(sys.argv)): arg = sys.argv[i] if arg.startswith('--width_patch'): WIDTH=int(arg[len('--width_patch='):]) STRIDE=WIDTH #patch_test_number=300 ## Panchromatic panchromatic_file=path+NAME_PANCHRO panchromatic=read_images(panchromatic_file) hr_size=panchromatic.shape panchromatic=panchromatic[newaxis,:,:,newaxis] print('\n PANCHROMATIC \n\n') panchromatic=extract_patches(panchromatic,WIDTH,STRIDE) ## Find patches to discard keep=np.arange(len(panchromatic)) discard=[] print('Original size of the dataset is %d'%len(panchromatic)) for i in range(len(panchromatic)): if (np.sum(panchromatic[i,:,:,:])).astype(int)==0: discard.append(i) discard=np.asarray(discard) keep=np.delete(keep,discard) print('Final size of the dataset is %d'%len(keep)) ## Save Panchromatic panchromatic=panchromatic[keep] save_patches(panchromatic,path_patches+'panchro.h5') # plt.imshow(panchromatic[patch_test_number,:,:,0]) # plt.show() ##MS bands ms_file=path+NAME_MS ms=read_images(ms_file) ms=np.transpose(ms,(1,2,0)) print('\n MS BANDS\n\n') for i in range(ms.shape[2]): print('\n Band %d \n'%i) ms_i=ms[:,:,i] print('Upscale') ms_hr=prepare_ms_hr(ms_i[newaxis,:,:,newaxis],hr_size) ms_hr=extract_patches(ms_hr,WIDTH,STRIDE) ms_hr=ms_hr[keep] save_patches(ms_hr,path_patches+'ms_hr_'+str(i)+'.h5') # plt.imshow(ms_hr[patch_test_number,:,:,0]) # plt.show() ##Pansharpened bands pansharpened_file=path+NAME_PANSHARP pansharpened=read_images(pansharpened_file) pansharpened=np.transpose(pansharpened,(1,2,0)) print('\n BANDS\n\n') for i in range(pansharpened.shape[2]): print('\n Band %d \n'%i) pansharpened_i=pansharpened[:,:,i] pansharpened_i=extract_patches(pansharpened_i[newaxis,:,:,newaxis],WIDTH,STRIDE) pansharpened_i=pansharpened_i[keep] save_patches(pansharpened_i,path_patches+'pansharpened_'+str(i)+'.h5') # plt.imshow(pansharpened_i[patch_test_number,:,:,0]) # plt.show() ## Label patches labels_file=path+NAME_LABELS labels=read_labels(labels_file) labels=labels[newaxis,:,:,newaxis] print('\n LABELS \n\n') labels=extract_patches(labels,WIDTH,STRIDE) labels=labels[keep] save_patches(labels,path_patches+'groundtruth.h5') # plt.imshow(labels[patch_test_number,:,:,0]) # plt.show()
[ "matplotlib" ]
18a620068310c856f7bc7ffeab0feaf76b11a4f4
Python
MarkRegalla27/TemperatureData
/temperature.py
UTF-8
6,359
2.90625
3
[]
no_license
import pandas as pd import matplotlib.pyplot as plt from pandas.tools.plotting import scatter_matrix from scipy import stats import numpy as np import statsmodels.api as sm import math import requests from pandas.io.json import json_normalize import sqlite3 as lite import time # a package with datetime objects from dateutil.parser import parse # a package for parsing a string into a Python datetime object import collections import datetime import pandas.io.sql as psql #from odict import odict #imports ordered dictionary library cities = { "Atlanta": '33.762909,-84.422675', "Austin": '30.303936,-97.754355', "Boston": '42.331960,-71.020173', "Chicago": '41.837551,-87.681844', "Cleveland": '41.478462,-81.679435' } base_url = 'https://api.forecast.io/forecast/ed5384712a6c42598d505ff33c0bd2aa/' start_date = datetime.datetime.now() - datetime.timedelta(days=30) end_date = datetime.datetime.now() readable_date = start_date query_date = end_date - datetime.timedelta(days=30) #the current value being processed con = lite.connect('weather.db') cur = con.cursor() #Drop city_max_temp table if it exists already with con: #cur.execute('DROP TABLE city_max_temp') #Grid table as lesson gives cur.execute('DROP TABLE tidy_max_temp') #Tidy version of table #make a table of city, date, max temp with con: cur.execute('CREATE TABLE tidy_max_temp (city TEXT, todays_date TEXT, max_temp TEXT)') cur.execute('CREATE TABLE city_max_temp (day_of_reading INT, Atlanta REAL, Austin REAL, Boston REAL, Chicago REAL, Cleveland REAL)') #Insert timestamps into each row of matrix style database table with con: while query_date < end_date: cur.execute("INSERT INTO city_max_temp(day_of_reading) VALUES (?)", (int(query_date.strftime('%s')),)) query_date += datetime.timedelta(days=1) #sql = "INSERT INTO city_max_temp (city, todays_date, max_temp) VALUES (?,?,?)" #data_list[] p = 1 #with con: #Put temperatures in matrix style database for k,v in cities.iteritems(): #print k query_date = end_date - datetime.timedelta(days=31) #set value each time through the loop of cities #print query_date while query_date < end_date: query_date += datetime.timedelta(days=1) #print query_date r = requests.get(base_url + v + ',' + query_date.strftime('%Y-%m-%dT12:00:00')) print r.status_code #prints url status. If 400, then invalid request was made and will not fetch the data with con: cur.execute('UPDATE city_max_temp SET ' + k + ' = ' + str(r.json()['daily']['data'][0]['temperatureMax']) + ' WHERE day_of_reading = ' + query_date.strftime('%s')) if p == 1: print 'UPDATE city_max_temp SET ' + str(k) + ' = ' + str(r.json()['daily']['data'][0]['temperatureMax']) + ' WHERE day_of_reading = ' + str(query_date.strftime('%s')) p = 2 #increment query_date to the next day for next operation of loop, BUT IT WON'T right here #query_date = query_date + datetime.timedelta(days=1) #put temperatures in tidy database cities = pd.DataFrame(cities.items(), columns=['city', 'coordinates']) cities.sort(columns=['city'], ascending=True, inplace=True) cities.reset_index(inplace=True) cities.drop('index', axis=1, inplace=True) print cities['city'] #Insert timestamps and cities into rows of tidy database query_date = end_date - datetime.timedelta(days=31) with con: while query_date < end_date: query_date += datetime.timedelta(days=1) for row in cities.iterrows(): cur.execute("INSERT INTO tidy_max_temp(city, todays_date) VALUES (?,?)", (str(row[1]['city']), int(query_date.strftime('%s')),)) query_date = end_date - datetime.timedelta(days=31) #set value each time through the loop of temperature collections while query_date < end_date: query_date += datetime.timedelta(days=1) i = 0 for row in cities.iterrows(): url = base_url + row[1]['coordinates'] + ',' + query_date.strftime('%Y-%m-%dT12:00:00') #row is a 2-dimensional variable, containing city and coordinates for each row r = requests.get(url) print r.status_code with con: update_sql = """UPDATE tidy_max_temp SET max_temp = """ + str(r.json()['daily']['data'][0]['temperatureMax']) + """ WHERE city = '""" + str(row[1]['city']) + """' AND todays_date = """ + str(query_date.strftime('%s')) print update_sql cur.execute(update_sql) i += 1 #Select and print range of temperatures for each city Tempdf = pd.read_sql_query("SELECT * from tidy_max_temp", con) cities_list = Tempdf['city'].unique() tempString = '{0} Temperature Range is: {1}' lastRange = 0 for city in cities_list: tempRange = str(float(Tempdf.ix[Tempdf['city'] == city, 'max_temp'].max()) - float(Tempdf.ix[Tempdf['city'] == city, 'max_temp'].min())) if tempRange > lastRange: lastRange = tempRange maxCity = city print tempString.format(city, tempRange) print 'The city with the greatest change is ' + str(maxCity) + ' with a range of ' + str(lastRange) tempString = '{0} Mean Temperature is: {1}' for city in cities_list: meanTemp = Tempdf.ix[Tempdf['city'] == city, 'max_temp'] meanTemp = meanTemp.astype(float) meanTemp = str(meanTemp.mean()) print tempString.format(city, meanTemp) tempString = '{0} Temperature Variance is: {1}' for city in cities_list: varTemp = Tempdf.ix[Tempdf['city'] == city, 'max_temp'] varTemp = varTemp.astype(float) varTemp = str(varTemp.var()) print tempString.format(city, varTemp) varTemp = 0 #Find change between days and variance of collected differences tempString = '{0} Greatest 1 day Temperature Change is {1}' tempString2 = '{0} Variance in temperature changes is {1}' for city in cities_list: cityTemp = Tempdf.ix[Tempdf['city'] == city, 'max_temp'] cityTemp = cityTemp.tolist() maxDelta = 0 cityDiff = [] for i in range(len(cityTemp)): if i > 0: tmp = abs(float(cityTemp[i]) - float(cityTemp[i-1])) cityDiff.append(tmp) if tmp > maxDelta: maxDelta = tmp cityDiffdf = pd.DataFrame(cityDiff) print tempString.format(city, maxDelta) print tempString2.format(city, cityDiffdf[0].var())
[ "matplotlib" ]
94f4a019271893855a962515c0f63b9d026272db
Python
jamsheerkutty/ga-learner-dsmp-repo
/superhero-statistics/code.py
UTF-8
1,500
3.25
3
[ "MIT" ]
permissive
# -------------- #Code starts here sc_df=data[['Strength','Combat']] sc_covariance=sc_df.cov().iloc[0,1] sc_strength=sc_df['Strength'].std() sc_combat=sc_df['Combat'].std() sc_pearson=sc_covariance/(sc_strength*sc_combat) ic_df=data[['Intelligence','Combat']] ic_covariance=ic_df.cov().iloc[0,1] ic_intelligence=ic_df['Intelligence'].std() ic_combat=ic_df['Combat'].std() ic_pearson=ic_covariance/(ic_intelligence*ic_combat) # -------------- #Code starts here total_high=data['Total'].quantile(0.99) super_best=data[data['Total'] > total_high] super_best_names=list(super_best['Name']) print(super_best_names) # -------------- #Code starts here import matplotlib.pyplot as plt import pandas as pd fig=plt.figure() ax_1 = fig.add_subplot(1,1,1) ax_1.boxplot(data['Intelligence']) ax_1.set_title('Intelligence') plt.show() ax_2 = fig.add_subplot(2,1,1) ax_2.boxplot(data['Speed']) ax_2.set_title('Speed') plt.show() ax_3 = fig.add_subplot(1,1,1) ax_3.boxplot(data['Power']) ax_3.set_title('Power') plt.show() # -------------- #Header files import pandas as pd import numpy as np import matplotlib.pyplot as plt #path of the data file- path data=pd.read_csv(path) data['Gender'].replace('-','Agender',inplace=True) gender_count=data['Gender'].value_counts() plt.bar(gender_count,height=10) #Code starts here # -------------- #Code starts here alignment=data['Alignment'].value_counts() label='Alignment' plt.pie(alignment)
[ "matplotlib" ]
e822eb52c4d06646eb51195dfe841f23273d2641
Python
CAU-AI/SCIKIT
/data_plot.py
UTF-8
1,956
2.546875
3
[]
no_license
from sklearn.model_selection import train_test_split import numpy as np from sklearn.naive_bayes import GaussianNB import pandas as pd from sklearn import preprocessing from sklearn.decomposition import PCA import matplotlib.pyplot as plt xl = pd.ExcelFile("Music_style_train.xlsx") data_excel = pd.read_excel(io=xl, sheetname=0, header=None) answer_excel = pd.read_excel(io=xl, sheetname=1, header=None) data = np.array(data_excel.values) answer = np.array(answer_excel.values).flatten().transpose() new_data = data.T for k in range(0,376): print(k) y = [] a = [] b = [] aa = k t = np.array(range(1,71)) for i in range(70): y.append(data[i][aa]) z = np.array(y) q = np.array(range(71,141)) for i in range(71,141): a.append(data[i][aa]) w = np.array(a) p = np.array(range(141,210)) for i in range(140,210): b.append(data[i][aa]) i = np.array(b) plt.figure() plt.plot(t, z, "r.") plt.plot(t, w, "b.") plt.plot(t, i, "g.") plt.show() """ scaler = preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0).fit(data.astype(float)) data = scaler.transform(data.astype(float)) aaa = [4, 7, 10, 21, 22, 27, 33, 37, 39, 45, 51, 52, 57, 61, 63, 67, 69, 73,72, 75, 79, 78, 93, 223,224, 225, 226, 227,228,229,230,231,232,233,234,235,263,264,265,266,267,302,303,304,305,306,307,308,309,310,311,312,313,327,338, 370,374,344] aaa.sort() for k in aaa: print(k) y = [] a = [] b = [] aa = k t = np.array(range(1,71)) for i in range(70): y.append(data[i][aa]) z = np.array(y) q = np.array(range(71, 141)) for i in range(71, 141): a.append(data[i][aa]) w = np.array(a) p = np.array(range(141, 210)) for i in range(140, 210): b.append(data[i][aa]) i = np.array(b) plt.figure() plt.plot(t,z,"r.") plt.plot(t,w,"b.") plt.plot(t,i,"g.") plt.show() """
[ "matplotlib" ]
df4c57dab56b843ee1c76c59f171a3353c2c965c
Python
gavinxie7/CSV_Project
/csv_temps_1.py
UTF-8
617
3.15625
3
[]
no_license
import matplotlib.pyplot as plt import csv open_file=open("sitka_weather_07-2018_simple.csv","r") csv_file=csv.reader(open_file,delimiter=",") header_row=next(csv_file) #print(type(header_row)) for index,column_header in enumerate (header_row): print(index,column_header) highs=[] for row in csv_file: highs.append(int(row[5])) #print(highs[:10]) plt.plot(highs,color='red') plt.title("daily high temps, july 2018", fontsize=16) plt.xlabel("",fontsize=16) plt.ylabel("Temperature(F)",fontsize=16) plt.tick_params(axis='both',which='major',labelsize=16) #plt.plot([1,2,3,4,5],color='red') plt.show()
[ "matplotlib" ]
f1065cf3792ff346e0bd5c3a59ac6c71795efabb
Python
Sapphire0912/Embedded
/HW2 LBP/hw2.py
UTF-8
757
2.59375
3
[]
no_license
from skimage.feature import local_binary_pattern import matplotlib.pyplot as plt import cv2 import numpy as np path = "./road/road.jpg" road = cv2.imread(path) road_gray = cv2.cvtColor(road, cv2.COLOR_BGR2GRAY) # use scikit-image module lbp # use matplotlib imshow lbp image radius = 1 n_points = 8 * radius # lbp method returns the dtype and value of the image(current only the image) # default: dtype float64, value 0 to 255 # ror: dtype float64, value 0 to 255 # nri_uniform: dtype float64, value 0 to 58 # uniform: dtype float64, value 0 to 9 # var: dtype float64, value has han lbp = local_binary_pattern(road_gray, n_points, radius, method='var') print(lbp[30:40, 790:800]) print(np.max(lbp), np.min(lbp)) plt.imshow(lbp, cmap='gray') plt.show()
[ "matplotlib" ]
5a41b12a5404655799825add102c94c092522155
Python
enova47/shotchart
/app.py
UTF-8
18,180
2.640625
3
[]
no_license
import dash import dash_core_components as dcc import dash_html_components as html import io from io import StringIO import numpy as np import pandas as pd import plotly import plotly.graph_objs as go import requests # Set the Dash App external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server # Import CSV into pandas url = 'https://raw.githubusercontent.com/enova47/shotchart/master/shotchart.csv' s=requests.get(url).content shotchart=pd.read_csv(io.StringIO(s.decode('utf-8')),dtype={'GAME_ID': str,'GAME_EVENT_ID':str,'PLAYER_ID': str,'TEAM_NAME': str,'TEAM_ID':str,'PERIOD': str,'MINUTES_REMAINING':str,'SECONDS_REMAINING': str,'SHOT_DISTANCE':str}) # Create the court dimensions in plotly from: http://savvastjortjoglou.com/nba-shot-sharts.html # and from: https://moderndata.plot.ly/nba-shots-analysis-using-plotly-shapes/ court_shapes = [] # Outer lines of the court outer_lines_shape = dict( type='rect', xref='x', yref='y', # Bottom left edge of outer lines rectangle (x0,y0) x0='-250', y0='-47.5', # Bottom right edge of outer lines rectangle (x1,y1) x1='250', y1='422.5', line=dict( color='rgba(10, 10, 10, 1)', width=1 ) ) court_shapes.append(outer_lines_shape) # Basketball hoop - use Circle shape with the center of the hoop at 0,0. Radius of 7.5. hoop_shape = dict( type='circle', # All coordinate (x and y) references are in relation to the plot axis xref='x', yref='y', x0='7.5', y0='7.5', x1='-7.5', y1='-7.5', # Set the color and style of circle line=dict( color='rgba(10,10,10,1)', width=1 ) ) court_shapes.append(hoop_shape) # Backboard backboard_shape = dict( type='rect', xref='x', yref='y', x0='-30', y0='-7.5', x1='30', y1='-6.5', line=dict( color='rgba(10, 10, 10, 1)', width=1 ), fillcolor='rgba(10, 10, 10, 1)' ) court_shapes.append(backboard_shape) # The paint (outer and inner boxes as rectangles) outer_three_sec_shape = dict( type='rect', xref='x', yref='y', x0='-80', y0='-47.5', x1='80', y1='143.5', line=dict( color='rgba(10, 10, 10, 1)', width=1 ) ) court_shapes.append(outer_three_sec_shape) inner_three_sec_shape = dict( type='rect', xref='x', yref='y', x0='-60', y0='-47.5', x1='60', y1='143.5', line=dict( color='rgba(10, 10, 10, 1)', width=1 ) ) court_shapes.append(inner_three_sec_shape) # Three point line areas left_line_shape = dict( type='line', xref='x', yref='y', x0='-220', y0='-47.5', x1='-220', y1='92.5', line=dict( color='rgba(10, 10, 10, 1)', width=1 ) ) court_shapes.append(left_line_shape) right_line_shape = dict( type='line', xref='x', yref='y', x0='220', y0='-47.5', x1='220', y1='92.5', line=dict( color='rgba(10, 10, 10, 1)', width=1 ) ) court_shapes.append(right_line_shape) # Using the path type to draw the arc using a Curve (C) command three_point_arc_shape = dict( type='path', xref='x', yref='y', path='M -220 92.5 C -70 300, 70 300, 220 92.5', line=dict( color='rgba(10, 10, 10, 1)', width=1 ) ) court_shapes.append(three_point_arc_shape) # Center circle (area surrounding halfcourt - logo lines) center_circle_shape = dict( type='circle', xref='x', yref='y', x0='60', y0='482.5', x1='-60', y1='362.5', line=dict( color='rgba(10, 10, 10, 1)', width=1 ) ) court_shapes.append(center_circle_shape) # Restraining circle (halfcourt small circle) res_circle_shape = dict( type='circle', xref='x', yref='y', x0='20', y0='442.5', x1='-20', y1='402.5', line=dict( color='rgba(10, 10, 10, 1)', width=1 ) ) court_shapes.append(res_circle_shape) # Free throw circle free_throw_circle_shape = dict( type='circle', xref='x', yref='y', x0='60', y0='200', x1='-60', y1='80', line=dict( color='rgba(10, 10, 10, 1)', width=1 ) ) court_shapes.append(free_throw_circle_shape) # Restricted area, using dash property to style the circle res_area_shape = dict( type='circle', xref='x', yref='y', x0='40', y0='40', x1='-40', y1='-40', line=dict( color='rgba(10, 10, 10, 1)', width=1, dash='dot' ) ) court_shapes.append(res_area_shape) # Initialize shotchart name = 'Kawhi Leonard' player = shotchart[shotchart.PLAYER_NAME == name] missed_shot_trace = go.Scattergl( # Missed shots are 0, Made shots are 1 x=player[player.SHOT_MADE_FLAG == 0]['LOC_X'], y=player[player.SHOT_MADE_FLAG == 0]['LOC_Y'], mode='markers', name='Miss', marker={'color': 'blue', 'size': 5}, text=[str(htm) + str(vtm) + str(at) + str(st) + str(sz) + str(pr) + str(mr) + str(sr) + str(gd) for htm, vtm, at, st, sz, pr, mr, sr, gd in zip(player[player.SHOT_MADE_FLAG == 0]['HTM'] + ' vs ', player[player.SHOT_MADE_FLAG == 0]['VTM'] + '<br>', player[player.SHOT_MADE_FLAG == 0]['ACTION_TYPE'] + '<br>', player[player.SHOT_MADE_FLAG == 0]['SHOT_TYPE'] + ', ', player[player.SHOT_MADE_FLAG == 0]['SHOT_ZONE_RANGE'] + '<br>', 'Q' + player[player.SHOT_MADE_FLAG == 0]['PERIOD'] + ', ', player[player.SHOT_MADE_FLAG == 0]['MINUTES_REMAINING'] + ':', player[player.SHOT_MADE_FLAG == 0]['SECONDS_REMAINING'] + ' remaining' + '<br>', player[player.SHOT_MADE_FLAG == 0]['GAME_DATE'])], hoverinfo='text', ) made_shot_trace = go.Scattergl( x=player[player.SHOT_MADE_FLAG == 1]['LOC_X'], y=player[player.SHOT_MADE_FLAG == 1]['LOC_Y'], mode='markers', name='Make', marker={'color': 'red', 'size': 5}, text=[str(htm) + str(vtm) + str(at) + str(st) + str(sz) + str(pr) + str(mr) + str(sr) + str(gd) for htm, vtm, at, st, sz, pr, mr, sr, gd in zip(player[player.SHOT_MADE_FLAG == 1]['HTM'] + ' vs ', player[player.SHOT_MADE_FLAG == 1]['VTM'] + '<br>', player[player.SHOT_MADE_FLAG == 1]['ACTION_TYPE'] + '<br>', player[player.SHOT_MADE_FLAG == 1]['SHOT_TYPE'] + ', ', player[player.SHOT_MADE_FLAG == 1]['SHOT_ZONE_RANGE'] + '<br>', 'Q' + player[player.SHOT_MADE_FLAG == 1]['PERIOD'] + ', ', player[player.SHOT_MADE_FLAG == 1]['MINUTES_REMAINING'] + ':', player[player.SHOT_MADE_FLAG == 1]['SECONDS_REMAINING'] + ' remaining' + '<br>', player[player.SHOT_MADE_FLAG == 1]['GAME_DATE'])], hoverinfo='text', ) # Set the dropdown menus for shotchart app.layout = html.Div([ html.Div([ html.Label('Player'), dcc.Dropdown( id='PLAYER_NAME', options=[{'label': i, 'value': i} for i in shotchart['PLAYER_NAME'].unique()], value = 'Kawhi Leonard', ) ], style={'width': '49%', 'display': 'inline-block'}), html.Div([ html.Label('Season Type'), dcc.Dropdown( id='SEASON_TYPE', options=[{'label': i, 'value': i} for i in shotchart['SEASON_TYPE'].unique()], value = 'Regular Season', ) ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'}), html.Div([ html.Label('Shot Type'), dcc.Dropdown( id='ACTION_TYPE', options=[{'label': i, 'value': i} for i in shotchart['ACTION_TYPE'].unique()], ) ], style={'width': '49%', 'display': 'inline-block'}), html.Div([ html.Label('Shot Distance'), dcc.Dropdown( id='SHOT_ZONE_RANGE', options=[{'label': i, 'value': i} for i in shotchart['SHOT_ZONE_RANGE'].unique()], ) ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'}), html.Div([ html.Label('Shot Zone'), dcc.Dropdown( id='SHOT_ZONE_AREA', options=[{'label': i, 'value': i} for i in shotchart['SHOT_ZONE_AREA'].unique()], ) ], style={'width': '49%', 'display': 'inline-block'}), html.Div([ html.Label('Game Date'), dcc.Dropdown( id='GAME_DATE', options=[{'label': i, 'value': i} for i in shotchart['GAME_DATE'].unique()], ) ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'}), html.Div([ html.Label('Quarter'), dcc.Dropdown( id='PERIOD', options=[{'label': i, 'value': i} for i in shotchart['PERIOD'].unique()], ) ], style={'width': '49%', 'display': 'inline-block'}), html.Div([ html.Label('Opponent'), dcc.Dropdown( id='OPPONENT', options=[{'label': i, 'value': i} for i in shotchart['OPPONENT'].unique()], ) ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'}), html.Div([ html.Label('Time Remaining'), dcc.Dropdown( id='TIME_GROUP', options=[{'label': i, 'value': i} for i in shotchart['TIME_GROUP'].unique()], ) ], style={'width': '49%', 'display': 'inline-block'}), html.Div([ html.Label('Score Margin'), dcc.Dropdown( id='POINTS_DIFFERENCE', options=[{'label': i, 'value': i} for i in shotchart['POINTS_DIFFERENCE'].unique()], ) ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'}), html.Div([ html.Label("Player's Team"), dcc.Dropdown( id='TEAM_NAME', options=[{'label': i, 'value': i} for i in shotchart['TEAM_NAME'].unique()], value = 'Toronto Raptors', ) ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'}), html.Div([ dcc.Graph( id='shot_chart', figure={ 'data': [missed_shot_trace,made_shot_trace], 'layout': go.Layout( title = name + ' - All Shots, 2018-19 ' + 'Regular Season', showlegend = True, xaxis = {'showgrid':False, 'range':[-300,300]}, yaxis = {'showgrid':False, 'range':[500,-100]}, height = 600, width= 650, shapes = court_shapes ) } ) ]) ]) # Need to add: # V2: Filter by season (set season for shotchartdetail, check if can import from CSV) # V2: Filter by assisted or not (merge play by play v2 into shotchart to get assisted data) # V2: Return game score in hovertext (Play by Play) # V2: Player picture (see Sam Liebman's documentation) # V2: Graph or table showing shooting percentages, etc. # V2: Video link (get from NBA.com - 2016 season+) - Example: https://stats.nba.com/events/?flag=1&GameID=0021800001&GameEventID=7&Season=2018-19&title=MISS%20Covington%2027%27%203PT%20Jump%20Shot&sct=plot # V2: Reset button - See David Comfort Dash # V2: Print to PDF button - See David Comfort Dash @app.callback( dash.dependencies.Output('shot_chart', 'figure'), [dash.dependencies.Input('PLAYER_NAME','value'), dash.dependencies.Input('SEASON_TYPE','value'), dash.dependencies.Input('ACTION_TYPE','value'), dash.dependencies.Input('SHOT_ZONE_RANGE','value'), dash.dependencies.Input('SHOT_ZONE_AREA','value'), dash.dependencies.Input('GAME_DATE','value'), dash.dependencies.Input('PERIOD','value'), dash.dependencies.Input('OPPONENT','value'), dash.dependencies.Input('TIME_GROUP','value'), dash.dependencies.Input('POINTS_DIFFERENCE','value'), dash.dependencies.Input('TEAM_NAME','value')]) def update_graph(player_name, season_type, action_type, shot_zone_range, shot_zone_area, game_date, period, opponent, time_group, points_difference, team_name): # Function if update value exists, then update player dataframe. If not, ignore it. player = shotchart if player_name in list(player.PLAYER_NAME): player = player[player.PLAYER_NAME == player_name] # Season Type if season_type in list(player.SEASON_TYPE): player = player[player.SEASON_TYPE == season_type] # Shot Type if action_type in list(player.ACTION_TYPE): player = player[player.ACTION_TYPE == action_type] # Shot Distance if shot_zone_range in list(player.SHOT_ZONE_RANGE): player = player[player.SHOT_ZONE_RANGE == shot_zone_range] # Shot Zone if shot_zone_area in list(player.SHOT_ZONE_AREA): player = player[player.SHOT_ZONE_AREA == shot_zone_area] # Game Date if game_date in list(player.GAME_DATE): player = player[player.GAME_DATE == game_date] # Quarter if period in list(player.PERIOD): player = player[player.PERIOD == period] # Opponent if opponent in list(player.OPPONENT): player = player[player.OPPONENT == opponent] # Time Remaining if time_group in list(player.TIME_GROUP): player = player[player.TIME_GROUP == time_group] # Scoring Margin if points_difference in list(player.POINTS_DIFFERENCE): player = player[player.POINTS_DIFFERENCE == points_difference] # Player's Team if team_name in list(player.TEAM_NAME): player = player[player.TEAM_NAME == team_name] missed_shot_trace = go.Scattergl( # Missed shots are 0, Made shots are 1 x=player[player.SHOT_MADE_FLAG == 0]['LOC_X'], y=player[player.SHOT_MADE_FLAG == 0]['LOC_Y'], mode='markers', name='Miss', marker={'color': 'blue', 'size': 5}, text=[str(htm) + str(vtm) + str(at) + str(st) + str(sz) + str(pr) + str(mr) + str(sr) + str(gd) for htm, vtm, at, st, sz, pr, mr, sr, gd in zip(player[player.SHOT_MADE_FLAG == 0]['HTM'] + ' vs ', player[player.SHOT_MADE_FLAG == 0]['VTM'] + '<br>', player[player.SHOT_MADE_FLAG == 0]['ACTION_TYPE'] + '<br>', player[player.SHOT_MADE_FLAG == 0]['SHOT_TYPE'] + ', ', player[player.SHOT_MADE_FLAG == 0]['SHOT_ZONE_RANGE'] + '<br>', 'Q' + player[player.SHOT_MADE_FLAG == 0]['PERIOD'] + ', ', player[player.SHOT_MADE_FLAG == 0]['MINUTES_REMAINING'] + ':', player[player.SHOT_MADE_FLAG == 0]['SECONDS_REMAINING'] + ' remaining' + '<br>', player[player.SHOT_MADE_FLAG == 0]['GAME_DATE'])], hoverinfo='text', ) made_shot_trace = go.Scattergl( x=player[player.SHOT_MADE_FLAG == 1]['LOC_X'], y=player[player.SHOT_MADE_FLAG == 1]['LOC_Y'], mode='markers', name='Make', marker={'color': 'red', 'size': 5}, text=[str(htm) + str(vtm) + str(at) + str(st) + str(sz) + str(pr) + str(mr) + str(sr) + str(gd) for htm, vtm, at, st, sz, pr, mr, sr, gd in zip(player[player.SHOT_MADE_FLAG == 1]['HTM'] + ' vs ', player[player.SHOT_MADE_FLAG == 1]['VTM'] + '<br>', player[player.SHOT_MADE_FLAG == 1]['ACTION_TYPE'] + '<br>', player[player.SHOT_MADE_FLAG == 1]['SHOT_TYPE'] + ', ', player[player.SHOT_MADE_FLAG == 1]['SHOT_ZONE_RANGE'] + '<br>', 'Q' + player[player.SHOT_MADE_FLAG == 1]['PERIOD'] + ', ', player[player.SHOT_MADE_FLAG == 1]['MINUTES_REMAINING'] + ':', player[player.SHOT_MADE_FLAG == 1]['SECONDS_REMAINING'] + ' remaining' + '<br>', player[player.SHOT_MADE_FLAG == 1]['GAME_DATE'])], hoverinfo='text', ) return{ 'data': [missed_shot_trace,made_shot_trace], 'layout': go.Layout( title = player_name + ' - All Shots, 2018-19 ' + season_type, showlegend = True, xaxis = {'showgrid':False, 'range':[-300,300]}, yaxis = {'showgrid':False, 'range':[500,-100]}, height = 600, width= 650, shapes = court_shapes ) } if __name__ == '__main__': app.run_server(debug=True)
[ "plotly" ]
109dd0d434c67a9ae559d5af420992ac63148453
Python
feifanrensheng/dmp_writing
/code/test_kernel_shape.py
UTF-8
2,553
3.0625
3
[]
no_license
import numpy as np import math import matplotlib.pyplot as plt from matplotlib import rc def kernel_shape(): import seaborn as sns sns.set() # sns.axes_style("white") # plt.set_figheight(15) # plt.set_figwidth(15) f = plt.figure(figsize=(10,7)) plt.ylabel(r"$\phi (x) $") plt.xticks([]) plt.yticks([]) ax = f.add_subplot(221) ax2 = f.add_subplot(222) ax3 = f.add_subplot(223) ax4 = f.add_subplot(224) x = np.arange(-0.5, 1.5, 1e-4) y1 = gaussian(x, 0.03, 0.2) y2 = gaussian(x, 0.03, 0.5) y3 = gaussian(x, 0.03, 0.8) ax.plot(x, y1) ax.plot(x, y2) ax.plot(x, y3) ax.set_xticks(np.arange(0, 1.2, 0.2)) ax.set_yticks(np.arange(0, 1.2, 0.2)) ax.set_xlabel("(a)") # fig.suptitle('Gaussian Kernel', fontsize=6) yy1 = tr_gaussian(x, 0.03, 0.2) yy2 = tr_gaussian(x, 0.03, 0.5) yy3 = tr_gaussian(x, 0.03, 0.8) ax2.plot(x, yy1) ax2.plot(x, yy2) ax2.plot(x, yy3) ax2.set_xticks(np.arange(0, 1.2, 0.2)) ax2.set_yticks(np.arange(0, 1.2, 0.2)) ax2.set_xlabel("(b)") # ax2.ylabel(r"$\phi (x) $") # fig.suptitle('Truncated Gaussian Kernel', fontsize=6) yy1 = tr_gaussian1(x, 0.03, 0.2) yy2 = tr_gaussian1(x, 0.03, 0.5) yy3 = tr_gaussian1(x, 0.03, 0.8) ax3.plot(x, yy1) ax3.plot(x, yy2) ax3.plot(x, yy3) ax3.set_xticks(np.arange(0, 1.2, 0.2)) ax3.set_yticks(np.arange(0, 1.2, 0.2)) ax3.set_xlabel("(c)") # ax3.ylabel(r"$\phi (x) $") # fig.suptitle('Truncated Gaussian Kernel', fontsize=6) yy1 = tr_gaussian1(x, 0.03, 0.4) yy2 = tr_gaussian1(x, 0.03, 0.5) yy3 = tr_gaussian1(x, 0.03, 0.6) ax4.plot(x, yy1) ax4.plot(x, yy2) ax4.plot(x, yy3) ax4.set_xticks(np.arange(0, 1.2, 0.2)) ax4.set_yticks(np.arange(0, 1.2, 0.2)) ax4.set_xlabel("(d)") # ax4.ylabel(r"$\phi (x) $") # fig.suptitle('Truncated Gaussian Kernel', fontsize=6) plt.show() def gaussian(x, sigma, mu): # a = 1/(math.sqrt(2 * math.pi * sigma)) a = 1.0 b = -1/(2 * sigma) x = b * (x - mu)**2 x = np.exp(x) y = a * x return y def tr_gaussian(x, sigma, mu): a = 1.0 b = -1/(2 * sigma) xx = b * (x - mu)**2 xx = np.exp(xx) y = a * xx yy = np.where(abs(x-mu)<0.15, y, 0) return yy def tr_gaussian1(x, sigma, mu): a = 1.0 b = -1/(2 * sigma) xx = b * (x - mu)**2 xx = np.exp(xx) y = a * xx yy = np.where(abs(x-mu)<0.10, y, 0) return yy if __name__ == "__main__": kernel_shape()
[ "matplotlib", "seaborn" ]
0a99c8a3e6062127548973de74f981ae5da5a54a
Python
alaalial/relancer-artifact
/relancer-exp/original_notebooks/pavansubhasht_ibm-hr-analytics-attrition-dataset/baseline-eda-and-attrition-prediction-pipeline.py
UTF-8
26,692
2.90625
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python # coding: utf-8 # ## WELCOME TO IBM HR ATTRITION EXPLORATION AND PREDICTION KERNEL # NOTE: I'm not a native English Speaker, so sorry for any english mistakes # # The main objective is to explore the data and create a model to predict the Attrition of IBM workers. # # ### The problem # We will explore and try to predict the Attrition of IBM HR Analytics data. <br> # # What Is Attrition?<br> # Attrition in business describes a gradual but deliberate reduction in staff numbers that occurs as employees retire or resign and are <b>not replaced</b>. The term is also sometimes used to describe the loss of customers or clients as they mature beyond a product or company's target market without being replaced by a younger generation. # # Important: Attrition is one way a company can decrease labor costs without the disruption of layoffs. # # # ### Questions # I will start with some questions that maybe will help me in exploration: # - What's the % of Attrition at HR IBM dataset? # - What's the distribution of Ages? # - What's the difference between Genders? # - The years of experience is important to Attrition ? # - The performance or job satisfaction distributions says anything about the Attrition? # - People that live far from the job, are more propense to Attrition? # - And many more questions that could help us to understand the data and get some insights. # # ### After EDA: # I will create a Pipeline to find the model that best fit the data; # Also, I will create a Hyperopt model to find the best parameters to predict the Attrition of workers; # ______________________________________ # <br> # - I hope you enjoy the Kernel. <br> # - If you think that it is useful for you, please votes and give me your feedback =) # ## Importing libraries # In[ ]: import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from scipy import stats import os import matplotlib.pyplot as plt import seaborn as sns # Standard plotly imports import plotly.plotly as py import plotly.graph_objs as go import plotly.tools as tls from plotly.offline import iplot, init_notebook_mode # Using plotly + cufflinks in offline mode init_notebook_mode(connected=True) #Importing the auxiliar and preprocessing librarys from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.model_selection import cross_val_score from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.pipeline import Pipeline from sklearn.utils.multiclass import unique_labels from sklearn.model_selection import train_test_split, KFold, cross_validate #Models from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.svm import SVC from sklearn.linear_model import RidgeClassifier, SGDClassifier, LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, ExtraTreesClassifier from sklearn.ensemble import BaggingClassifier, VotingClassifier, RandomTreesEmbedding # In[ ]: df_train = pd.read_csv("../../../input/pavansubhasht_ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv") # In[ ]: def resumetable(df): print(f"Dataset Shape: {df.shape}") summary = pd.DataFrame(df.dtypes,columns=['dtypes']) summary = summary.reset_index() summary['Name'] = summary['index'] summary = summary[['Name','dtypes']] summary['Missing'] = df.isnull().sum().values summary['Uniques'] = df.nunique().values summary['First Value'] = df.loc[0].values summary['Second Value'] = df.loc[1].values summary['Third Value'] = df.loc[2].values for name in summary['Name'].value_counts().index: summary.loc[summary['Name'] == name, 'Entropy'] = round(stats.entropy(df[name].value_counts(normalize=True), base=2),2) return summary def dummies(df, list_cols): for col in list_cols: df_dummies = pd.get_dummies(df[col], drop_first=True, prefix=(str(col))) df = pd.concat([df, df_dummies], axis=1) df.drop(col, axis=1, inplace=True) return df def get_ratio(df, cat_col): attr_temp = pd.DataFrame(df.groupby([cat_col, 'Attrition'])['EmployeeNumber'].count().unstack('Attrition').reset_index()) attr_temp['ratio'] = round(attr_temp['Yes'] / (attr_temp['Yes'] + attr_temp['No']) * 100,2) attr_temp = attr_temp[[cat_col, 'ratio']] return attr_temp # ## Getting the summary of our data # In[ ]: summary = resumetable(df_train) summary # Based on this first summary of data, we can see that we haven't any missing value and 3 columns have constant values.<br> # Before we continue, I will drop the constant features; <br> # It's very cool to see that we have a lot of categorical features!!! So we could have some interesting insights <br> # The shape of our data is (1470, 35) and the EmployeeNumber is the Id of our dataset. <br> # Also is important to note that entropy measure the data disorder of the each feature and it shows the information contained in this feature. # ## Categorical features with maximum 10 unique values # In[ ]: # Categorical features cat_cols = ['Over18', 'StandardHours', 'EmployeeCount', 'Gender', 'PerformanceRating', 'OverTime', 'MaritalStatus', 'Department', 'BusinessTravel', 'StockOptionLevel', 'EnvironmentSatisfaction', 'JobInvolvement', 'JobSatisfaction', 'RelationshipSatisfaction', 'WorkLifeBalance', 'Education', 'JobLevel', 'EducationField', 'TrainingTimesLastYear', 'JobRole', 'NumCompaniesWorked'] # constant features const_list = ['EmployeeCount', 'Over18', 'StandardHours'] # ## Dropping constant features # In[ ]: df_train.drop(const_list,axis=1, inplace=True) # ## Visualizing the distribution of Data Types # In[ ]: print("DATA TYPES: ") print(summary['dtypes'].value_counts()) # - Nice, Now, we will start exploring the features # ## I will take a look on Attrition features that is our Target # In[ ]: print("The % distribution of Attrition features is: ") print(round(df_train['Attrition'].value_counts(normalize=True),2)*100) plt.figure(figsize=(10,7)) g = sns.countplot(df_train["Attrition"], color='green') g.set_title("Attrition Distribution", fontsize=22) g.set_ylabel('Count', fontsize=18) g.set_xlabel('Attrition True or False', fontsize=18) print() # Cool, we have 16% of true values of our target. It's a imbalanced data but nothing so terrible. <br> # Let's keep exploring the features to see wether we can get some insights about the IBM workers # ## Plotting categorical features # - First, I will plot all features that has less than 11 values; I will do it, because categories with few values are easiest to explore. # - I will drop the constant columns and the Attrition feature. # # In[ ]: ## Filtering the constant features and the target cat_cols = [col for col in cat_cols if col not in (const_list +['Attrition'])] # ## Categoricals by ATTRITION # - Just features with maximum 10 values # In[ ]: print("UNDERSTANDING THE CATEGORICAL DISTRIBUTION BY THE TARGET (ATTRITION)") print("NOTE: - It's a plot just about the columns with maximum 10 values.") fig, axes = plt.subplots(nrows=8, ncols=2, figsize=(18,35)) fig.subplots_adjust(hspace=0.5, bottom=0) # fig.suptitle('BINARY FEATURES by the TARGET feature', fontsize=22) for ax, catplot in zip(axes.flatten(), cat_cols): sns.countplot(x=catplot, data=df_train, hue='Attrition', ax=ax, ) ## GEting the ratio of Years with current manager just to test into graphs ax.set_title(catplot.upper(), fontsize=18) ax.set_ylabel('Count', fontsize=16) ax.set_xlabel(f'{catplot} Values', fontsize=15) ax.legend(title='Attrition', fontsize=12) # plt.tight_layout() # Cool!!! We can see that some features has a high chance to Attrition. <br> # Some features that we can see that the Attrition has different patterns is: stockoptionlevel, performancerating, overtime, department, jobinvolvement # ## Continuous and large categorical features # - Now I will explore the features with more than 10 values and try get some insights using the Attrition to see the different patterns # In[ ]: # PercentSalaryHike, DistanceFromHome, Age print(f'Minimum age on dataset is {df_train["Age"].min()} and the maximum age is {df_train["Age"].max()}') plt.figure(figsize=(16,22)) plt.subplot(3,1,1) g = sns.distplot(df_train[df_train['Attrition'] == 'Yes']['Age'], label='Yes') g = sns.distplot(df_train[df_train['Attrition'] == 'No']['Age'], label="No") g.set_xticklabels(g.get_xticklabels(),rotation=0) g.legend(title='Attrition') g.set_title("Age Distribution by Attrition", fontsize=22) g.set_xlabel("Age Distribution", fontsize=18) g.set_ylabel("Probability", fontsize=18) plt.subplot(3,1,2) g1 = sns.violinplot(x='DistanceFromHome', y='Age', hue='Attrition', split=True, data=df_train, size=3) g1.set_xticklabels(g1.get_xticklabels(),rotation=0) g1.set_title("Distance From Home Distribution by Attrition and Age", fontsize=22) g1.set_xlabel("Distance From Home", fontsize=18) g1.set_ylabel("Age Distribution", fontsize=18) plt.subplot(3,1,3) g2 = sns.violinplot(x='PercentSalaryHike', y='Age', split=True, hue='Attrition',data=df_train) g2.set_xticklabels(g2.get_xticklabels(),rotation=0) g2.set_title("Percent Salary Hike Distribution by Attrition and Age", fontsize=22) g2.set_xlabel("Percent Salary Hike", fontsize=18) g2.set_ylabel("Age Distribution", fontsize=18) plt.subplots_adjust(hspace = 0.4) print() # Very insightful informations!! <br> # Based on charts we can see that the attrition is more probable in yougest people; # In[ ]: medimum_feats = ['PercentSalaryHike', 'YearsSinceLastPromotion', 'YearsWithCurrManager', 'YearsInCurrentRole', 'DistanceFromHome'] big_feats = [ 'YearsAtCompany', 'TotalWorkingYears', 'Age','HourlyRate'] # ## Job Features # In[ ]: plt.figure(figsize=(16,22)) plt.subplot(3,1,1) g = sns.violinplot(x='YearsInCurrentRole', y= 'Age', split=True, hue='Attrition', data=df_train) g.set_xticklabels(g.get_xticklabels(),rotation=0) g.set_title("Years In Current Role by Attrition and Age", fontsize=22) g.set_xlabel("Years In Current Role", fontsize=18) g.set_ylabel("Age Distribution", fontsize=18) plt.subplot(3,1,2) g1 = sns.violinplot(x='YearsSinceLastPromotion', y= 'Age', split=True, hue='Attrition', data=df_train) g1.set_xticklabels(g1.get_xticklabels(),rotation=0) g1.set_title("Years Since Last Promotion Distribution by Attrition and Age", fontsize=22) g1.set_xlabel("Years since last Promotion", fontsize=18) g1.set_ylabel("Age Distribution", fontsize=18) plt.subplot(3,1,3) g2 = sns.violinplot(x='YearsAtCompany', y= 'Age', split=True, hue='Attrition', data=df_train) g2.set_xticklabels(g2.get_xticklabels(),rotation=0) g2.set_title("Years At Company by Attrition and Age", fontsize=22) g2.set_xlabel("Years In Current Role", fontsize=18) g2.set_ylabel("Age Distribution", fontsize=18) plt.subplots_adjust(hspace = 0.4) print() # Cool. On Years at Company we can see that people with more than 12 years are less propense to leave the company.<br> # The same pattern we can see on Years in current Role... After 15 years in the current role, we don't have siginificant number of Attrition; # # ## I will try some visuals with the Monthly Income # In[ ]: print(f"The minimum value Income in dataset is {df_train['MonthlyIncome'].min()} and maximum {df_train['MonthlyIncome'].max()}" ) # In[ ]: print("Monthly Income Quantiles Distribution: ") print(df_train['MonthlyIncome'].quantile([.01, .25, .5, .75, .99])) # In[ ]: def get_ratio(df, cat_col): attr_temp = df.groupby([cat_col, 'Attrition'])['EmployeeNumber'].count().unstack('Attrition').reset_index() attr_temp['ratio'] = round(attr_temp['Yes'] / (attr_temp['Yes'] + attr_temp['No']) * 100,2) attr_temp = attr_temp[[cat_col, 'ratio']] return attr_temp # In[ ]: plt.figure(figsize=(16,22)) plt.subplot(3,1,1) g = sns.violinplot(x='YearsWithCurrManager', y= 'MonthlyIncome', hue='Attrition',data=df_train, split=True) g.set_xticklabels(g.get_xticklabels(),rotation=0) g.set_title("Years With Current Manager Distribution by Attrition and Monthly Income", fontsize=22) g.set_xlabel("Years with current Manager", fontsize=18) g.set_ylabel("Monthly Income Distribution", fontsize=18) print() attr_temp = get_ratio(df_train, 'YearsWithCurrManager') gg = sns.lineplot(x='YearsWithCurrManager', y= 'ratio', ax=ax2, lw=3, markers='o', label="Attrition %", color='black', data=attr_temp) gg.legend( loc = (.85, .05), frameon = False) plt.subplot(3,1,2) g1 = sns.swarmplot(x='TotalWorkingYears', y= 'MonthlyIncome', dodge=True, hue='Attrition', data=df_train) print() attr_temp = get_ratio(df_train, 'TotalWorkingYears') gg = sns.lineplot(x='TotalWorkingYears', y= 'ratio', ax=ax3, lw=3, markers='o', label="Attrition %", color='black', data=attr_temp) gg.legend( loc = (.85, .05), frameon = False) g1.set_xticklabels(g1.get_xticklabels(),rotation=0) g1.set_title("Total Working Years Distribution by Attrition and Age", fontsize=22) g1.set_xlabel("Total Working Years", fontsize=18) g1.set_ylabel("Age Distribution", fontsize=18) plt.subplot(3,1,3) g2 = sns.swarmplot(x='HourlyRate', y='TotalWorkingYears', hue='Attrition', data=df_train) g2.set_title("Hourly Rate Distribution by Attrition and Age", fontsize=22) g2.set_xlabel("Hourly Rate", fontsize=18) g2.set_ylabel("Age Distribution", fontsize=18) g2.set_xticklabels(g2.get_xticklabels(),rotation=0) print() attr_temp = get_ratio(df_train, 'HourlyRate') gg = sns.lineplot(x='HourlyRate', y= 'ratio', ax=ax4, lw=3, markers='o', label="Attrition %", color='black', data=attr_temp) gg.legend( loc = (.85, .05), frameon = False) plt.subplots_adjust(hspace = 0.4) print() # Very cool... This features are very meaningful and shows some patterns in Attrition; <br> # We can see a clear pattern in HourlyRate. # ## Monthly Income x Age by Attrition # In[ ]: plt.figure(figsize=(14,7)) ax= sns.scatterplot(x='MonthlyIncome', y='Age', data=df_train, hue='Attrition', alpha=0.8, size=df_train['NumCompaniesWorked']) ax.set_title("Age distribution by Monthly Income separated by Attrition", fontsize=22) ax.set_xlabel("Monthly Income", fontsize=18) ax.set_ylabel("Age Distribution", fontsize=18) print() # In[ ]: # ## Feature selection and Preprocessing # In[ ]: def LongDisWL1(data) : if data['DistanceFromHome'] > 11 and data['WorkLifeBalance'] == 1 : return 1 else : return 0 def LongDisJobS1(data) : if data['DistanceFromHome'] > 11 and data['JobSatisfaction'] == 1 : return 1 else : return 0 def LongDisJL1(data) : if data['DistanceFromHome'] > 11 and data['JobLevel'] == 1 : return 1 else : return 0 def ShortDisNotSingle(data) : if data['MaritalStatus'] != 'Single' and data['DistanceFromHome'] < 5: return 1 else : return 0 def LongDisSingle(data) : if data['MaritalStatus'] == 'Single' and data['DistanceFromHome'] > 11: return 1 else : return 0 def Engaged(data) : if data['Age'] > 35 and data['MaritalStatus'] != 'Single': return 1 else : return 0 def YoungAndBadPaid(data) : if data['Age'] < 35 and data['Age'] > 23 and (data['MonthlyIncome'] < 3500): return 1 else : return 0 def YoungNeverEngaged(data) : if data['Age'] < 24 and data['MaritalStatus'] == 'Single' : return 1 else : return 0 # ## Feature engineering # In[ ]: ## This features I get from the amazing kernel of Vicent Lugat ## https://www.kaggle.com/kernels/scriptcontent/10006574/notebook df_train['sales_dep'] = [1 if val == 'Sales' else 0 for val in df_train['Department']] df_train['JobInvolvCut'] = [1 if val < 2.5 else 0 for val in df_train['JobInvolvement']] df_train['MiddleTraining'] = [1 if (val >= 3 and val <= 6) else 0 for val in df_train['TrainingTimesLastYear']] df_train['MoovingPeople'] = [1 if (val >4) else 0 for val in df_train['NumCompaniesWorked']] df_train['MiddleTraining'] = [1 if (val >= 3 and val <= 6) else 0 for val in df_train['TrainingTimesLastYear']] df_train['TotalSatisfaction_mean'] = (df_train['RelationshipSatisfaction'] + df_train['EnvironmentSatisfaction'] + df_train['JobSatisfaction'] + df_train['JobInvolvement'] + df_train['WorkLifeBalance']) / 5 df_train['NotSatif'] = [1 if val < 2.35 else 0 for val in df_train['TotalSatisfaction_mean']] df_train['LongDisWL1'] = df_train.apply(lambda data:LongDisWL1(data) ,axis = 1) df_train['LongDis'] = [1 if val > 11 else 0 for val in df_train['DistanceFromHome']] df_train['LongDisJobS1'] = df_train.apply(lambda data: LongDisJobS1(data) ,axis = 1) df_train['LongDisJL1'] = df_train.apply(lambda data:LongDisJL1(data) ,axis = 1) df_train['ShortDisNotSingle'] = df_train.apply(lambda data:ShortDisNotSingle(data) ,axis = 1) df_train['LongDisSingle'] = df_train.apply(lambda data:LongDisSingle(data) ,axis = 1) df_train['Engaged'] = df_train.apply(lambda data:Engaged(data) ,axis = 1) df_train['YoungAndBadPaid'] = df_train.apply(lambda data:YoungAndBadPaid(data) ,axis = 1) df_train['YoungNeverEngaged'] = df_train.apply(lambda data:YoungNeverEngaged(data) ,axis = 1) df_train['Time_in_each_comp'] = (df_train['Age'] - 20) / ((df_train)['NumCompaniesWorked'] + 1) df_train['RelSatisf_mean'] = (df_train['RelationshipSatisfaction'] + df_train['EnvironmentSatisfaction']) / 2 df_train['JobSatisf_mean'] = (df_train['JobSatisfaction'] + df_train['JobInvolvement']) / 2 df_train['Income_Distance'] = df_train['MonthlyIncome'] / df_train['DistanceFromHome'] df_train['Hrate_Mrate'] = df_train['HourlyRate'] / df_train['MonthlyRate'] df_train['Stability'] = df_train['YearsInCurrentRole'] / df_train['YearsAtCompany'] df_train['Stability'].fillna((df_train['Stability'].mean()), inplace=True) df_train['Income_YearsComp'] = df_train['MonthlyIncome'] / df_train['YearsAtCompany'] df_train['Income_YearsComp'] = df_train['Income_YearsComp'].replace(np.Inf, 0) df_train['Fidelity'] = (df_train['NumCompaniesWorked']) / df_train['TotalWorkingYears'] df_train['Fidelity'] = df_train['Fidelity'].replace(np.Inf, 0) # def attr_ratio(df, col): # attr = df.groupby([col, 'Attrition'])['EmployeeNumber'].nunique().unstack('Attrition').reset_index() # attr['ratio'] = attr['Yes'] / (attr['No'] + attr['Yes']) # # return attr # ## Preprocessing # In[ ]: #customer id col Id_col = ['EmployeeNumber'] #Target columns target_col = ["Attrition"] #categorical columns cat_cols = df_train.nunique()[df_train.nunique() <= 10].keys().tolist() cat_cols = [x for x in cat_cols if x not in target_col] #numerical columns num_cols = [x for x in df_train.columns if x not in cat_cols + target_col + Id_col] #Binary columns with 2 values bin_cols = df_train.nunique()[df_train.nunique() == 2].keys().tolist() #Columns more than 2 values multi_cols = [i for i in cat_cols if i not in bin_cols] # In[ ]: dict_binary_cols = {'Attrition':{'Yes':1, 'No':0}, 'Gender':{'Female':0, 'Male':1}, 'OverTime':{'Yes':1,'No':0}} df_train.replace(dict_binary_cols, inplace=True) # In[ ]: nom_cats = ['BusinessTravel', 'Department', 'EducationField', 'JobRole', 'MaritalStatus'] df_train = dummies(df_train, nom_cats) # In[ ]: #Finallt, lets look the correlation of df_train plt.figure(figsize=(20,15)) plt.title('Correlation of Features for Train Set', fontsize=25) print() print() # # In[ ]: # Threshold for removing correlated variables threshold = 0.80 # Absolute value correlation matrix corr_matrix = df_train.corr().abs() # Getting the upper triangle of correlations upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool)) # In[ ]: # Select columns with correlations above threshold to_drop = [column for column in upper.columns if any(upper[column] > threshold)] print('There are %d columns to remove.' % (len(to_drop))) print(list(to_drop)) # In[ ]: df_train = df_train.drop(columns = to_drop) print('Training shape: ', df_train.shape) # In[ ]: X_train, X_val, y_train, y_val = train_test_split(df_train.drop('Attrition', axis=1), df_train['Attrition'], test_size=.25) # ## Creating the pipeline to compare classification algorithmns # In[ ]: clfs = [] seed = 3 clfs.append(("LogReg", Pipeline([("Scaler", StandardScaler()), ("LogReg", LogisticRegression())]))) clfs.append(("XGBClassifier", Pipeline([("Scaler", StandardScaler()), ("XGB", XGBClassifier())]))) clfs.append(("KNN", Pipeline([("Scaler", StandardScaler()), ("KNN", KNeighborsClassifier())]))) clfs.append(("DecisionTreeClassifier", Pipeline([("Scaler", StandardScaler()), ("DecisionTrees", DecisionTreeClassifier())]))) clfs.append(("RandomForestClassifier", Pipeline([("Scaler", StandardScaler()), ("RandomForest", RandomForestClassifier())]))) clfs.append(("GradientBoostingClassifier", Pipeline([("Scaler", StandardScaler()), ("GradientBoosting", GradientBoostingClassifier(max_features=15, n_estimators=600))]))) clfs.append(("RidgeClassifier", Pipeline([("Scaler", StandardScaler()), ("RidgeClassifier", RidgeClassifier())]))) clfs.append(("BaggingRidgeClassifier", Pipeline([("Scaler", StandardScaler()), ("BaggingClassifier", BaggingClassifier())]))) clfs.append(("ExtraTreesClassifier", Pipeline([("Scaler", StandardScaler()), ("ExtraTrees", ExtraTreesClassifier())]))) #'neg_mean_absolute_error', 'neg_mean_squared_error','r2' scoring = 'accuracy' n_folds = 10 results, names = [], [] for name, model in clfs: kfold = KFold(n_splits=n_folds, random_state=seed) cv_results = cross_val_score(model, X_train, y_train, cv=kfold, scoring=scoring, n_jobs=-1) names.append(name) results.append(cv_results) msg = "%s: %f (+/- %f)" % (name, cv_results.mean(), cv_results.std()) print(msg) # boxplot algorithm comparison fig = plt.figure(figsize=(15,6)) fig.suptitle('Classifier Algorithm Comparison', fontsize=22) ax = fig.add_subplot(111) sns.boxplot(x=names, y=results) ax.set_xticklabels(names) ax.set_xlabel("Algorithmn", fontsize=20) ax.set_ylabel("Accuracy of Models", fontsize=18) ax.set_xticklabels(ax.get_xticklabels(),rotation=45) print() # - Cool!!! Logistic Regression has the best result to predict Attriction. I will use a GLM algo to get soem insights and see the feature importanfces. # In[ ]: # Create regularization penalty space penalty = ['l1', 'l2'] # Create regularization hyperparameter space C = np.logspace(0, 5, 25) # Create hyperparameter options hyperparameters = dict(C=C, penalty=penalty) # In[ ]: import scipy as sp from hyperopt import fmin, hp, tpe, Trials, space_eval, STATUS_OK, STATUS_RUNNING from functools import partial from sklearn.model_selection import StratifiedKFold from sklearn.metrics import confusion_matrix def objective(params): clf = LogisticRegression(**params, solver='liblinear' ) score = cross_val_score(clf, X_train, y_train, scoring='accuracy', cv=StratifiedKFold()).mean() print("Accuracy {:.8f} params {}".format(-score, params)) return -score space = { 'penalty': hp.choice('penalty', ['l1', 'l2']), 'C': hp.choice('C', np.logspace(5, 10, 50))} best = fmin(fn=objective, space=space, algo=tpe.suggest, max_evals=150) # In[ ]: best = {'C': 13894954.94373136, 'penalty': 'l2'} # In[ ]: logreg = LogisticRegression(**best, solver='liblinear') # In[ ]: logreg.fit(X_train, y_train, ) # ## Testing our model in a unseen data # In[ ]: accuracy_score(y_val, logreg.predict(X_val)) # It's slightly better than the standard model that we used on Pipeline. # Let's see the Auc and Confusion matrix to understand the classification # In[ ]: from sklearn.metrics import classification_report target_names = ['Yes', 'No'] print(classification_report(y_val, logreg.predict(X_val), target_names=target_names)) # ## Confusion matrix # In[ ]: class_names = df_train['Attrition'].unique() def plot_confusion_matrix(y_true, y_pred, classes, normalize=False, title=None, cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if not title: if normalize: title = 'Normalized confusion matrix' else: title = 'Confusion matrix, without normalization' # Compute confusion matrix cm = confusion_matrix(y_true, y_pred) # Only use the labels that appear in the data classes = classes[unique_labels(y_true, y_pred)] if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix: ") else: print('Confusion matrix, without normalization: ') print(cm) fig, ax = plt.subplots() im = ax.imshow(cm, interpolation='nearest', cmap=cmap) print() # We want to show all ticks... ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), xticklabels=classes, yticklabels=classes, title=title, ylabel='True label', xlabel='Predicted label') # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") fig.tight_layout() return ax np.set_printoptions(precision=2) # Plot non-normalized confusion matrix plot_confusion_matrix(y_val, logreg.predict(X_val), classes=class_names, title='Confusion matrix, without normalization') # Plot normalized confusion matrix plot_confusion_matrix(y_val, logreg.predict(X_val), classes=class_names, normalize=True, title='Normalized confusion matrix') print() # In[ ]: # ## NOTE: I am working on this kernel, it's not finished yet. # If you liked, don't forget to votes up the kernel !!! =)
[ "matplotlib", "seaborn", "plotly" ]
d085020ae4d3aacac202bb2501446e2a76e796f0
Python
fuad3501/Optimisation
/univariate_optimisation.py
UTF-8
1,128
3.765625
4
[]
no_license
import numpy as np from scipy import optimize import matplotlib.pyplot as plt # Define Univariate Function def poly(x): return x * (x - 1) * (x + 1) * (x - 4) x = np.linspace(-2, 4.5, 100) y = poly(x) plt.figure() plt.plot(x, y) plt.show() # univariate optimisation to find lowest value of the function x_opt = optimize.minimize_scalar(poly) print(x_opt) # Output: # fun: -24.05727870023589 # nfev: 16 # nit: 11 # success: True # x: 3.0565452919448806 # multivariate optimisation method using a start value x_opt = optimize.fmin(poly, -2) print(x_opt) # Output: # Optimization terminated successfully. # Current function value: -1.766408 # Iterations: 17 # Function evaluations: 34 # [-0.60097656] # => finds local minima but not global minimum # multivariate optimisation method using a Better start value x_opt = optimize.fmin(poly, 1) print(x_opt) # Output: # Optimization terminated successfully. # Current function value: -24.057279 # Iterations: 19 # Function evaluations: 38 # [3.05654297] # => finds correct global minimum as shown in first optimiser
[ "matplotlib" ]
a034a692c892c0a9feeb1756a6d149f48356d17e
Python
afraniofilho/Arduino-Python-Integration
/serial oximetro.py
UTF-8
1,059
3.453125
3
[]
no_license
#Importar bibliotecas import serial import numpy as np import matplotlib.pyplot as plt from drawnow import * oxF = [] arduinoData = serial.Serial(port='com8', baudrate = 9600) # cria um objeto serial (arduinoData) na porta de comunicação 'com3' plt.ion() #Configura o matplotlib no modo interativo para atualizar automatico cnt = 0 def makeFig(): # Criar uma função para o gráfico plt.ylim(70, 100) plt.title('Saturação do Oxigênio %') plt.grid(True) plt.ylabel('%') plt.plot(oxF, 'ro-') while True: arduinoString = arduinoData.readline() #ler uma linha da porta serial dataArray = arduinoString[:2] #ler os 2 primeiros caracteres (valor do oxigenio) ox = float(dataArray) # converte em float e guarda em ox oxF.append(ox) # cria um array adicionando as leituras de ox drawnow(makeFig) # chamar função do gráfico cnt += 1 print(oxF) # if(cnt>20): # oxF = [] # cnt=0 # arduinoData.reset_input_buffer()
[ "matplotlib" ]
a7cbadd97aaf7716b55b3c07c018f77d11c62995
Python
kotsky/ai-studies
/Simple AI/Test.py
UTF-8
2,754
2.9375
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt class Data(Dataset): class plot_error_surfaces(object): # Constructor def __init__(self, w_range, b_range, X, Y, n_samples=30, go=True): W = np.linspace(-w_range, w_range, n_samples) B = np.linspace(-b_range, b_range, n_samples) w, b = np.meshgrid(W, B) Z = np.zeros((30, 30)) count1 = 0 self.y = Y.numpy() self.x = X.numpy() for w1, b1 in zip(w, b): count2 = 0 for w2, b2 in zip(w1, b1): Z[count1, count2] = np.mean((self.y - w2 * self.x + b2) ** 2) count2 += 1 count1 += 1 self.Z = Z self.w = w self.b = b self.W = [] self.B = [] self.LOSS = [] self.n = 0 if go == True: plt.figure() plt.figure(figsize=(7.5, 5)) plt.axes(projection='3d').plot_surface(self.w, self.b, self.Z, rstride=1, cstride=1, cmap='viridis', edgecolor='none') plt.title('Cost/Total Loss Surface') plt.xlabel('w') plt.ylabel('b') plt.show() plt.figure() plt.title('Cost/Total Loss Surface Contour') plt.xlabel('w') plt.ylabel('b') plt.contour(self.w, self.b, self.Z) plt.show() # Setter def set_para_loss(self, W, B, loss): self.n = self.n + 1 self.W.append(W) self.B.append(B) self.LOSS.append(loss) # Plot diagram def final_plot(self): ax = plt.axes(projection='3d') ax.plot_wireframe(self.w, self.b, self.Z) ax.scatter(self.W, self.B, self.LOSS, c='r', marker='x', s=200, alpha=1) plt.figure() plt.contour(self.w, self.b, self.Z) plt.scatter(self.W, self.B, c='r', marker='x') plt.xlabel('w') plt.ylabel('b') plt.show() # Plot diagram def plot_ps(self): plt.subplot(121) plt.ylim plt.plot(self.x, self.y, 'ro', label="training points") plt.plot(self.x, self.W[-1] * self.x + self.B[-1], label="estimated line") plt.xlabel('x') plt.ylabel('y') plt.ylim((-10, 15)) plt.title('Data Space Iteration: ' + str(self.n)) plt.subplot(122) plt.contour(self.w, self.b, self.Z) plt.scatter(self.W, self.B, c='r', marker='x') plt.title('Total Loss Surface Contour Iteration' + str(self.n)) plt.xlabel('w') plt.ylabel('b') plt.show() object = plot_error_surfaces() object.plot_ps();
[ "matplotlib" ]
c868e0b221a333764b6ece595cdf5f0e993165d0
Python
shahid-peel/Self-driving-cars_term1_project3
/model.py
UTF-8
5,890
2.65625
3
[]
no_license
import csv import cv2 import numpy as np from random import shuffle import sklearn def generator(samples, batch_size=32): num_samples = len(samples) while 1: # Loop forever so the generator never terminates shuffle(samples) for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset+batch_size] images = [] measurements = [] # angles = [] for batch_sample in batch_samples: # name = './IMG/'+batch_sample[0].split('/')[-1] # center_image = cv2.imread(name) # center_angle = float(batch_sample[3]) # images.append(center_image) # angles.append(center_angle) source_path = batch_sample[0] filename = source_path.split('/')[-1] current_path = './data/IMG/' + filename image = cv2.imread(current_path) #gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) images.append(image) measurement = float(batch_sample[3]) measurements.append(measurement) source_path = batch_sample[1] filename = source_path.split('/')[-1] current_path = './data/IMG/' + filename image = cv2.imread(current_path) # gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) images.append(image) measurement = float(batch_sample[3]) + 0.20 measurements.append(measurement) source_path = batch_sample[2] filename = source_path.split('/')[-1] current_path = './data/IMG/' + filename image = cv2.imread(current_path) # gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) images.append(image) measurement = float(batch_sample[3]) - 0.20 measurements.append(measurement) aug_images = [] aug_measurements = [] for image, measurement in zip(images, measurements): image_small = image #cv2.resize(image, (0,0), fx=0.5, fy=0.5) aug_images.append(image_small) aug_measurements.append(measurement) aug_images.append(cv2.flip(image_small,1)) aug_measurements.append(-measurement) # trim image to only see section with road X_train = np.array(aug_images) y_train = np.array(aug_measurements) # y_train = np.array(angles) yield sklearn.utils.shuffle(X_train, y_train) lines = [] with open('./data/driving_log.csv') as csvfile: reader = csv.reader(csvfile) for line in reader: try: float(line[3]) except ValueError: print("Skipping header line") continue lines.append(line) # images = [] # measurements = [] # for line in lines: # try: # float(line[3]) # except ValueError: # print("Skipping header line") # continue # # source_path = line[0] # filename = source_path.split('/')[-1] # current_path = './data/IMG/' + filename # image = cv2.imread(current_path) # #gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # images.append(image) # measurement = float(line[3]) # measurements.append(measurement) # images.append(np.fliplr(image)) # measurements.append(-measurement) # # # X_train = np.array(images) # y_train = np.array(measurements) #shuffle(lines) #shuffle(lines) #shuffle(lines) lines = lines[:int(len(lines)*1.0)] num_of_samples = len(lines) train_samples = lines[:int(num_of_samples*0.8)] validation_samples = lines[int(num_of_samples*0.8):] print('total samples = ' + str(6*len(lines))) print('training samples = ' + str(6*len(train_samples))) print('validation samples = ' + str(6*len(validation_samples))) # compile and train the model using the generator function train_generator = generator(train_samples, batch_size=100) validation_generator = generator(validation_samples, batch_size=100) from keras.models import Sequential, Model from keras.layers import Flatten, Dense, Dropout from keras.layers import Conv2D, MaxPooling2D from keras.layers import Lambda from keras.layers import Cropping2D from keras.layers.convolutional import Convolution2D import matplotlib.pyplot as plt model = Sequential() model.add(Lambda(lambda x: x/255.0 - 0.5, input_shape=(160,320,3))) model.add(Cropping2D(cropping=((70,25), (0,0)))) model.add(Convolution2D(24, 5, 5, subsample=(2,2), activation='relu')) model.add(Convolution2D(36, 5, 5, subsample=(2,2), activation='relu')) model.add(Convolution2D(48, 5, 5, subsample=(2,2), activation='relu')) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(Convolution2D(64, 3, 3, activation='relu')) #model.add(MaxPooling2D(pool_size=(2, 2))) #model.add(Conv2D(36, 5, 5, activation='relu')) #model.add(MaxPooling2D(pool_size=(2, 2))) #model.add(Conv2D(48, 5, 5, activation='relu')) #model.add(Dropout(0.25)) #model.add(Conv2D(64, 3, 3, activation='relu')) #model.add(MaxPooling2D(pool_size=(2, 2))) # model.add(Conv2D(24, 5, 5, subsample=(2,2), activation='relu')) # model.add(Conv2D(36, 5, 5, subsample=(2,2), activation='relu')) # model.add(Conv2D(48, 5, 5, activation='relu')) # model.add(Conv2D(64, 3, 3, activation='relu')) # model.add(Conv2D(64, 3, 3, activation='relu')) #model.add(MaxPooling2D(pool_size=(2, 2))) # model.add(Conv2D(64, 3, 3, activation='relu')) model.add(Flatten()) #model.add(Dense(1000)) # model.add(Dropout(0.5)) model.add(Dense(100)) model.add(Dense(50)) model.add(Dense(10)) model.add(Dense(1)) model.compile(loss='mse', optimizer='adam') #model.fit(X_train, y_train, validation_split=0.2, shuffle=True, nb_epoch=2) history_object = model.fit_generator(train_generator, samples_per_epoch = 6*len(train_samples), validation_data = validation_generator, nb_val_samples = 6*len(validation_samples), nb_epoch=5, verbose=1) ### print the keys contained in the history object print(history_object.history.keys()) model.save('model.h5') ### plot the training and validation loss for each epoch plt.plot(history_object.history['loss']) plt.plot(history_object.history['val_loss']) plt.title('model mean squared error loss') plt.ylabel('mean squared error loss') plt.xlabel('epoch') plt.legend(['training set', 'validation set'], loc='upper right') plt.show()
[ "matplotlib" ]
d7652acf62618dbdd1b5476fc95d72e033c67f7b
Python
emedvedev97/python.lab1
/lab1woFor.py
UTF-8
381
2.515625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt from keras.datasets import mnist X_size = 5 Y_size = 3 (X_train, y_train), (X_test, y_test) = mnist.load_data() nummas = np.random.randint(0, 60000, X_size*Y_size) vvv = X_train[nummas] vvv = vvv.reshape(Y_size,X_size,28,28) vvv = vvv.transpose(0,2,1,3).reshape(Y_size*28,X_size*28) plt.imshow(vvv , cmap='Greys') plt.show()
[ "matplotlib" ]
1cdd359fdf0792f34f5766958eeb8825954d9d94
Python
S-John-S/MAT
/tem_plot.py
UTF-8
252
2.609375
3
[ "MIT" ]
permissive
#!/usr/bin/env python import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from numpy import genfromtxt data=genfromtxt("Temp_plot2",names=['x','y','z']) ax=plt.subplot(111) ax.plot(data['y'],data['z']) plt.savefig('Temp_plot2.png')
[ "matplotlib" ]
da7d734c7a021b2432a29142903dc12eb720e2d7
Python
saiharsha-22/Pattern-Recognition
/Measure Performance of K-Nearest Neighbors (KNN) Classifier/KNN.py
UTF-8
2,770
3.09375
3
[]
no_license
import numpy as np import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('train.txt', sep=",", header=None, dtype='int64') arr = df.values df2 = pd.read_csv('test.txt', sep=",", header=None, dtype='int64') test = df2.values w1x = [] w1y = [] w2x = [] w2y = [] for i in range(len(arr)): if arr[i][2] == 1: w1x.append(arr[i][0]) w1y.append(arr[i][1]) else: w2x.append(arr[i][0]) w2y.append(arr[i][1]) list_f = np.empty((0, 4), int) for i in range(len(test)): list2 = [] class_1 = [] for j in range(len(arr)): val1 = np.power((test[i][0] - arr[j][0]), 2) val2 = np.power((test[i][1] - arr[j][1]), 2) distance = np.sqrt(val1 + val2) list2.append(distance) class_1.append(arr[j][2]) list_f = np.append(list_f, np.array([[test[i][0], test[i][1], list2, class_1]]), 0) predicted_list = [] k = int(input("Value of K: ")) def sort(arr, arr2): n = len(arr) for i in range(n): for j in range(0, n-i-1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] arr2[j], arr2[j+1] = arr2[j+1], arr2[j] list_f2 = np.empty((0, 3), int) for i in range(len(list_f)): sort(list_f[i][2], list_f[i][3]) sort_dis = list_f[i][2] sort_class = list_f[i][3] c1, c2 = 0, 0 for j in range(k): if sort_class[j] == 1: c1 = c1+1 else: c2 = c2+1 if c1 > c2: list_f2 = np.append(list_f2, np.array([[list_f[i][0], list_f[i][1], 1]]), 0) predicted_list.append(1) else: list_f2 = np.append(list_f2, np.array([[list_f[i][0], list_f[i][1], 2]]), 0) predicted_list.append(2) f = open("prediction.txt", "w") for i in range(len(list_f)): f.write("Test point: %d, %d\n" % (list_f[i][0], list_f[i][1])) dis = list_f[i][2] cls = list_f[i][3] for j in range(k): f.write("Distance %d: %f \t Class: %d \n" % ((j+1), dis[j], cls[j])) f.write("Predicted class:%d \n\n" % (predicted_list[i])) f.close() w1x_new = [] w1y_new = [] w2x_new = [] w2y_new = [] for i in range(len(list_f2)): if list_f2[i][2] == 1: w1x_new.append(list_f2[i][0]) w1y_new.append(list_f2[i][1]) elif list_f2[i][2] == 2: w2x_new.append(list_f2[i][0]) w2y_new.append(list_f2[i][1]) plt.plot(w1x, w1y, '+r', label='Class1 train') plt.plot(w2x, w2y, 'ob', label='Class2 train') plt.plot(w1x_new, w1y_new, '*g', label='Class1 classified') plt.plot(w2x_new, w2y_new, '^y', label='Class2 classified') plt.title('K-Nearest Neighbors(KNN)') plt.legend() plt.show()
[ "matplotlib" ]
dc0c2c6f5922a6903e3909222c625250932e1dbd
Python
KathyHuancayo/Modelo-de-detecci-n
/Dataset ISOT - Clase Mayoritaria Inicial/k-nearest neighbours.py
UTF-8
6,153
2.5625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri Apr 17 20:20:00 2020 @author: Sony """ import time import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import matplotlib.patches as mpatches import seaborn as sns %matplotlib inline plt.rcParams['figure.figsize'] = (16, 9) plt.style.use('ggplot') from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score, cross_val_predict, KFold from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import sklearn.metrics from sklearn import metrics #CARGAR LOS DATOS datos = pd.read_csv('C://Users//Sony//Desktop//TESIS 2//isot_app_and_botnet_dataset//botnet_data//Clase_Mayoritaria.csv') df=pd.DataFrame(datos) X = datos[['Src_Port','Dst_Port','Protocol','Flow_Duration','Tot_Fwd_Pkts','Tot_Bwd_Pkts', 'TotLen_Fwd_Pkts','TotLen_Bwd_Pkts','Fwd_Pkt_Len_Mean','Fwd Pkt Len Max','Fwd Pkt Len Min', 'Bwd_Pkt_Len_Mean','Flow_Byts/s','Flow_Pkts/s','Fwd_Pkts/s','Bwd_Pkts/s','Subflow_Fwd_Byts','Subflow_Bwd_Byts','Subflow_Bwd_Pkts','Subflow_Fwd_Pkts']] y=datos['Output'] X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2, random_state=0) X_train.shape X_test.shape y_train.shape y_test.shape k_range = list(range(1,20)) scores = [] for k in k_range: knn = KNeighborsClassifier(n_neighbors = k,algorithm='kd_tree', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, p=2, weights='uniform') knn.fit(X_train, y_train) scores.append(knn.score(X_test, y_test)) df = pd.DataFrame({"Max K": k_range, "Average Accuracy":scores }) df = df[["Max K", "Average Accuracy"]] print(df.to_string(index=False)) plt.figure() plt.xlabel('k') plt.ylabel('accuracy') plt.scatter(k_range, scores) plt.xticks([0,5,10,15,20]) start = time.time() knn = KNeighborsClassifier(algorithm='kd_tree', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=1, p=2, weights='uniform') knn.fit(X_train, y_train) end = time.time() print ("K-Nearest Neighbors", end - start) predictions=knn.predict(X_test) # VALIDAR MODELO results = cross_val_score(knn, X_train, y_train,scoring='accuracy', cv=5) print("Accuracy: %.3f%% (%.3f%%)" % (results.mean()*100, results.std()*100)) print ('CROSS-VALIDATION SCORES:') print(results) #------------------------------REPORTE DE RESULTADOS POR CLASE------------------------------- print(classification_report(y_test,predictions)) print("PRECISIÓN PARA DETECTAR DIFERENTES MUESTRAS DE BOTNET ", metrics.precision_score(y_test, predictions,average=None)*100) print("RECALL PARA DETECTAR DIFERENTES MUESTRAS DE BOTNET: ", metrics.recall_score(y_test, predictions, average=None)*100) print ("EXACTITUD DEL MODELO: ", sklearn.metrics.accuracy_score(y_test, predictions, normalize=True)*100) print(knn.score(X_test,y_test)) #------------------------------MATRIZ DE CONFUSIÓN PARA VALIDACIÓN------------------------------- x_axis_labels = ['Zeus','Citadel','Citadel2'] # labels for x-axis y_axis_labels = ['Zeus','Citadel','Citadel2'] # labels for y-axis print("MATRIZ DE CONFUSIÓN PARA VALIDACION: ") cm1=confusion_matrix(y_test, predictions) print(cm1) plt.figure(figsize=(12, 12)) sns.heatmap(cm1,xticklabels=x_axis_labels, yticklabels=y_axis_labels ,annot=True, fmt="d"); plt.title("Confusion matrix") plt.ylabel('True class') plt.xlabel('Predicted class') plt.show() # PREDECIR BOTNET ZEUS: X_test = pd.DataFrame(columns=('Src_Port','Dst_Port','Protocol','Flow_Duration','Tot_Fwd_Pkts','Tot_Bwd_Pkts', 'TotLen_Fwd_Pkts','TotLen_Bwd_Pkts','Fwd_Pkt_Len_Mean','Fwd Pkt Len Max','Fwd Pkt Len Min', 'Bwd_Pkt_Len_Mean','Flow_Byts/s','Flow_Pkts/s','Fwd_Pkts/s','Bwd_Pkts/s','Subflow_Fwd_Byts','Subflow_Bwd_Byts','Subflow_Bwd_Pkts','Subflow_Fwd_Pkts','Output')) X_test.loc[0] = (57366,53,17,216,1,1,34,118,34,34,34,118,703703.7037,9259.259259,4629.62963,4629.62963,17,59,0,0,4) y_pred = knn.predict(X_test.drop(['Output'], axis = 1)) print("Prediccion: " + str(y_pred)) y_proba = knn.predict_proba(X_test.drop(['Output'], axis = 1)) print("Probabilidad de Acierto: " + str(np.round(np.asarray(y_proba[0][y_pred])* 100, 2))) # PREDECIR BOTNET CITADEL: X_test = pd.DataFrame(columns=('Src_Port','Dst_Port','Protocol','Flow_Duration','Tot_Fwd_Pkts','Tot_Bwd_Pkts', 'TotLen_Fwd_Pkts','TotLen_Bwd_Pkts','Fwd_Pkt_Len_Mean','Fwd Pkt Len Max','Fwd Pkt Len Min', 'Bwd_Pkt_Len_Mean','Flow_Byts/s','Flow_Pkts/s','Fwd_Pkts/s','Bwd_Pkts/s','Subflow_Fwd_Byts','Subflow_Bwd_Byts','Subflow_Bwd_Pkts','Subflow_Fwd_Pkts','Output')) X_test.loc[0] = (63587,53,17,370,1,1,37,121,37,37,37,121,427027.027,5405.405405,2702.702703,2702.702703,18,60,0,0,6) y_pred = knn.predict(X_test.drop(['Output'], axis = 1)) print("Prediccion: " + str(y_pred)) y_proba = knn.predict_proba(X_test.drop(['Output'], axis = 1)) print("Probabilidad de Acierto: " + str(np.round(np.asarray(y_proba[0][y_pred])* 100, 2))) # PREDECIR BOTNET CITADEL2: X_test = pd.DataFrame(columns=('Src_Port','Dst_Port','Protocol','Flow_Duration','Tot_Fwd_Pkts','Tot_Bwd_Pkts', 'TotLen_Fwd_Pkts','TotLen_Bwd_Pkts','Fwd_Pkt_Len_Mean','Fwd Pkt Len Max','Fwd Pkt Len Min', 'Bwd_Pkt_Len_Mean','Flow_Byts/s','Flow_Pkts/s','Fwd_Pkts/s','Bwd_Pkts/s','Subflow_Fwd_Byts','Subflow_Bwd_Byts','Subflow_Bwd_Pkts','Subflow_Fwd_Pkts','Output')) X_test.loc[0] = (55399,53,17,85,1,1,37,83,37,37,37,83,1411764.706,23529.41176,11764.70588,11764.70588,18,41,0,0,7) y_pred = knn.predict(X_test.drop(['Output'], axis = 1)) print("Prediccion: " + str(y_pred)) y_proba = knn.predict_proba(X_test.drop(['Output'], axis = 1)) print("Probabilidad de Acierto: " + str(np.round(np.asarray(y_proba[0][y_pred])* 100, 2)))
[ "matplotlib", "seaborn" ]
2fedce402fb0147f0ee34c8a80e03219d400d057
Python
gabrevaya/HO-python
/ej3.py
UTF-8
423
2.96875
3
[]
no_license
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import scipy coefs = [1,1,-4,4] p = np.poly1d(coefs) xi = -10 xf = 10 dx = 0.1 num = (xf - xi)/dx x = np.linspace(xi, xf, num) y = p(x) y_grad = np.gradient(y, dx, edge_order=2) plt.figure() plt.plot(x,y) plt.plot(x,y_grad) plt.xlabel('X') plt.ylabel('Y') plt.legend(['Función','Derivada']) plt.grid() plt.show np.savetxt('function.txt', y)
[ "matplotlib" ]
7a8cb0d69f2ed0cb6c9cd04987a121a0e1372815
Python
HeinrichHartmann/UrlAnalysis
/UrlAnalysis.py
UTF-8
1,861
2.8125
3
[]
no_license
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> import pandas as pd import numpy as np import matplotlib.pyplot as plt # <codecell> # Update Logs from Polipo import subprocess subprocess.call("zcat /var/log/polipo/*.gz | cat - /var/log/polipo/*.log > proxy.log", shell=True) # Import Logs df = pd.read_csv("proxy.log", sep=" - ", names=["date", "method", "url"]) # clean log file subprocess.call("rm proxy.log", shell=True) # Print Stats df = df[df.url.notnull()] # discard rows without url # df = df[df.method == "GET"] df.date = pd.to_datetime(df.date) df.index = df.date print df.index.size df.head() # <codecell> def get_host(url): url = url.strip("http://") url = url.split("/")[0] url = url.split(":")[0] return url classes = { "news" : { 'patterns': ["zeit.de", "welt.de"], 'value' : 10 }, "social" : { 'patterns': ["facebook.com", "twitter.com"], 'value' : 15 }, "status" : { 'patterns': ["dropbox.com", "ghostery"], 'value' : 0 }, "learn" : { 'patterns': ["wikipedia.org", "stackoverflow", "wikibooks", "wikimedia"], 'value' : -5 }, "work" : { 'patterns': ["github.com", "calendar.google.com"], 'value' : -10 }, "search" : { 'patterns': ["google"], 'value' : 1 }, "unknown": { 'patterns': [], 'value' : 0 }, } def classify(host): for host_class, ob in classes.items(): if any([ (pattern in host) for pattern in ob['patterns'] ]): return host_class return "unknown" def n_classify(host): return classes[classify(host)]['value'] # <codecell> df['host'] = df.url.apply(get_host) df['host_type'] = df.host.apply(n_classify) # plt.plot(df.host_type,df.date,'o') # <codecell> from datetime import datetime plt.figure(figsize=(20,5)) gf = df# [df.date > datetime(2014,9,7,0,0,0)] plt.plot(gf.date,gf.host_type,'o') # <codecell>
[ "matplotlib" ]
9fd81b5682622aca3fd1574df93f26dc0ca1e195
Python
kaixin999/wcloud
/yunci.py
UTF-8
716
2.578125
3
[]
no_license
import jieba from PIL import Image import numpy as np from wordcloud import WordCloud,ImageColorGenerator fn = open('love.txt','r',encoding='utf-8') # 打开文件 jb = fn.read() # 读出整个文件 fn.close() # 关闭文件 jb = jieba.lcut(jb) jb =' '.join(jb) maskcover = np.array(Image.open('love.png')) img_color = ImageColorGenerator(maskcover) w = WordCloud( background_color='white', max_words=160, random_state=42, width=1000, height=800, margin=1, mask=maskcover, max_font_size=180, font_path='./simhei.ttf', ).generate(jb) import matplotlib.pyplot as plt plt.imshow(w) plt.imshow(w.recolor(color_func=img_color)) plt.axis('off') plt.show()
[ "matplotlib" ]
153975a4221b21f96b11a158bfa95775b560b4b9
Python
r-b-g-b/Lab
/toolbox/misc.py
UTF-8
14,553
2.546875
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt from PIL import Image import pandas as pd import os, h5py import scipy.stats as st import itertools import Tkinter import tkFileDialog import datetime def get_subplot_grid(n): if n<4: nrows = n; ncols = 1 else: nrows = ncols = np.ceil(np.sqrt(n)) return nrows, ncols def str2date(s, delimiter = '_', format = 'MMDDYYYY'): ''' Input: s: a string representation of a date MO_DA_YR Output: date: datetime formatted date ''' if delimiter=='': if format == 'YYYYMMDD': yr = s[:4]; mo = s[4:6]; da = s[6:] else: if format == 'MMDDYYYY': mo, da, yr = s.split(delimiter) elif format == 'YYYYMMDD': yr, mo, da = s.split(delimiter) return datetime.date(int(yr), int(mo), int(da)) def pd_sem(ds): n = len(ds) ds_mean = np.mean(ds) runningsum = 0 for i in ds: runningsum = runningsum + (i-ds_mean)**2 std = np.sqrt(runningsum / (n-1)) sem = std / np.sqrt(n) return sem def pd_sem_2d(ds): n = len(ds) nsamp = len(ds[ds.index[0]]) ds_mean = np.mean(ds) runningsum = np.zeros(nsamp) for i in ds: runningsum = runningsum + (i-ds_mean)**2 std = np.sqrt(runningsum / (n-1)) sem = std / np.sqrt(n) return sem def get_first(df): x = df.iloc[0] return x def samexaxis(ax, xlim = None): minx = +np.inf maxx = -np.inf if xlim is None: for ax_ in ax: xlim = ax_.get_xlim() minx = np.min([minx, xlim[0]]) maxx = np.max([maxx, xlim[1]]) else: (minx, maxx) = xlim [a.set_xlim([minx, maxx]) for a in ax] def sameyaxis(ax, ylim = None): minx = +np.inf maxx = -np.inf if ylim is None: for ax_ in ax: xlim = ax_.get_ylim() minx = np.min([minx, xlim[0]]) maxx = np.max([maxx, xlim[1]]) else: (minx, maxx) = ylim [a.set_ylim([minx, maxx]) for a in ax] def closest(vec, x, log = False): if log: orig_vec = vec.copy() vec = np.log2(orig_vec) x = np.log2(x) differ = np.abs(vec - x) min_differ = differ.min() ix = differ.argmin() if log: val = orig_vec[ix] error = vec[ix] - x else: val = vec[ix] error = val - x return val, ix, error def vline(ax, xloc, **kwargs): if len(xloc) == 1: xloc = [xloc] for ax_ in ax: for xloc_ in xloc: ax_.axvline(xloc_, **kwargs) def hline(ax, yloc, **kwargs): if len(yloc) == 1: yloc = [yloc] for ax_ in ax: for yloc_ in yloc: ax_.axhline(yloc_, **kwargs) def nansem(x, axis = None): return st.sem(x[~np.isnan(x)], axis = axis) def isbetween(x, xmin, xmax): x = np.array(x) ix = np.logical_and(xmin <= x, x < xmax) return ix def octave_diff(f1, f2): return np.log2(f1)-np.log2(f2) def bar2(y, x = None, yerr = None, width = None, ax = None, groups = None, grouplabels = None): if x is None: x = np.arange(y.shape[0]) if width is None: width = y.shape[0] x = np.asarray(x) ax, fig = axis_check(ax) ndim = len(y.shape) ax.bar(x, y[:, 0], yerr = yerr[:, 0], ecolor = 'k') ax.bar(x+width, y[:, 1], yerr = yerr[:, 1], color = 'g', ecolor = 'k') if groups is not None: labels = [] for i in itertools.product(groups[0], groups[1]): labels.append(str(i[0]) + '.' + str(i[1])) ax.set_xticks(np.arange(np.prod(y.shape))+0.5) ax.set_xticklabels(labels) return ax def jitter(x, amp): ''' returns a Gaussian jittered version of the input. Only good for 1-D vectors. ''' return x + amp*np.random.randn(np.asarray(x).size) def order(x): x_ = np.empty_like(x) ux = np.unique(x) for i, ux_ in enumerate(ux): x_[x==ux_] = i return x_ def plot_spread_y(x): npts, nobs = x.shape y_ = 2*np.abs(x).max(1).mean() y = np.arange(0, y_*nobs, y_) return x + np.tile(y, (npts, 1)) def errorfill(x, y, yerr = None, ax = None, color = None, err_type = 'sem', **kwargs): ax, fig = axis_check(ax) if color is None: color = ax._get_lines.color_cycle.next() if len(y.shape)==1: y_mean = y else: y_mean = y.mean(0) if yerr is None: if err_type == 'sem': yerr = 0.5*st.sem(y, 0) elif err_type == 'std': yerr = 0.5*st.std(y, 0) x_hi = y_mean + yerr x_lo = y_mean - yerr l = ax.plot(x, y_mean, color = color, **kwargs) l_up = ax.plot(x, y_mean+yerr, color = color, alpha = 0.2) l_lo = ax.plot(x, y_mean-yerr, color = color, alpha = 0.2) ax.fill_between(x, x_hi, x_lo, alpha = 0.2, color = color) return ax def bin(x, bins, ordered_x = False): # returns a 'rounded down' version of data (i.e. the cloeset bin value below the raw value) bins = np.asarray(bins) nbins = bins.size - 1 x_bin = np.empty(x.size) * np.nan for i in range(nbins): x_bin[isbetween(x, bins[i], bins[i+1])] = i if not ordered_x: x_bin = np.asarray([bins[x_] for x_ in x_bin]) return x_bin def slopeintercept(m, b, ax, **kwargs): (xi, xf) = ax.get_xlim() yi = m*xi + b yf = m*xf + b ax.plot([xi, xf], [yi, yf], **kwargs) def scatterfit(x, y, ax = None, **kwargs): if ax is None: fig = plt.figure(); ax = fig.add_subplot(111); ax.scatter(x, y) (slope, inter) = np.polyfit(x, y, 1) slopeintercept(slope, inter, ax, color = 'r') def axis_check(ax, **kwargs): ''' Returns ax, fig ''' if ax is None: fig = plt.figure(); ax = fig.add_subplot(111, **kwargs); else: fig = ax.get_figure(); return ax, fig def target(x, y, ax, color = 'r'): ax.plot(x, y, marker = 'o', color = color, ms = 12) ax.plot(x, y, marker = 'o', color = 'w', ms = 10) ax.plot(x, y, marker = 'o', color = color, ms = 6) ax.plot(x, y, marker = 'o', color = 'w', ms = 3) def find_on_off(x): x = np.concatenate((np.array([0]), x, np.array([x[-1]+10]))) d = np.diff(x) ix = (d>10).nonzero()[0] offset = x[ix][1:]+1000 onset = x[ix+1][:-1]-1000 return onset, offset def find_consec_middles(Q): ''' Input: Q : list of integers Output Q : same list except culled down to not contain consecutive ranges (new list only contains the middle number of that range of consecutive numbers) ''' X = [True] while sum(X) > 0: L = [l+1 == Q[i+1] for i, l in enumerate(Q[:-1])] # check left L.extend([False]) R = [l-1 == Q[i] for i, l in enumerate(Q[1:])] # check right R.insert(0, False) M = [l and r for (l, r) in zip(L, R)] # middle values L2 = [l if not m else False for (l, m) in zip(L, M)] R2 = [r if not m else False for (r, m) in zip(R, M)] Z = [False if not l else l and r for (l, r) in zip(L2[:-1], R2[1:])] # no LR pairs Z.extend([False]) Y = [l ^ r for (l, r) in zip(L, R)] # left or right X = [y if not z else False for (y, z) in zip(Y[:-1], Z)] # what to remove (L/R but not LR pairs) X.extend([Y[-1]]) Q = [q for (q, x) in zip(Q, X) if not x] return Q def find_edges(Q): dQ = np.diff(Q) return (dQ == 1).nonzero()[0], (dQ == -1).nonzero()[0] def find_peaks(Q, pplot = False): dQ = np.diff(Q) w = dQ[:-1] * dQ[1:] peaks_x = np.vstack((w<0, dQ[:-1]>0)).all(0).nonzero()[0]+1 peaks_y = Q[peaks_x] if pplot: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(Q, 'b') ax.plot(dQ, 'r') ax.plot(w*1E12, 'g') ax.plot(peaks_x, peaks_y, '*m') return peaks_x, peaks_y def cos2ramp(x, ramplen): ramplen = np.int32(ramplen) rampoff = np.cos(np.pi/(2*ramplen) * np.arange(ramplen))**2 rampon = rampoff[::-1] x[:ramplen] = x[:ramplen] * rampon x[-ramplen:] = x[-ramplen:] * rampoff return x return x2 def medfilt1(x=None,L=None): ''' a simple median filter for 1d numpy arrays. performs a discrete one-dimensional median filter with window length L to input vector x. produces a vector the same size as x. boundaries handled by shrinking L at edges; no data outside of x used in producing the median filtered output. (upon error or exception, returns None.) inputs: x, Python 1d list or tuple or Numpy array L, median filter window length output: xout, Numpy 1d array of median filtered result; same size as x bdj, 5-jun-2009 ''' # input checks and adjustments try: N = len(x) if N < 2: print 'Error: input sequence too short: length =',N return None elif L < 2: print 'Error: input filter window length too short: L =',L return None elif L > N: print 'Error: input filter window length too long: L = %d, len(x) = %d'%(L,N) return None except: print 'Exception: input data must be a sequence' return None xin = np.array(x) if xin.ndim != 1: print 'Error: input sequence has to be 1d: ndim =',xin.ndim return None xout = np.zeros(xin.size) # ensure L is odd integer so median requires no interpolation L = int(L) if L%2 == 0: # if even, make odd L += 1 else: # already odd pass Lwing = (L-1)/2 for i,xi in enumerate(xin): # left boundary (Lwing terms) if i < Lwing: xout[i] = np.median(xin[0:i+Lwing+1]) # (0 to i+Lwing) # right boundary (Lwing terms) elif i >= N - Lwing: xout[i] = np.median(xin[i-Lwing:N]) # (i-Lwing to N-1) # middle (N - 2*Lwing terms; input vector and filter window overlap completely) else: xout[i] = np.median(xin[i-Lwing:i+Lwing+1]) # (i-Lwing to i+Lwing) return xout def get_path(): root = Tkinter.Tk() root.withdraw() path = tkFileDialog.askopenfilename() root.quit() return path def export_h5(f, fname = 'OUT'): fout = open(os.path.join('/Users/robert/Desktop/', fname+'.txt'), 'w') header = ['gen', 'exp', 'sess'] for i, sess in enumerate(f.keys()): fsess = f[sess] gen, exp, _ = sess.split('_') for j, unit in enumerate(fsess.keys()): funit = fsess[unit] newline = [gen, exp, sess] for m, field in enumerate(np.sort(funit.keys())): ffield = funit[field] fieldsizes = np.array(ffield.shape) if fieldsizes.size == 0: if i==0 and j==0: header.append(field) newline.append('%4.4f' % ffield.value) elif fieldsizes.size == 1 and fieldsizes[0]<10: for n in range(fieldsizes[0]): if i==0 and j==0: header.append('%s-%2.2u' % (field, n)) newline.append('%4.4f' % ffield.value[n]) if i==0 and j==0: fout.write('\t'.join(header) + '\n') fout.write('\t'.join(newline) + '\n') fout.close() def export_DB(DB, fname = 'DB'): nunits = DB.shape[0] txt = np.empty((nunits+1, 0), dtype = 'str') for name in DB.dtype.names: if len(DB[name].shape) == 1: # save out 1D DB entries txt = np.hstack((txt, np.vstack((name, DB[name][:, np.newaxis])))) elif len(DB[name].shape) == 2: # save out 2D DB entries if DB[name].shape[1] < 10: for i in range(DB[name].shape[1]): headername = '%s%i' % (name, i) txt = np.hstack((txt, np.vstack((headername, DB[name][:, i, np.newaxis])))) np.savetxt(os.path.join('/Users/robert/Desktop/', fname+'.txt'), txt, fmt = '%s') def export_DB2(data, fname = 'DB'): savepath = os.path.join('/Users/robert/Desktop', fname+'.txt') assert not os.path.exists(savepath) f = open(savepath, 'w') line = '' dat = data[0] for key_ in dat.dtype.descr: key = key_[0] newfield = dat[key] if newfield.size==1: newfield = [newfield] for i, newfield_ in enumerate(newfield): header = key if len(newfield)>1: header = '%s%2.2i' % (header, i+1) line += '%s\t' % header line += '\n' f.write(line) for dat in data: line = '' for key_ in dat.dtype.descr: key = key_[0] newfield = dat[key] if newfield.size==1: newfield = [newfield] for newfield_ in newfield: if not type(newfield_) in [str, np.string_]: newfield_ = '%.5e' % newfield_ line += '%s\t' % newfield_ line += '\n' f.write(line) f.close() def make_combinations(x): ndim = x.shape[1] nlevels = np.empty(ndim, dtype = np.int32) ulevels = [] for i in range(ndim): ulevels.append(list(np.unique(x[:, i]))) nlevels[i] = len(ulevels[-1]) for i in itertools.product(*ulevels): print i def np_to_pd(x): df = pd.DataFrame(index = np.arange(x.size)) for i in x.dtype.descr: if len(i)==2: name, dtype = i df[name] = x[name] elif len(i)==3: name, dtype, shape = i if len(shape)==1 and shape[0]<100: for j in xrange(shape[0]): df['%s%2.2i' % (name, j+1)] = x[name][:, j] return df def get_rast_stimparams_from_df(df_, studyprefix = 'rr', unitprefix = 'RR', basedir = '/Volumes/BOB_SAGET/Fmr1_RR'): path = os.path.join(basedir, 'Sessions', '%s_%s_%s_%s' % (studyprefix, df_['gen'], df_['exp'], df_['sess']), 'fileconversion', '%s%3.3i.h5' % (unitprefix, df_['unit'])) if os.path.exists(path): print 'Loading %s' % path f = h5py.File(path, 'r') rast = f['rast'].value stimparams = f['stimID'].value f.close() else: print 'Could not find %s' % path return None, None return rast, stimparams def add_unity_line(ax = None, **kwargs): if ax is None: ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() minlim = min((xlim[0], ylim[0])) maxlim = max((xlim[1], ylim[1])) ax.plot([minlim, maxlim], [minlim, maxlim], **kwargs) ax.set_xlim(xlim) ax.set_ylim(ylim) plt.draw() def plot_matrix(x, N = 10, ax = None, **kwargs): ''' plots the mean trace of a matrix and transparent sample traces ''' ax, fig = axis_check(ax) l, = ax.plot(x.mean(1), lw = 2, **kwargs) color = l.get_color() ax.plot(x[:, np.linspace(0, x.shape[1]-1, N).astype(int)], alpha = 0.1, color = color, **kwargs) return ax def pd_errorbar(y, yerr, ax = None, **kwds): ax, fig = axis_check(ax) colors = kwds.pop('color', 'brgyk') ax_pos = np.arange(len(y)) + 0.25 tickoffset = 0.375 K = y.columns.size rects = [] labels = [] for i, label in enumerate(y.columns): y_ = y[label] yerr_ = yerr[label] kwds['color'] = colors[i % len(colors)] rect = ax.bar(ax_pos + i*0.75/K, y_, 0.75/K, label = label, **kwds) ax.errorbar(ax_pos + (i*0.75/K) + (0.75/K)/2, y_, yerr_, fmt = None, ecolor = 'k') rects.append(rect) labels.append(label) patches = [r[0] for r in rects] ax.legend(patches, labels, loc = 'best') ax.set_xticks(ax_pos + tickoffset) ax.set_xticklabels(y.index.values, rotation = 90) plt.show(); return ax def objectarray2floatarray(x): x_ = np.empty((len(x), len(x[x.index[0]]))) for i, (k, v) in enumerate(x.iterkv()): x_[i, :] = v return x_ def facet_wrap(df, df_err = None, fig = None): if fig is None: fig = plt.figure(); index = zip(*df.index) nindex = len(index) ulevels = np.unique(index[-1]) nlevels = ulevels.size ax = [] for i, lev in enumerate(ulevels): ax.append(fig.add_subplot(nlevels, 1, i+1)) df.xs(lev, level=nindex-1).transpose().plot(kind = 'line', ax = ax[-1]) # df.xs(lev, level=nindex-1) # df_err.xs(lev, level=nindex-1) # pd_errorbar(df, df_err, ax = ax[-1]) sameyaxis(ax)
[ "matplotlib" ]
2d8f66e71f666856f0f894e46e4d06362b970217
Python
altdillon/deeplearningfinal
/LeNet.py
UTF-8
1,386
2.625
3
[]
no_license
import keras from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten,Conv2D, MaxPooling2D from keras.layers.normalization import BatchNormalization from keras.models import load_model # added import matplotlib.pyplot as plt from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 # lenet, from Chao's minst hand writing exsample def LeNet(width=1, height=1, depth=1, classes=1): # initialize the model model = Sequential() inputShape = (height, width, depth) # if we are using "channels first", update the input shape #if K.image_data_format() == "channels_first": # inputShape = (depth, height, width) # first set of CONV => RELU => POOL layers model.add(Conv2D(20, (5, 5), padding="same", input_shape=inputShape)) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # second set of CONV => RELU => POOL layers model.add(Conv2D(50, (5, 5), padding="same")) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # first (and only) set of FC => RELU layers model.add(Flatten()) model.add(Dense(500)) model.add(Activation("relu")) # softmax classifier model.add(Dense(classes)) model.add(Activation("softmax")) # return the constructed network architecture return model
[ "matplotlib" ]
00d09f41c9dd436f83924fa92cc9dcf037ce613d
Python
VincentSidot/projet_euler
/projet_euler.py
UTF-8
9,550
3.515625
4
[]
no_license
## Probleme 12 def list_divisor(n): divisor = [1] divisor2 = [n] for i in range(2,int(n**0.5)+1): if n%i==0: divisor += [i] if i !=int(n**0.5): divisor2 += [int(n/i)] return divisor + list(reversed(divisor2)) def count_divisor(n): divisor = 2 for i in range(2,int(n**0.5)+1): if n%i==0: divisor += 1 if i !=int(n**0.5): divisor += 1 return divisor def problem12(): divisor = 0 i,triangular = 0,0 while divisor < 500: i+=1 triangular+=i divisor = count_divisor(triangular) return i ## Problem 38 def D2B(n,B=10): L = [] while n > 0: L = [n%B] + L n//=B return L def fastpow(x,n): if n==0: return 1 elif n%2==0: return fastpow(x,n//2)*fastpow(x,n//2) else: return fastpow(x,n//2)*fastpow(x,n//2)*x pow5 = [fastpow(i,5) for i in range(10)] def fifthDigitSum(n): rep = 0 while n>0: rep += pow5[n%10] n//=10 return rep def problem38(): rep = 0 for i in range(10,10**6): if i == fifthDigitSum(i): rep += i return rep ## Problem 31 p = [1,2,5,10,20,50,100,200] def problem31(): rep = 0 for x1 in range(201): if x1>200: break for x2 in range(101): if x1+2*x2>200: break for x3 in range(41): if x1+2*x2+5*x3>200: break for x4 in range(21): if x1+2*x2+5*x3+10*x4>200: break for x5 in range(11): if x1+2*x2+5*x3+10*x4+20*x5>200: break for x6 in range(5): if x1+2*x2+5*x3+10*x4+20*x5+50*x6>200: break for x7 in range(3): if x1+2*x2+5*x3+10*x4+20*x5+50*x6+100*x7>200: break for x8 in range(2): if x1+2*x2+5*x3+10*x4+20*x5+50*x6+100*x7+200*x8>200: break if x1+2*x2+5*x3+10*x4+20*x5+50*x6+100*x7+200*x8==200: rep+=1 return rep ## Problem 27 """ b as to be prime""" def crible(n): P = [0,0] + list(range(2,n)) for i in range(2,int(n**0.35)+1): if P[i] != 0: for j in range(2*i,n,i): P[j] = 0 return [p for p in P if p!=0] def isPrime(n): if n <= 0 or n==1: return False for i in range(2,int(n**0.5)+1): if n%i==0: return False return True B = crible(1000) A = range(-1000,1001) def problem27(): max,amax,bmax = 0,0,0 for a in A: for b in B: n = 0 while isPrime(n*n+a*n+b): n+=1 if n > max: amax,bmax=a,b max = n return amax*bmax ## Problem 21 def properDivisor(n,extremum=False): if extremum: L = [1,n] else: L = [] for i in range(2,int(n**0.5)+1): if n%i==0: L+=[i] if i != n/2: L+=[n//i] #L.sort() return L def d(n): return sum(properDivisor(n))+1 def problem21(): rep = 0 for a in range(1,10000): b = d(a) if d(b)==a and b!=a: rep += a return rep ## Problem 24 L = [0,1,2] def fact(n): rep = 1 for i in range(2,n+1): rep*=n return rep def Permutation(L): return ## Problem 22 file = open("problem22.txt",'r') def strToList(str): L = [] word = "" for i in str: if ord(i)>=ord('A') and ord(i) <= ord('Z'): word += i else: if len(word)>0: L += [word] word = "" if len(word)>0: L += [word] return L def pound(word): rep = 0 for i in word: rep += ord(i)-ord('A')+1 return rep rep = 0 L = strToList(file.read()) L.sort() for i in range(len(L)): rep += pound(L[i])*(i+1) print(rep) ## Problem 17 usual = { 1:'one',2:'two',3:'three',4:'four',5:'five',6:'six',7:'seven',8:'eight',9:'nine',10:'ten',11:'eleven',12:'twelve',13:'thirteen',14:'fourteen',15:'fifteen',16:'sixteen',17:'seventeen',18:'eighteen',19:'nineteen',20:'twenty',30:'thirty',40:'forty',50:'fifty',60:'sixty',70:'seventy',80:'eighty',90:'ninety',100:'hundred',1000:'thousand',1000000:'million'} def number_to_str(n): if n <= 0: return "error" if n <= 20: return usual[n] if n/10 == n//10 and n<100: return usual[n] if n > 20 and n < 100: dec = n//10 unit = n%10 return number_to_str(10*dec) + '-' + number_to_str(unit) if n/100 == n//100 and n<1000: return number_to_str(n//100) + " " + usual[100] if n > 100 and n < 1000: cent = n//100 rest = n%100 return number_to_str(cent*100) + " and " + number_to_str(rest) if n/1000 == n//1000 and n<1000000: return number_to_str(n//1000) + " " + usual[1000] if n > 1000 and n < 1000000: mille = n//1000 rest = n%1000 return number_to_str(mille*1000) + ' ' + number_to_str(rest) if n/1000000 == n//1000000 and n<1000000000: return number_to_str(n//1000000) + " " + usual[1000000] if n > 1000000 and n < 1000000000: million = n//1000000 rest = n%1000000 return number_to_str(million*1000000) + ' ' + number_to_str(rest) return 'error' def count_number(word): rep = 0 for i in word: if ord(i) >= ord('a') and ord(i) <= ord('z'): rep+=1 return rep def problem17(): rep = 0 for i in range(1,1001): rep += count_number(number_to_str(i)) print(rep) ## Problem 15 def fact(n): for i in range(1,n): n*=i return n def binom(k,n): # implementation merdique return fact(n)//(fact(k)*fact(n-k)) ## Problem 18 M = [3,7,4,2,4,6,9,5,9,3] def string_to_list(str): L = [] word = "" for i in str: if ord(i)>=ord('0') and ord(i)<=ord('9'): word += i else: if len(word)>0: L+=[int(word)] word = "" if len(word)>0: L+=[int(word)] return L str = "75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23" def triangular(n): return (n*(n+1))//2 def trouver_hauteur(x): i = 0 while x>triangular(i): i+=1 return i def reduce_path(L): h = trouver_hauteur(len(L)) newL = L[:len(L)-h] a = triangular(h-2) b = triangular(h-1) for i in range(h-1): newL[a+i] += max(L[b+i],L[b+i+1]) return newL def find_max_path(L): while len(L) > 1: L = reduce_path(L) return L[0] ## Problem 29 def fastpow(x,n): if n == 0: return 1 if n%2==0: return pow(x,n//2)*pow(x,n//2) else: return pow(x,n//2)*pow(x,n//2)*x def gen(a,b): L = [] for i in range(2,a+1): for j in range(2,b+1): L += [fastpow(i,j),fastpow(j,i)] L.sort() return L def singularise(L): rep = [] for i in L: if i not in rep: rep += [i] return rep ## Problem 69 def crible(n): P = [0,0] + list(range(2,n)) for i in range(2,int(n**0.5)+1): if P[i] != 0: for j in range(2*i,n,i): P[j] = 0 return [p for p in P if p!=0] Prime = crible(1000000) def PrimeFactor(n): L = [] for p in Prime: while n%p == 0: L+=[p] n//=p return L def f(n): rep = 1 for p in PrimeFactor(n): rep *= 1-(1/p) return 1/rep ## Problem 26 import matplotlib.pyplot as plt def fastpow(x,n): if n == 0: return 1 if n%2==0: return pow(x,n//2)*pow(x,n//2) else: return pow(x,n//2)*pow(x,n//2)*x def checkOccurence(n,L): for i in range(len(L)): if L[i]==n: return i # NON FONCTIONEL sauf pour les nombre premier def lenCycle(n): L = [] i = 0 while True: p = int(fastpow(10,i)//n) if p!=0: if p%10 == 0: return 0 if p%10 in L: return i-checkOccurence(p%10,L)-1 L += [p%10] i+=1 def problem26(): max,imax = 0,0 for i in range(1,1000): p = lenCycle(i) if p > max: max,imax = p,i return max,imax def plot(): X = range(1,1000) Y = [lenCycle(i) for i in X] plt.plot(X,Y) plt.grid(True) plt.show() ## Problem 32 def D2B(n,B=10): L = [] while n > 0: L = [n%B] + L n//=B return L def isPandigital(n,onlyOnce = True): Appear = [False]*9 L = D2B(n) if len(L)<9: return False for i in L: if i != 0: if onlyOnce and Appear[i-1]: return False Appear[i-1] = True for j in Appear: if not j: return False return True
[ "matplotlib" ]
fefb767f3d08ce9b8da7696e2b46b937c53cf03b
Python
pyvista/pyvista-docs
/version/0.40/api/core/_autosummary/pyvista-Light-1.py
UTF-8
397
3.109375
3
[]
no_license
# Create a light at (10, 10, 10) and set its diffuse color to red. # import pyvista as pv light = pv.Light(position=(10, 10, 10)) light.diffuse_color = 1.0, 0.0, 0.0 # # Create a positional light at (0, 0, 3) with a cone angle of # 30, exponent of 20, and a visible actor. # light = pv.Light( position=(0, 0, 3), show_actor=True, positional=True, cone_angle=30, exponent=20, )
[ "pyvista" ]
4beb3a281a7ee741259b6c1c76b878acbee557f2
Python
jatinkumar762/IIT-Gandhinagar
/Operating System/Module-3/PageReplacement.py
UTF-8
10,162
3.1875
3
[]
no_license
import random import matplotlib.pyplot as plt class PageReplacement: def __init__(self): self.frame_seq = [] #Frames which are referenced by program self.frame_num = 0 #Total No. of Frames self.Page_size = 0 #No of pages in memoy self.Page_mem = [] #Currently residing frames in pages of memory self.hit = 0 #No. of hits self.miss = 0 #No. of miss self.total_ref = 0 #No of times memory referenced def getFrames(self): #Initialize list of reference frames self.frame_num=int(random.random()*100) for i in range(self.frame_num): self.frame_seq.append(int(random.random()*100)) print("Reference String ",self.frame_seq) def reint_data(self): #Reinitialize data self.hit = 0 self.miss = 0 self.total_ref = 0 self.Page_mem = [] #Least Recently Used def LRU(self): self.reint_data() for frame in self.frame_seq: if frame in self.Page_mem: #frame already present in memory index = self.Page_mem.index(frame) del self.Page_mem[index] #delete from current place self.Page_mem.insert(0, frame) #reagain insert at begining self.total_ref += 1 self.hit += 1 elif len(self.Page_mem)<self.Page_size: #space available in memory self.Page_mem.insert(0, frame) self.total_ref += 1 self.miss += 1 elif len(self.Page_mem)>=self.Page_size: #No Space availabe in memory del self.Page_mem[len(self.Page_mem)-1] #delete last page bcz least recently will be always in last self.Page_mem.insert(0, frame) #insert new frame at the begining self.total_ref += 1 self.miss += 1 #First-In First-Out def FIFO(self): self.reint_data() for frame in self.frame_seq: if frame in self.Page_mem: #frame aleady present in memory self.total_ref += 1 self.hit += 1 elif len(self.Page_mem)<self.Page_size: #space avaiable self.Page_mem.insert(0, frame) #insert at begining self.total_ref += 1 self.miss += 1 else: del self.Page_mem[len(self.Page_mem)-1] #delete last page self.Page_mem.insert(0, frame) #insert at begining self.total_ref += 1 self.miss += 1 #Least Frequenty Used def LFU(self): #Use 2-d Array Concept self.reint_data() #for each page corresponding frequency also there for frame in self.frame_seq: flag = 0 for page in self.Page_mem: if page[0]== frame: #frame already present in memory self.Page_mem[self.Page_mem.index(page)][1]+= 1 #increase it's freq. count flag = 1 self.total_ref += 1 self.hit += 1 break if flag == 0: if len(self.Page_mem) < self.Page_size: #space availabel self.Page_mem.insert(0,[frame,1]) #insert at the begining self.total_ref += 1 self.miss += 1 else: minCount = [0,10**5] for page in self.Page_mem: #find page with min frequency if minCount[1] > page[1]: minCount = page del self.Page_mem[self.Page_mem.index(minCount)] self.Page_mem.insert(0,[frame,1]) self.total_ref += 1 self.miss += 1 #Random Page Replacement def Random(self): self.reint_data() for frame in self.frame_seq: #pick one by one frame from reference array if frame in self.Page_mem: #if page already present in memory self.total_ref += 1 self.hit += 1 elif len(self.Page_mem)<self.Page_size: #if space available in memory self.Page_mem.insert(0, frame) self.total_ref += 1 self.miss += 1 else: #if memory already full del self.Page_mem[(int(random.random()*100))%self.Page_size] #select any random page location in memory self.Page_mem.insert(0, frame) self.total_ref += 1 self.miss += 1 #Oracle - Predict Next Replacement Page def Oracle(self): self.reint_data() for i,frame in enumerate(self.frame_seq): #frame with it's position if frame in self.Page_mem: #check if page already prsent in memory self.total_ref += 1 self.hit += 1 elif len(self.Page_mem)<self.Page_size: #if space available in memory self.Page_mem.insert(0, frame) self.total_ref += 1 self.miss += 1 else: far = 0 #if memory already full del_page = 0 for page in self.Page_mem: #choose farthest page in memory according to next access position in frame reference try: #ValueError Possible if far < (self.frame_seq[i:]).index(page): far = (self.frame_seq[i:]).index(page) del_page = page except: del_page = page break del self.Page_mem[self.Page_mem.index(del_page)] #delete selected location page from memory self.Page_mem.insert(0, frame) #insert new page in memory self.total_ref += 1 self.miss += 1 #Approx Least Recenty Used Algorithm #Theory concept - https://www.geeksforgeeks.org/lru-approximation-second-chance-algorithm/ def ALRU(self): self.reint_data() loop = 0 #circular list counter initially starts from 0 flag = 0 del_page = 0 #page to be deleted fro memory for frame in self.frame_seq: flag = 0 for page in self.Page_mem: #page already present in memory if page[0] == frame: page[1] = 1 #set use/reference bit 1 self.hit += 1 self.total_ref += 1 flag = 1 break if flag == 0: if len(self.Page_mem)<self.Page_size: self.Page_mem.insert(0, [frame,1]) #Newly inserted fresh page self.total_ref += 1 self.miss += 1 else: for index, page in enumerate(self.Page_mem,start=loop): #start from previous selected point if page[1] == 0: flag=1 del_page=page if index+1 < self.Page_size: loop= index+1 else: loop = 0 break else: page[1]=0 if flag==0: #still not found page then again start from begining for index, page in enumerate(self.Page_mem): if page[1] == 0: flag=1 del_page=page if index+1 < self.Page_size: loop= index+1 else: loop=0 break else: page[1]=0 del self.Page_mem[self.Page_mem.index(del_page)] self.Page_mem.insert(0, [frame,1]) self.total_ref += 1 self.miss += 1 if __name__=="__main__": memory = PageReplacement() page_list = list(range(1,101)) memory.getFrames() lru_hit = [] fifo_hit = [] lfu_hit = [] rndom_hit = [] oracle_hit = [] alru_hit = [] rate = 0; for i in range(1,101): memory.Page_size = i memory.LRU() rate=((memory.hit*100)/memory.total_ref) lru_hit.append(rate) memory.FIFO() rate=((memory.hit*100)/memory.total_ref) fifo_hit.append(rate) memory.LFU() rate=((memory.hit*100)/memory.total_ref) lfu_hit.append(rate) memory.Random() rate=((memory.hit*100)/memory.total_ref) rndom_hit.append(rate) memory.Oracle() rate=((memory.hit*100)/memory.total_ref) oracle_hit.append(rate) memory.ALRU() rate = ((memory.hit*100)/memory.total_ref) alru_hit.append(rate) plt.xlabel('Page Size (Blocks)') plt.ylabel('Page Hit Rate (%)') plt.plot(page_list,lru_hit,c='r',label='LRU') plt.plot(page_list,fifo_hit,c='g',label='FIFO') plt.plot(page_list,lfu_hit,c='k',label='LFU') plt.plot(page_list,rndom_hit,c='b',label='Random') plt.plot(page_list,oracle_hit,c='y',label='Oracle') plt.plot(page_list,alru_hit,c='m',label='ALRU') plt.legend() plt.show()
[ "matplotlib" ]
05dc655c4253ac576b326a80ada32eb619b80f55
Python
thaije/Natural-Computing
/week6/Tjalling/adrem-v2/src/deep_features_keras/dataset.py
UTF-8
3,166
2.59375
3
[]
no_license
# The datasets import matplotlib.pyplot as plt import urllib.request import io import glob import numpy as np import scipy.io import scipy.ndimage import re from os.path import expanduser def load_image(filename): return scipy.ndimage.imread(filename, mode='RGB') def load_image_url(url): ext = url.split('.')[-1] return plt.imread(io.BytesIO(urllib.request.urlopen(url).read()), ext) def load_data(dataset): out = dict() if dataset=='office-31': for domain in ['amazon','dslr','webcam']: out[domain] = load_office31_domain(domain) elif dataset=='office-caltech': return load_office_caltech_domain(domain) for domain in ['amazon','Caltech','dslr','webcam']: out[domain] = load_office_caltech_domain(domain) return out def load_data(dataset, domain): if dataset=='office-31': return load_office31_domain(domain) elif dataset=='office-caltech': return load_office_caltech_domain(domain) else: raise Exception("Unknown dataset") def dataset_domains(dataset): if dataset=='office-31': return ['amazon','dslr','webcam'] elif dataset=='office-caltech': return ['amazon','Caltech','dslr','webcam'] else: raise Exception("Unknown dataset") def load_office31_domain(domain): dirs = sorted(glob.glob(expanduser('~/data/office31/{}/images/*').format(domain))) x = [] y = [] for i,dir in enumerate(dirs): for file in sorted(glob.glob(dir+'/*.jpg')): x.append(load_image(file)) y.append(i) if len(x) == 0: raise Exception("No images found") return x,y def load_office_caltech_domain(domain): # Load matlab files mat_suffix = 'Caltech10' if domain == 'Caltech' else domain # labels surf_file = '../../data/office10/{}_SURF_L10.mat'.format(mat_suffix) y = scipy.io.loadmat(surf_file)['labels'] # 1..10 y = y[:,0] - 1 # caltech uses different category names caltech_cat_names = {'003':'backpack', '041':'coffee-mug', '045':'computer-keyboard', '046':'computer-monitor', '047':'computer-mouse', '101':'head-phones', '127':'laptop-101', '224':'touring-bike', '238':'video-projector'} # images index_file = '../../data/office10/{}_SURF_L10_imgs.mat'.format(mat_suffix) img_names = scipy.io.loadmat(index_file)['imgNames'][:,0] x = [] for img_name in img_names: img_name = img_name[0] # map names: if domain == 'Caltech': # example: Caltech256_projector_238_0089 # --> data/caltech256/256_ObjectCategories/238.video-projector/238_0089.jpg cat_name, cat_id, img_id = re.match(r'Caltech256_(.*)_([^_]*)_([^_]*)$', img_name).groups() if cat_id in caltech_cat_names: cat_name = caltech_cat_names[cat_id] file = '~/data/caltech256/256_ObjectCategories/{}.{}/{}_{}.jpg'.format(cat_id, cat_name, cat_id, img_id) else: # example: amazon_projector_frame_0076 --> data/office31/amazon/projector/frame_0076.jpg dom_name, cat_name, img_id = re.match(r'([^_]*)_(.*)_(frame_[^_]*)', img_name).groups() file = '~/data/office31/{}/images/{}/{}.jpg'.format(domain, cat_name, img_id) x.append(load_image(expanduser(file))) return x,y
[ "matplotlib" ]
7732c62c5bd782b17453935c9c78a7def10e4d08
Python
MartinBCN/FlowerClassification
/flower_classification/flower_inference.py
UTF-8
4,810
3
3
[]
no_license
from typing import Dict from PIL import Image from matplotlib.figure import Figure from torch import Tensor import torch.nn as nn from torchvision.transforms import transforms import torch import numpy as np import matplotlib.pyplot as plt from flower_classification.flower_training import FlowerTrainer class FlowerInference(FlowerTrainer): """ Inference for Flower Classification Model """ transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) def __init__(self, model_type: str, num_classes: int): super(FlowerInference, self).__init__(model_type=model_type, num_classes=num_classes) self.label_dictionary = None def set_label_dictionary(self, label_dictionary: Dict[int, str]) -> None: """ Add a label dictionary Parameters ---------- label_dictionary: Dict[int: str] Returns ------- None """ self.label_dictionary = label_dictionary def image_to_label(self, image: Image) -> str: """ Calculate the most likely label for a Pillow image Parameters ---------- image: Image Returns ------- str Name of the classified flower """ image = self.transform(image) return self.tensor_to_label(image) def tensor_to_label(self, image: Tensor) -> str: """ Calculate the most likely label for a Tensor Parameters ---------- image: Tensor Returns ------- str Name of the classified flower """ self.model.eval() image = image.to(self.device) image = image.unsqueeze(0) outputs = self.model(image) batch_predicted_labels = outputs.detach().cpu().numpy() batch_predicted_labels = np.argmax(batch_predicted_labels, axis=1) return batch_predicted_labels[0] def image_to_probability(self, image: Image, num_results: int = 5) -> Dict[str, float]: """ Calculate the probabilities for the different labels and return the five most likely ones Parameters ---------- image: Image num_results: int, default = 5 Returns ------- Dict[str, float] Dictionary of the form {name: probability} """ image = self.transform(image) return self.tensor_to_probability(image, num_results) def tensor_to_probability(self, image: Tensor, num_results: int = 5) -> Dict[str, float]: """ Calculate the probabilities for the different labels and return the five most likely ones Parameters ---------- image: Tensor num_results: int, default = 5 Returns ------- Dict[str, float] Dictionary of the form {name: probability} """ self.model.eval() image = image.to(self.device) image = image.unsqueeze(0) prediction = self.model(image) softmax = nn.Softmax(dim=1) prediction = softmax(prediction) top_predictions = torch.topk(prediction, num_results) top_indices = top_predictions.indices.detach().cpu().numpy()[0] top_values = top_predictions.values.detach().cpu().numpy()[0] if self.label_dictionary is None: prediction = {value: idx + 1 for idx, value in zip(top_indices, top_values)} else: prediction = {value: self.label_dictionary[f'{idx + 1}'] for idx, value in zip(top_indices, top_values)} return prediction def plot_topk(self, image: Image, true_label: int = None) -> Figure: """ Create a Figure of the image together with a visualisation of the most likely predictions Parameters ---------- image: Image true_label: int, default = None Returns ------- Figure """ predictions = self.image_to_probability(image) fig, axes = plt.subplots(1, 2, figsize=(20, 10)) axes[0].imshow(image) # Example data names = tuple(predictions.values()) y_pos = np.arange(len(names)) probabilities = list(predictions.keys()) axes[1].barh(y_pos, probabilities, align='center') axes[1].set_yticks(y_pos) axes[1].set_yticklabels(names) axes[1].invert_yaxis() # labels read top-to-bottom axes[1].set_xlabel('Probability') if (true_label is not None) and (self.label_dictionary is not None): axes[0].set_title(f'True class: {self.label_dictionary[str(true_label)]}') return fig
[ "matplotlib" ]
14da6dd74833a472937873fa01e210289e329d0d
Python
xiaoyiou/histone
/vis.py
UTF-8
1,929
2.84375
3
[]
no_license
# This module is used to visualize the results from rule learning # algorithms import matplotlib.pyplot as plt from sklearn.metrics import precision_recall_curve as pr from sklearn.metrics import average_precision_score as apr from sklearn import metrics from ggplot import * import seaborn as sns import pandas as pd def prCurve(y_test,y_score,ratios,classes): """ ;param y_test ;param y_score ;param ratio ;param classes [] is the list of classes names """ N = len(y_test) plt.figure() for i in range(N): y = y_test[i] yy = y_score[i] name = classes[i] prec, recall,_ = pr(y,yy) avpr = apr(y,yy) plt.plot(recall,prec,label='%s: APR=%.2f'%(name,avpr)) plt.xlim([0,1]) plt.ylim([0,1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title("PR curve for multi-class") plt.legend(loc='top right') plt.show() def roc(fprs,tprs,names): """ Plot roc curves with different names using ggplot """ for i in range(len(names)): auc = metrics.auc(fprs[i],tprs[i]) plt.plot(fprs[i], tprs[i], label=\ '%dth iter %s with AUC=%.2f'%(i,names[i],auc)) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="upper left") plt.show() def visPtns(scores,binary,glst,target,step=100): temp = scores.ix[glst].sort_values(by=target,ascending=False).index data = pd.DataFrame(columns=binary.columns) i = 0 N = temp.shape[0] nData = binary.ix[temp] while i<N: x = nData.iloc[range(i,min(i+step,N))].mean() data.ix[str(i)]=x i+=step plt.clf() sns.heatmap(data)
[ "matplotlib", "seaborn" ]
112a2f056c34e5a0de528fc7bf71de9a11ac1107
Python
lichencan/pyhrf
/python/pyhrf/ndarray.py
UTF-8
75,647
2.6875
3
[]
no_license
# -*- coding: utf-8 -*- """ This module provides classes and functions to handle multi-dimensionnal numpy array (ndarray) objects and extend them with some semantics (axes labels and axes domains). See xndarray class. (TODO: make xndarray inherit numpy.ndarray?) """ import os.path as op import numpy as np import logging from pprint import pformat from pkg_resources import parse_version import pyhrf from pyhrf.tools import (treeBranches, rescale_values, has_ext, tree_items, html_cell, html_list_to_row, html_row, html_table, html_img, html_div) from collections import OrderedDict logger = logging.getLogger(__name__) debug = False MRI3Daxes = ['sagittal', 'coronal', 'axial'] MRI4Daxes = MRI3Daxes + ['time'] TIME_AXIS = 3 class ArrayMappingError(Exception): pass class xndarray: """ Handles a multidimensional numpy array with axes that are labeled and mapped to domain values. Examples -------- >>> c = xndarray( [ [4,5,6],[8,10,12] ], ['time','position'], {'time':[0.1,0.2]} ) Will represent the following situation: .. code:: position -------> 4 5 6 | t=0.1 |time 8 10 12 | t=0.2 v """ def __init__(self, narray, axes_names=None, axes_domains=None, value_label="value", meta_data=None): """ Initialize a new xndarray object from 'narray' with 'axes_names' as axes labels and 'axes_domains' as domains mapped to integer slices. Args: - narray (numpy.ndarray): the wrapped numpy array - axes_names (listof str): labels of array axes if None: then axes_names = [\"dim0\", \"dim1\", ...] - axes_domains (dictof <str>:<numpy array>): domains associated to axes. If a domain is not specified then it defaults to range(size(axis)) Return: a xndarray instance """ logger.debug('xndarray.__init__ ...') narray = np.asarray(narray) self.data = narray self.value_label = value_label self.meta_data = meta_data self.has_deprecated_xml_header = True nbDims = self.data.ndim if axes_names is None: self.axes_names = ['dim' + str(i) for i in xrange(nbDims)] else: assert type(axes_names) == list if len(axes_names) != nbDims: raise Exception("length of axes_names (%d) is different " "from nb of dimensions (%d).\n" "Got axes names: %s" % (len(axes_names), nbDims, str(axes_names))) self.axes_names = axes_names[:] self.axes_ids = dict([(self.axes_names[i], i) for i in xrange(nbDims)]) # By default: domain of axis = array of slice indexes sh = self.data.shape self.axes_domains = dict([(axis, np.arange(sh[i])) for i, axis in enumerate(self.axes_names)]) if axes_domains is not None: assert isinstance(axes_domains, dict) for an, dom in axes_domains.iteritems(): if an not in self.axes_names: raise Exception('Axis "%s" defined in domains not ' 'found in axes (%s)' % (an, ','.join(self.axes_names))) ia = self.axes_names.index(an) l = self.data.shape[ia] if len(dom) != l: raise Exception('Length of domain for axis "%s" (%d) ' 'does not match length of data ' 'axis %d (%d) ' % (an, len(dom), ia, l)) if len(set(dom)) != len(dom): raise Exception('Domain of axis "%s" does not contain ' 'unique values' % an) axes_domains[an] = np.asarray(dom) self.axes_domains.update(axes_domains) logger.debug('Axes names: %s', str(self.axes_names)) logger.debug('Axes domains: %s', str(self.axes_domains)) @staticmethod def xndarray_like(c, data=None): """ Return a new cuboid from data with axes, domains and value label copied from 'c'. If 'data' is provided then set it as new cuboid's data, else a zero array like c.data is used. TODO: test """ if data is None: data = np.zeros_like(c.data) return xndarray(data, c.axes_names, c.axes_domains.copy(), c.value_label, c.meta_data) def get_axes_ids(self, axes_names): """ Return the index of all axes in given axes_names """ assert set(axes_names).issubset(self.axes_names) return [self.get_axis_id(an) for an in axes_names] def len(self, axis): return self.data.shape[self.get_axis_id(axis)] def __repr__(self): return 'axes: ' + str(self.axes_names) + ', ' + repr(self.data) def get_axis_id(self, axis_name): """ Return the id of an axis from the given name. """ logger.debug('core.cuboid ... getting id of %s', axis_name) logger.debug('from : %s', str(self.axes_ids)) if isinstance(axis_name, str): # axis_name is a string axis name if axis_name in self.axes_ids.keys(): return self.axes_ids[axis_name] else: return None else: # axis_name is an integer axis index if axis_name >= 0 and axis_name < self.get_ndims(): return axis_name else: return None # get_axis_id def set_axis_domain(self, axis_id, domain): """ Set the value domain mapped to *axis_id* as *domain* Args: - axis_id (str): label of the axis - domain (numpy.ndarray): value domain Return: None """ assert axis_id in self.axes_domains if axis_id is not None: logger.debug('setting domain of axis %s with %s', str(axis_id), str(domain)) if len(domain) != self.data.shape[axis_id]: raise Exception('length of domain values (%d) does not ' ' match length of data (%d) for axis %s' % (len(domain), self.data.shape[axis_id], self.get_axis_name(axis_id))) self.axes_domains[axis_id] = np.array(domain) # set_axis_domain def get_domain(self, axis_id): """Return the domain of the axis `axis_id` Examples -------- >>> from pyhrf.ndarray import xndarray >>> c = xndarray(np.random.randn(10,2), axes_names=['x','y'], \ axes_domains={'y' : ['plop','plip']}) >>> (c.get_domain('y') == np.array(['plop', 'plip'], dtype='|S4')).all() True >>> c.get_domain('x') #default domain made of slice indexes array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ if axis_id in self.axes_domains: return self.axes_domains[axis_id] else: raise Exception('Unknow axis %s' % axis_id) # get_domain def swapaxes(self, a1, a2): """ Swap axes *a1* and *a2* Args: - a1 (str|int): identifier of the 1st axis - a2 (str|int): identifier of the 2nd axis Return: A new cuboid wrapping a swapped view of the numpy array """ an = self.axes_names[:] ia1, ia2 = self.get_axis_id(a1), self.get_axis_id(a2) an[ia2], an[ia1] = an[ia1], an[ia2] return xndarray(np.swapaxes(self.data, ia1, ia2), an, self.axes_domains, self.value_label, self.meta_data) def roll(self, axis, pos=-1): """ Roll xndarray by making 'axis' the last axis. 'pos' is either 0 or -1 (first or last, respectively) TODO: handle all pos. """ i = self.get_axis_id(axis) if (i == 0 and pos == 0) or (i == self.get_ndims() - 1 and pos == -1): return self if pos == 0: raise NotImplementedError(' pos=0 not coded yet. TODO') self.data = np.rollaxis(self.data, i, len(self.axes_names)) self.axes_names = self.axes_names[:i] + self.axes_names[i + 1:] + \ [axis] self.axes_ids = dict([(a, i) for i, a in enumerate(self.axes_names)]) return self def repeat(self, n, new_axis, domain=None): """ Return a new cuboid with self's data repeated 'n' times along a new axis labelled 'new_axis'. Associated 'domain' can be provided. """ if new_axis is None: new_axis = self.get_new_axis_name() return stack_cuboids([self.copy() for i in xrange(n)], new_axis, domain) def squeeze_all_but(self, axes): to_squeeze = [a for i, a in enumerate(self.axes_names) if self.data.shape[i] == 1 and a not in axes] if len(to_squeeze) == 0: return self else: return self.squeeze(axis=to_squeeze) def squeeze(self, axis=None): """ Remove all dims which have length=1. 'axis' selects a subset of the single-dimensional axes. """ # print 'input axis:', axis sh = self.data.shape if axis is None: axis = [a for i, a in enumerate(self.axes_names) if sh[i] == 1] else: assert self.has_axes(axis) ssh = np.array([sh[self.get_axis_id(a)] for a in axis]) if (ssh != 1).all(): raise Exception('Subset axes to squeeze (%s) ' 'are not all one-length: %s' % (str(axis), str(ssh))) axis_ids = tuple(self.get_axis_id(a) for a in axis) # print 'axes to squeeze', axis # print 'ids :', axis_ids # select axes to keep: axes_names = [a for a in self.axes_names if a not in axis] axes_domains = dict((a, self.axes_domains[a]) for a in axes_names) if parse_version(np.__version__) >= parse_version('1.7'): data = self.data.squeeze(axis=axis_ids) else: sm = [':'] * len(sh) for i in axis_ids: sm[i] = '0' # print 'sm:', sm data = eval('self.data[%s]' % ','.join(sm)) return xndarray(data, axes_names, axes_domains, self.value_label, self.meta_data) def descrip(self): """ Return a printable string describing the cuboid. """ s = '' s += '* shape : %s\n' % str(self.data.shape) s += '* dtype : %s\n' % str(self.data.dtype) s += '* orientation: %s\n' % str(self.axes_names) s += '* value label: %s\n' % self.value_label s += '* axes domains:\n' for dname in self.axes_names: dvalues = self.axes_domains[dname] if isinstance(dvalues, np.ndarray) and \ not np.issubdtype(dvalues.dtype, str) and \ not np.issubdtype(dvalues.dtype, unicode) and \ not dvalues.dtype == bool and \ not dvalues.dtype == np.bool_ and \ len(dvalues) > 1: delta = np.diff(dvalues) if (delta == delta[0]).all(): s += " '%s': " % dname + 'arange(%s,%s,%s)\n' \ % (str(dvalues[0]), str(dvalues[-1]), str(delta[0])) else: s += " '%s': " % dname + pformat(dvalues) + '\n' else: s += " '%s': " % dname + pformat(dvalues) + '\n' return s.rstrip('\n') def _html_table_headers(self, row_axes, col_axes): """ Build table row and column headers corresponding to axes in *row_axes* and *col_axes* respectively. Headers comprises axis names and domain values. Return: tuple(list of str, list of str) -> tuple(list of html code for the row header (without <tr> tags), list of html code for the col header (with <tr> tags)) """ dsh = self.get_dshape() nb_blank_cols = len(row_axes) * 2 # nb of blank cols preprended to # each line of the column header nb_rows = int(np.prod([dsh[a] for a in row_axes])) nb_cols = int(np.prod([dsh[a] for a in col_axes])) # col header if nb_blank_cols > 0: blank_cells = [''] blank_cells_attrs = [{'colspan': str(nb_blank_cols)}] else: blank_cells = [] blank_cells_attrs = [] col_header = [] nb_repets = 1 span = nb_cols for a in col_axes: dom = [str(v) for v in self.get_domain(a)] # TODO: better dv format span /= len(dom) # row showing the axis label col_header.append(html_list_to_row(blank_cells + [a], 'h', blank_cells_attrs + [{'colspan': nb_cols}])) # row showing domain values col_header.append(html_list_to_row(blank_cells + dom * nb_repets, 'h', blank_cells_attrs + [{'colspan': str(span)}] * len(dom) * nb_repets)) nb_repets *= len(dom) # row header # initialization of all rows because row filling wont be sequential: row_header = [[] for i in range(nb_rows)] nb_repets = 1 span = nb_rows for a in row_axes: # 1st row contains all axis labels: row_header[0].append(html_cell(html_div(a, {'class': 'rotate'}), 'h', {'rowspan': nb_rows})) # dispatch domain values across corresponding rows: dom = [str(v) for v in self.get_domain(a)] # TODO: better dv format span /= len(dom) for idv, dv in enumerate(dom * nb_repets): row_header[ idv * span].append(html_cell(dv, 'h', {'rowspan': span})) nb_repets *= len(dom) return [''.join(r) for r in row_header], col_header def to_html_table(self, row_axes, col_axes, inner_axes, cell_format='txt', plot_dir=None, rel_plot_dir=None, plot_fig_prefix='xarray_', plot_style='image', plot_args=None, tooltip=False, border=None): """ Render the array as an html table whose column headers correspond to domain values and axis names defined by *col_axes*, row headers defined by *row_axes* and inner cell axes defined by *inner_axes* Data within a cell can be render as text or as a plot figure (image files are produced) Args: - Return: html code (str) """ import matplotlib.pyplot as plt import pyhrf.plot as pplot plot_dir = plot_dir or pyhrf.get_tmp_path() outer_axes = row_axes + col_axes plot_args = plot_args or {} norm = plt.Normalize(self.min(), self.max()) def protect_html_fn(fn): base, ext = op.splitext(fn) return base.replace('.', '-') + ext def format_cell(slice_info, cell_val): attrs = {} if tooltip: stooltip = '|| '.join(['%s=%s' % (a, str(s)) for a, s in zip(outer_axes, slice_info)]) attrs['title'] = stooltip if cell_format == 'txt': return html_cell(str(cell_val), attrs=attrs) elif cell_format == 'plot': # Forge figure filename suffix = '_'.join(['%s_%s' % (a, str(s)) for a, s in zip(outer_axes, slice_info)]) fig_fn = op.join(plot_dir, plot_fig_prefix + suffix + '.png') fig_fn = protect_html_fn(fig_fn) # Render figure # TODO: expose these parameters plt.figure(figsize=(4, 3), dpi=40) if plot_style == 'image': pplot.plot_cub_as_image(cell_val, norm=norm, **plot_args) else: pplot.plot_cub_as_curve(cell_val, **plot_args) plt.savefig(fig_fn) # Create html code html_fig_fn = fig_fn if rel_plot_dir is not None: html_fig_fn = op.join(rel_plot_dir, op.basename(fig_fn)) return html_cell(html_img(html_fig_fn), attrs=attrs) else: raise Exception('Wrong plot_style "%s"' % plot_style) logger.info('Generate html table headers ...') row_header, col_header = self._html_table_headers(row_axes, col_axes) logger.info('Convert xarray to tree ...') cell_vals = tree_items(self.to_tree(row_axes + col_axes, inner_axes)) dsh = self.get_dshape() nb_cols = int(np.prod([dsh[a] for a in col_axes])) content = [] logger.info('Generate cells ...') for i, r in enumerate(row_header): # at each row, concatenate row header + table content content += html_row(r + ''.join([format_cell(*cell_vals.next()) for c in range(nb_cols)])) return html_table(''.join(col_header + content), border=border) def _combine_domains(self, axes): """ Hierarchically combine domains of axes """ def stack_dvalues(prev, x): if 0: print 'stack_dvalues ...' print 'prev:', prev print 'x:', x res = prev + [list(np.tile(x, len(prev) == 0 or len(prev[-1])))] if 0: print 'result:', res print '' return res return reduce(stack_dvalues, [self.axes_domains[a] for a in axes], []) def to_latex(self, row_axes=None, col_axes=None, inner_axes=None, inner_separator=' | ', header_styles=None, hval_fmt=None, val_fmt='%1.2f', col_align=None): def multicol(n, s, align='c'): return '\\multicolumn{%d}{%s}{%s}' % (n, align, s) def multirow(n, s, position='*'): return '\\multirow{%d}{%s}{%s}' % (n, position, s) if hval_fmt is None: hval_fmt = {} for a in self.axes_names: if np.issubdtype(self.axes_domains[a].dtype, float): fmt = '%1.1f' elif np.issubdtype(self.axes_domains[a].dtype, int): fmt = '%d' elif np.issubdtype(self.axes_domains[a].dtype, str): fmt = '%s' else: fmt = val_fmt hval_fmt[a] = fmt if row_axes is None: row_axes = [] if col_axes is None: col_axes = [] if inner_axes is None: inner_axes = [] if header_styles is None: header_styles = {} hstyles = dict((a, ['split']) for a in self.axes_names) hstyles.update(header_styles) logger.debug('hstyles: %s', str(hstyles)) if col_align is None: col_align = {} calign = dict((a, 'c') for a in self.axes_names) calign.update(col_align) def fmt_val(val): if isinstance(val, str): return val else: return val_fmt % val def fmt_hval(val, axis): if isinstance(val, str): return val else: return hval_fmt[axis] % val def fmt_hcell(axis, val): style = hstyles[axis] # print 'fmt_hcell for axis %s (style=%s), val=' %(axis,style), val if ('split' in style) or ('hide_name' in style): r = fmt_hval(val, axis) elif 'join' in style: r = a + "=" + fmt_hval(val, axis) if 'vertical' in style: return r'\rotatebox{90}{{%s}}' % r else: return r table_line_end = '\\\\\n' c_to_print = self.reorient(row_axes + col_axes + inner_axes) dsh = c_to_print.get_dshape() data = c_to_print.data.reshape(int(np.prod([dsh[a] for a in row_axes])), int(np.prod([dsh[a] for a in col_axes])), int(np.prod([dsh[a] for a in inner_axes]))) #data = np.atleast_2d(self.unstack(row_axes + col_axes, inner_axes).data) nb_rows, nb_cols = data.shape[:2] doms_for_col_header = self._combine_domains(col_axes) # print 'doms_for_col_header:' # print doms_for_col_header if len(row_axes) > 0: doms_for_row_header = self._combine_domains(row_axes) # print 'doms_for_row_header:' # print doms_for_row_header assert len(doms_for_row_header[-1]) == nb_rows row_header = [[] for i in range(nb_rows)] for a, d in zip(row_axes, doms_for_row_header): # print 'a:', a # print 'd:', d if 'split' in hstyles[a]: row_header[0].append(multirow(nb_rows, a)) for i in range(1, nb_rows): row_header[i].append('') len_d = len(d) # print 'row_header @start:' # print row_header # print '' # print 'loop over lines ...' j = 0 for i in range(nb_rows): # print 'i=', i if i % (nb_rows / len_d) == 0: if nb_rows / len_d > 1: row_header[i].append(multirow(nb_rows / len_d, fmt_hcell(a, d[j]))) else: row_header[i].append(fmt_hcell(a, d[j])) j += 1 else: row_header[i].extend(['']) # print 'row_header:' # print row_header # print '' for irow, row in enumerate(row_header): # print 'row:', row row_header[irow] = ' & '.join(row) + ' & ' else: row_header = [''] * nb_rows assert len(doms_for_col_header[-1]) == nb_cols hprefix = ''.join([['&', '&&']['split' in hstyles[a]] for a in row_axes]) header = '' for a, d in zip(col_axes[:-1], doms_for_col_header[:-1]): # print 'format header for axis', a if 'split' in hstyles[a]: header += hprefix + multicol(nb_cols, a) + table_line_end header += hprefix + ' & '.join([multicol(nb_cols / len(d), fmt_hcell(a, e)) for e in d]) + table_line_end a, d = col_axes[-1], doms_for_col_header[-1] if 'split' in hstyles[col_axes[-1]]: header += hprefix + \ multicol(nb_cols, col_axes[-1]) + table_line_end header += hprefix + ' & '.join([fmt_hcell(a, e) for e in d]) + \ table_line_end # nb_cols = len(self.axes_domains.get(col_axes[-1], '1')) all_col_align = [calign[col_axes[-1]]] * nb_cols for a, d in zip(col_axes[:-1], doms_for_col_header[:-1]): len_d = len(d) # print 'a:', a # print 'd:', d # print 'range(nb_cols/len_d, nb_cols, len_d):', \ # range(nb_cols/len_d-1, nb_cols, nb_cols/len_d-1) for i in range(nb_cols / len_d - 1, nb_cols, nb_cols / len_d): all_col_align[i] = calign[a] table_align = ' '.join([['c', 'c c']['split' in hstyles[a]] for a in row_axes] + ['|'] * (len(row_axes) > 0) + all_col_align) s = '\\begin{tabular}{%s}\n' % table_align s += header def fmt_cell(c): if isinstance(c, xndarray): return inner_separator.join(map(fmt_val, c.data)) elif isinstance(c, np.ndarray): return inner_separator.join(map(fmt_val, c)) else: # scalar return fmt_val(c) s += table_line_end.join([lh + " & ".join(map(fmt_cell, l)) for lh, l in zip(row_header, data)]) + \ table_line_end s += '\\end{tabular}' return s def get_orientation(self): return self.axes_names def set_MRI_orientation(self): """ Set orientation to sagittal,coronal,axial,[time|iteration|condition] Priority for the 4th axis: time > condition > iteration. The remaining axes are sorted in alphatical order """ if self.has_axes(MRI3Daxes): orientation = MRI3Daxes[:] if self.has_axis('time'): orientation += ['time'] if self.has_axis('iteration'): orientation += ['iteration'] if self.has_axis('condition'): orientation += ['condition'] orientation += sorted(set(self.axes_names).difference(orientation)) self.set_orientation(orientation) def set_orientation(self, axes): """ Set the cuboid orientation (inplace) according to input axes labels """ if debug: logger.debug('set_orientation ...') logger.debug('%s -> %s', str(self.axes_names), str(axes)) if set(axes) != set(self.axes_names): raise Exception('Required orientation %s does not contain ' 'all axes %s' % (str(axes), str(self.axes_names))) if axes == self.axes_names: # already in the asked orientation return for i, axis in enumerate(axes): logger.debug('Rolling axis %s, cur pos=%d -> dest pos=%d', axis, self.axes_names.index(axis), i) logger.debug('Shape: %s', str(self.data.shape)) cur_i = self.axes_names.index(axis) self.data = np.rollaxis(self.data, cur_i, i) self.axes_names.pop(cur_i) self.axes_names.insert(i, axis) logger.debug('After rolling. Shape: %s, new axes: %s', str(self.data.shape), str(self.axes_names)) logger.debug('') self.axes_ids = dict([(a, i) for i, a in enumerate(self.axes_names)]) def reorient(self, orientation): """ Return a cuboid with new orientation. If cuboid is already in the right orientation, then return the current cuboid. Else, create a new one. """ if orientation == self.axes_names: return self else: new_c = self.copy() new_c.set_orientation(orientation) return new_c def cexpand(self, cmask, axis, dest=None): """ Same as expand but mask is a cuboid TODO: + unit test """ return self.expand(cmask.data, axis, cmask.axes_names, cmask.axes_domains, dest=dest) def expand(self, mask, axis, target_axes=None, target_domains=None, dest=None, do_checks=True, m=None): """ Create a new xndarray instance (or store into an existing `dest` cuboid) where `axis` is expanded and values are mapped according to `mask`. - `target_axes` is a list of the names of the new axes replacing `axis`. - `target_domains` is a dict of domains for the new axes. Examples -------- >>> import numpy as np >>> from pyhrf.ndarray import xndarray >>> c_flat = xndarray(np.arange(2*6).reshape(2,6).astype(np.int64), \ ['condition', 'voxel'], \ {'condition' : ['audio','video']}) >>> print c_flat.descrip() # doctest: +NORMALIZE_WHITESPACE * shape : (2, 6) * dtype : int64 * orientation: ['condition', 'voxel'] * value label: value * axes domains: 'condition': array(['audio', 'video'], dtype='|S5') 'voxel': arange(0,5,1) >>> mask = np.zeros((4,4,4), dtype=int) >>> mask[:3,:2,0] = 1 >>> c_expanded = c_flat.expand(mask, 'voxel', ['x','y','z']) >>> print c_expanded.descrip() # doctest: +NORMALIZE_WHITESPACE * shape : (2, 4, 4, 4) * dtype : int64 * orientation: ['condition', 'x', 'y', 'z'] * value label: value * axes domains: 'condition': array(['audio', 'video'], dtype='|S5') 'x': arange(0,3,1) 'y': arange(0,3,1) 'z': arange(0,3,1) """ logger.debug('expand ... mask: %s -> region size=%d, ' 'axis: %s, target_axes: %s, target_domains: %s', str(mask.shape), mask.sum(dtype=int), axis, str(target_axes), str(target_domains)) if do_checks: if not ((mask.min() == 0 and mask.max() == 1) or (mask.min() == 1 and mask.max() == 1) or (mask.min() == 0 and mask.max() == 0)): raise Exception("Input mask is not binary (%s)" % str(np.unique(mask))) if axis not in self.axes_names: raise Exception('Axes %s not found in cuboid\'s axes.' % axis) if target_axes is None: target_axes = [] for i in xrange(mask.ndim): d = 0 while 'dim%d' % d in self.axes_names + target_axes: d += 1 target_axes.append('dim%d' % d) else: target_axes = target_axes logger.debug('target_axes: %s', str(target_axes)) if do_checks and len(target_axes) != 1 and \ len(set(target_axes).intersection(self.axes_names)) != 0: # if len(target_axes) == 1 & target_axes[0] already in current axes # -> OK, axis is mapped to itself. raise Exception('Error while expanding xndarray, intersection btwn' ' targer axes (%s) and current axes (%s) is ' 'not empty.' % (str(target_axes), str(self.axes_names))) assert len(target_axes) == mask.ndim if target_domains is None: target_domains = dict([(a, range(mask.shape[i])) for i, a in enumerate(target_axes)]) assert set(target_domains.keys()).issubset(target_axes) # target_domains = [target_domains.get(a,range(mask.shape[i])) \ # for i,a in enumerate(target_axes)] logger.debug('target_domains: %s', str(target_domains)) assert len(target_domains) == len(target_axes) flat_axis_idx = self.get_axis_id(axis) if dest is not None: dest_data = dest.data else: dest_data = None new_data = expand_array_in_mask(self.data, mask, flat_axis=flat_axis_idx, dest=dest_data, m=m) new_axes = self.axes_names[:flat_axis_idx] + target_axes + \ self.axes_names[flat_axis_idx + 1:] new_domains = self.axes_domains.copy() new_domains.pop(axis) new_domains.update(target_domains) # new_domains = dict([(new_axes[i], new_domains[i]) \ # for i in xrange(len(new_axes))]) return xndarray(new_data, new_axes, new_domains, self.value_label, meta_data=self.meta_data) def map_onto(self, xmapping): """Reshape the array by mapping the axis corresponding to xmapping.value_label onto the shape of xmapping. Parameters ---------- xmapping : xndarray array whose attribute value_label matches an axis of the current array Returns ------- a new array (xndarray) where values from the current array have been mapped according to xmapping Examples -------- >>> from pyhrf.ndarray import xndarray >>> import numpy as np >>> # data with a region axis: >>> data = xndarray(np.arange(2*4).reshape(2,4).T * .1, \ ['time', 'region'], \ {'time':np.arange(4)*.5, 'region':[2, 6]}) >>> data axes: ['time', 'region'], array([[ 0. , 0.4], [ 0.1, 0.5], [ 0.2, 0.6], [ 0.3, 0.7]]) >>> # 2D spatial mask of regions: >>> region_map = xndarray(np.array([[2,2,2,6], [6,6,6,0], [6,6,0,0]]), \ ['x','y'], value_label='region') >>> # expand region-specific data into region mask >>> # (duplicate values) >>> data.map_onto(region_map) axes: ['x', 'y', 'time'], array([[[ 0. , 0.1, 0.2, 0.3], [ 0. , 0.1, 0.2, 0.3], [ 0. , 0.1, 0.2, 0.3], [ 0.4, 0.5, 0.6, 0.7]], <BLANKLINE> [[ 0.4, 0.5, 0.6, 0.7], [ 0.4, 0.5, 0.6, 0.7], [ 0.4, 0.5, 0.6, 0.7], [ 0. , 0. , 0. , 0. ]], <BLANKLINE> [[ 0.4, 0.5, 0.6, 0.7], [ 0.4, 0.5, 0.6, 0.7], [ 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. ]]]) """ mapped_axis = xmapping.value_label if not self.has_axis(mapped_axis): raise ArrayMappingError('Value label "%s" of xmapping not found ' 'in array axes (%s)' % (mapped_axis, ', '.join(self.axes_names))) if not set(xmapping.data.flat).issuperset(self.get_domain(mapped_axis)): raise ArrayMappingError('Domain of axis "%s" to be mapped is not a ' 'subset of values in the mapping array.' % mapped_axis) dest = None for mval in self.get_domain(mapped_axis): sub_a = self.sub_cuboid(**{mapped_axis: mval}) sub_mapping = self.xndarray_like( xmapping, data=xmapping.data == mval) rsub_a = sub_a.repeat(sub_mapping.sum(), '__mapped_axis__') dest = rsub_a.cexpand(sub_mapping, '__mapped_axis__', dest=dest) return dest def flatten(self, mask, axes, new_axis): """ flatten cudoid. TODO: +unit test """ if not set(axes).issubset(self.axes_names): raise Exception('Axes to flat (%s) are not a subset of ' 'current axes (%s)' % (str(axes), str(self.axes_names))) m = np.where(mask) # print 'mask:', mask.sum() # print 'flat_data:', flat_data.shape sm = [':'] * self.data.ndim for i, a in enumerate(axes): j = self.get_axis_id(a) sm[j] = 'm[%d]' % i new_axes = [a for a in self.axes_names if a not in axes] new_axes.insert(self.get_axis_id(axes[0]), new_axis) flat_data = eval('self.data[%s]' % ','.join(sm)) new_domains = dict((a, self.axes_domains[a]) for a in new_axes if a != new_axis) return xndarray(flat_data, new_axes, new_domains, self.value_label, self.meta_data) def explode_a(self, mask, axes, new_axis): """ Explode array according to given n-ary *mask* so that *axes* are flatten into *new_axis*. Args: - mask (numpy.ndarray[int]): n-ary mask that defines "regions" used to split data - axes (list of str): list of axes in the current object that are mapped onto the mask - new_axis (str): target flat axis Return: dict of xndarray that maps a mask value to a xndarray. """ return dict((i, self.flatten(mask == i, axes, new_axis)) for i in np.unique(mask)) def explode(self, cmask, new_axis='position'): """ Explode array according to the given n-ary *mask* so that axes matchin those of *mask* are flatten into *new_axis*. Args: - mask (xndarray[int]): n-ary mask that defines "regions" used to split data - new_axis (str): target flat axis Return: dict of xndarray that maps a mask value to a xndarray. """ return dict((i, self.flatten(cmask.data == i, cmask.axes_names, new_axis)) for i in np.unique(cmask.data)) def cflatten(self, cmask, new_axis): return self.flatten(cmask.data, cmask.axes_names, new_axis) def split(self, axis): """ Split a cuboid along given axis. Return an OrderedDict of cuboids. """ if axis not in self.axes_names: raise Exception('Axis %s not found. Available axes: %s' % (axis, self.axes_names)) return OrderedDict((dv, self.sub_cuboid(**{axis: dv})) for dv in self.axes_domains[axis]) def unstack(self, outer_axes, inner_axes): """ Unstack the array along outer_axes and produce a xndarray of xndarrays Args: - outer_axes (list of str): list of axis names defining the target unstacked xndarray - inner_axes (list of str): list of axis names of any given sub-array of the target unstacked xndarray Return: xndarray object Example: >>> from pyhrf.ndarray import xndarray >>> import numpy as np >>> c = xndarray(np.arange(4).reshape(2,2), axes_names=['a1','ia'], \ axes_domains={'a1':['out_dv1', 'out_dv2'], \ 'ia':['in_dv1', 'in_dv2']}) >>> c.unstack(['a1'], ['ia']) axes: ['a1'], array([axes: ['ia'], array([0, 1]), axes: ['ia'], array([2, 3])], dtype=object) """ def _unstack(xa, ans): if len(ans) > 0: return [_unstack(suba, ans[1:]) for suba in xa.split(ans[0]).itervalues()] else: return xa xarray = self.reorient(outer_axes + inner_axes) return xndarray(_unstack(xarray, outer_axes), axes_names=outer_axes, axes_domains=dict((a, self.axes_domains[a]) for a in outer_axes)) def to_tree(self, level_axes, leaf_axes): """ Convert nested dictionary mapping where each key is a domain value and each leaf is an array or a scalar value if *leaf_axes* is empty. Return: OrderedDict such as: {dv_axis1 : {dv_axis2 : {... : xndarray|scalar_type} Example: >>> from pyhrf.ndarray import xndarray >>> import numpy as np >>> c = xndarray(np.arange(4).reshape(2,2), axes_names=['a1','ia'], \ axes_domains={'a1':['out_dv1', 'out_dv2'], \ 'ia':['in_dv1', 'in_dv2']}) >>> c.to_tree(['a1'], ['ia']) OrderedDict([('out_dv1', axes: ['ia'], array([0, 1])), ('out_dv2', axes: ['ia'], array([2, 3]))]) """ def _to_tree(xa, ans): if len(ans) != len(leaf_axes): return OrderedDict((dv, _to_tree(suba, ans[1:])) for dv, suba in xa.split(ans[0]).iteritems()) else: return xa xarray = self.reorient(level_axes + leaf_axes) return _to_tree(xarray, xarray.axes_names) def _format_dvalues(self, axis): if (np.diff(self.axes_domains[axis]) == 1).all(): ndigits = len(str(self.axes_domains[axis].max())) return [str(d).zfill(ndigits) for d in self.axes_domains[axis]] else: return self.axes_domains[axis] def get_ndims(self): return self.data.ndim def get_axes_domains(self): """ Return domains associated to axes as a dict (axis_name:domain array) """ return self.axes_domains def get_axis_name(self, axis_id): """ Return the name of an axis from the given index 'axis_id'. """ if isinstance(axis_id, str): if axis_id in self.axes_names: return axis_id else: return None assert np.isreal(axis_id) and np.round(axis_id) == axis_id if axis_id >= 0 and axis_id < self.get_ndims(): return self.axes_names[axis_id] else: return None def sub_cuboid(self, orientation=None, **kwargs): """ Return a sub cuboid. 'kwargs' allows argument in the form: axis=slice_value. """ if not set(kwargs.keys()).issubset(self.axes_names): raise Exception('Axes to slice (%s) mismatch current axes (%s)' % (','.join(kwargs.keys()), ','.join(self.axes_names))) if orientation is not None: assert set(orientation) == set(self.axes_names).difference(kwargs) new_kwargs = {} for axis, i in kwargs.iteritems(): new_kwargs[axis] = self.get_domain_idx(axis, i) return self.sub_cuboid_from_slices(orientation, **new_kwargs) def sub_cuboid_from_slices(self, orientation=None, **kwargs): """ Return a sub cuboid. 'kwargs' allows argument in the form: axis=slice_index. """ mask = [':'] * self.data.ndim for axis, i in kwargs.iteritems(): mask[self.axes_names.index(axis)] = str(i) # print 'mask:', mask sub_data = eval('self.data[%s]' % ','.join(mask)) sub_domains = self.axes_domains.copy() for a in kwargs: sub_domains.pop(a) sub_axes = [a for a in self.axes_names if a not in kwargs] if orientation is None: orientation = sub_axes assert set(orientation) == set(self.axes_names).difference(kwargs) if self.meta_data is not None: meta_data = (self.meta_data[0].copy(), self.meta_data[1].copy()) else: meta_data = None if np.isscalar(sub_data): return sub_data sub_c = xndarray(sub_data, sub_axes, sub_domains, self.value_label, meta_data) # set orientation sub_c.set_orientation(orientation) return sub_c def fill(self, c): """ """ sm = [] for a in self.axes_names: if c.has_axis(a): sm.append(':') else: sm.append('np.newaxis') self.data[:] = eval('c.data[%s]' % ','.join(sm)) return self def copy(self, copy_meta_data=False): """ Return copy of the current cuboid. Domains are copied with a shallow dictionnary copy. """ if self.meta_data is not None: if copy_meta_data: new_meta_data = (self.meta_data[0].copy(), self.meta_data[1].copy()) else: new_meta_data = self.meta_data else: new_meta_data = None return xndarray(self.data.copy(), self.axes_names[:], self.axes_domains.copy(), self.value_label, new_meta_data) def get_new_axis_name(self): """ Return an axis label not already in use. Format is: dim%d """ i = 0 while 'dim%d' % i in self.axes_names: i += 1 return 'dim%d' % i def get_domain_idx(self, axis, value): """ Get slice index from domain value for axis 'axis'. """ if debug: print 'get_domain_idx ... axis=%s, value=%s' % (axis, str(value)) print 'axes_domains:', self.axes_domains print 'self.axes_domains[axis]:', self.axes_domains[axis] print 'self.axes_domains[axis] == value:', \ self.axes_domains[axis] == value print type(np.where(self.axes_domains[axis] == value)[0][0]) where_res = np.where(self.axes_domains[axis] == value)[0] if len(where_res) == 0: raise Exception('Value "%s" not found in domain of axis "%s"' % (str(value), self.get_axis_name(axis))) return where_res[0] def has_axis(self, axis): return axis in self.axes_names def has_axes(self, axes): return set(axes).issubset(self.axes_names) def __eq__(self, other): """ Return true if other cuboid contains the same data. TODO: should it be irrespective of the orientation ? """ for k, v in self.axes_domains.iteritems(): if k not in other.axes_domains: # print '%s not in domains %s' # %(str(k),str(other.axes_domains)) return False if isinstance(v, np.ndarray): if not np.allclose(v, other.axes_domains[k]): # print 'numpy array differ for %s' %str(k) return False else: if v != other.axes_domains[k]: # print 'domain value differ for %s' %str(k) return False return (self.data == other.data).all() and \ self.axes_names == other.axes_names and \ self.value_label == other.value_label def astype(self, t): c = self.copy() c.data = c.data.astype(t) return c def descrip_shape(self): sh = self.data.shape axes_info = ['%s:%d' % (a, sh[i]) for i, a in enumerate(self.axes_names)] return '(' + ','.join(axes_info) + ')' def get_voxel_size(self, axis): """ Return the size of a voxel along 'axis', only if meta data is available. """ assert axis in MRI3Daxes if self.meta_data is not None: affine, header = self.meta_data return header['pixdim'][1:4][MRI3Daxes.index(axis)] else: raise Exception('xndarray does not have any meta data to get' 'voxel size') def get_dshape(self): """ Return the shape of the array as dict mapping an axis name to the corresponding size """ return dict(zip(self.axes_names, self.data.shape)) def _prepare_for_operation(self, op_name, c): """ Make some checks before performing an operation between self and c. If c is a cuboid then it must have the same axes, same domains and value labels. If c is np.ndarray, it must have the same shape as self.data Return a cuboid in the same orientation as self. TODO: allow broadcasting """ if isinstance(c, np.ndarray): if self.data.shape != c.shape: raise Exception('Cannot %s cuboid and ndarray. Shape of self' ' %s different from ndarray shape %s.' % (op_name, str(self.data.shape), str(c.shape))) c = xndarray.xndarray_like(self, data=c) elif np.isscalar(c): class Dummy: def __init__(self, val): self.data = val return Dummy(c) if set(self.axes_names) != set(c.axes_names): raise Exception('Cannot %s cuboids with different axes' % op_name) # TODO: check axes domains ... if self.axes_names != c.axes_names: c = c.reorient(self.axes_names) for i, a in enumerate(self.axes_names): if self.data.shape[i] != c.data.shape[i]: raise Exception('Cannot %s cuboids, shape mismatch.' ' self has shape: %s and operand has ' ' shape: %s' % (op_name, self.descrip_shape(), c.descrip_shape())) return c def add(self, c, dest=None): c = self._prepare_for_operation('add', c) if dest is None: return xndarray(self.data + c.data, self.axes_names, self.axes_domains, self.value_label, self.meta_data) else: dest.data += c.data return dest def multiply(self, c, dest=None): c = self._prepare_for_operation('multiply', c) if dest is None: return xndarray(self.data * c.data, self.axes_names, self.axes_domains, self.value_label, self.meta_data) else: dest.data *= c.data return dest def divide(self, c, dest=None): c = self._prepare_for_operation('divide', c) if dest is None: return xndarray(self.data / c.data, self.axes_names, self.axes_domains, self.value_label, self.meta_data) else: dest.data /= c.data return dest def substract(self, c, dest=None): c = self._prepare_for_operation('substract', c) if dest is None: return xndarray(self.data - c.data, self.axes_names, self.axes_domains, self.value_label, self.meta_data) else: dest.data -= c.data return dest def __iadd__(self, c): return self.add(c, dest=self) def __add__(self, c): return self.add(c) def __radd__(self, c): return self.add(c) def __imul__(self, c): return self.multiply(c, dest=self) def __rmul__(self, c): return self.multiply(c) def __mul__(self, c): return self.multiply(c) def __idiv__(self, c): return self.divide(c, dest=self) def __div__(self, c): return self.divide(c) def __rdiv__(self, c): if np.isscalar(c): return xndarray_like(self, data=c / self.data) else: c = self._prepare_for_operation(c) return c.divide(self) def __isub__(self, c): return self.substract(c, dest=self) def __sub__(self, c): return self.substract(c) def __rsub__(self, c): return (self * -1).add(c) def __pow__(self, c): if np.isscalar(c): return xndarray_like(self, data=self.data ** c) else: raise NotImplementedError( 'Broadcast for pow operation not available') def min(self, axis=None): if axis is None: return self.data.min() else: ia = self.get_axis_id(axis) na = self.get_axis_name(axis) if ia is None or na is None: raise Exception('Wrong axis %s (%d available axes: %s)' % (str(axis), self.ndim, ','.join(self.axes_names))) an = self.axes_names[:ia] + self.axes_names[ia + 1:] ad = self.axes_domains.copy() ad.pop(na) m = self.data.min(axis=ia) if np.isscalar(m): return m else: return xndarray(m, an, ad, self.value_label, self.meta_data) def max(self, axis=None): if axis is None: return self.data.max() else: ia = self.get_axis_id(axis) na = self.get_axis_name(axis) if ia is None or na is None: raise Exception('Wrong axis %s (%d available axes: %s)' % (str(axis), self.ndim, ','.join(self.axes_names))) an = self.axes_names[:ia] + self.axes_names[ia + 1:] ad = self.axes_domains.copy() ad.pop(na) m = self.data.max(axis=ia) if np.isscalar(m): return m else: return xndarray(m, an, ad, self.value_label, self.meta_data) def ptp(self, axis=None): if axis is None: return self.data.ptp() else: ia = self.get_axis_id(axis) na = self.get_axis_name(axis) if ia is None or na is None: raise Exception('Wrong axis %s (%d available axes: %s)' % (str(axis), self.ndim, ','.join(self.axes_names))) an = self.axes_names[:ia] + self.axes_names[ia + 1:] ad = self.axes_domains.copy() ad.pop(na) r = self.data.ptp(axis=ia) if np.isscalar(r): return r else: return xndarray(r, an, ad, self.value_label, self.meta_data) def mean(self, axis=None): if axis is None: return self.data.mean() else: ia = self.get_axis_id(axis) na = self.get_axis_name(axis) if ia is None or na is None: raise Exception('Wrong axis %s (%d available axes: %s)' % (str(axis), self.ndim, ','.join(self.axes_names))) an = self.axes_names[:ia] + self.axes_names[ia + 1:] ad = self.axes_domains.copy() ad.pop(na) return xndarray(self.data.mean(axis=ia), an, ad, self.value_label, self.meta_data) def std(self, axis=None): if axis is None: return self.data.mean() else: ia = self.get_axis_id(axis) na = self.get_axis_name(axis) if ia is None or na is None: raise Exception('Wrong axis %s (%d available axes: %s)' % (str(axis), self.ndim, ','.join(self.axes_names))) an = self.axes_names[:ia] + self.axes_names[ia + 1:] ad = self.axes_domains.copy() ad.pop(na) return xndarray(self.data.std(axis=ia), an, ad, self.value_label + '_std', self.meta_data) def var(self, axis=None): if axis is None: return self.data.mean() else: ia = self.get_axis_id(axis) na = self.get_axis_name(axis) if ia is None or na is None: raise Exception('Wrong axis %s (%d available axes: %s)' % (str(axis), self.ndim, ','.join(self.axes_names))) an = self.axes_names[:ia] + self.axes_names[ia + 1:] ad = self.axes_domains.copy() ad.pop(na) return xndarray(self.data.var(axis=ia), an, ad, self.value_label + '_var', self.meta_data) def sum(self, axis=None): if axis is None: return self.data.sum() else: ia = self.get_axis_id(axis) na = self.get_axis_name(axis) if ia is None or na is None: raise Exception('Wrong axis %s (%d available axes: %s)' % (str(axis), self.ndim, ','.join(self.axes_names))) an = self.axes_names[:ia] + self.axes_names[ia + 1:] ad = self.axes_domains.copy() ad.pop(na) return xndarray(self.data.sum(axis=ia), an, ad, self.value_label, self.meta_data) def rescale_values(self, v_min=0., v_max=1., axis=None): if axis is not None: axis = self.get_axis_id(axis) new_data = rescale_values(self.data, v_min, v_max, axis) return xndarray(new_data, self.axes_names, self.axes_domains, self.value_label, self.meta_data) def get_extra_info(self, fmt='dict'): from pyhrf.xmlio import to_xml info = { 'axes_names': self.axes_names, 'axes_domains': self.axes_domains, 'value_label': self.value_label, } if fmt == 'dict': return info elif fmt == 'xml': return to_xml(info) def save(self, file_name, meta_data=None, set_MRI_orientation=False): """ Save cuboid to a file. Supported format: Nifti1. 'meta_data' shoud be a 2-elements tuple: (affine matrix, Nifti1Header instance). If provided, the meta_data attribute of the cuboid is ignored. All extra axis information is stored as an extension. """ from pyhrf.xmlio import from_xml, to_xml, DeprecatedXMLFormatException logger.info('xndarray.save(%s)', file_name) ext = op.splitext(file_name)[1] c_to_save = self if has_ext(file_name, 'nii'): if set_MRI_orientation: self.set_MRI_orientation() extra_info = c_to_save.get_extra_info() logger.debug('Extra info:') logger.debug(extra_info) from nibabel.nifti1 import Nifti1Extension, Nifti1Header, \ Nifti1Image, extension_codes if self.data.ndim > 7: raise Exception("Nifti format can not handle more than " "7 dims. xndarray has %d dims" % self.data.ndim) if meta_data is None: if c_to_save.meta_data is not None: affine, header = c_to_save.meta_data else: affine = np.eye(4) header = Nifti1Header() else: affine, header = meta_data header = Nifti1Header() header = header.copy() ecodes = header.extensions.get_codes() if extension_codes['comment'] in ecodes: ic = ecodes.index(extension_codes['comment']) econtent = header.extensions[ic].get_content() # Check if existing extension can be safely overwritten try: prev_extra_info = from_xml(econtent) except DeprecatedXMLFormatException, e: from pyhrf.xmliobak import from_xml as from_xml_bak prev_extra_info = from_xml_bak(econtent) except Exception: raise IOError("Cannot safely overwrite Extension in " "Header. It already has a 'comment' " "extension " "with the following content:\n" + str(econtent)) if not isinstance(prev_extra_info, dict) and \ prev_extra_info.has_key('axes_names'): raise IOError("Cannot safely overwrite Extension in " "Header. It already has a readable " "XML 'comment' extension, but it's " "not related to xndarray meta info.") # Checks are OK, remove the previous extension: prev_ext = header.extensions.pop(ic).get_content() logger.debug('Extensions after popping previous ext:') logger.debug(str(header.extensions)) else: prev_ext = "" ext_str = to_xml(extra_info) if len(ext_str) < len(prev_ext): extra_info['dummy'] = '#' * (len(prev_ext) - len(ext_str)) ext_str = to_xml(extra_info) logger.debug('Length of extension string: %s', len(ext_str)) logger.debug('Extension: \n %s', ext_str) e = Nifti1Extension('comment', ext_str) header.extensions.append(e) logger.info('Extensions after appending new ext:') header.set_data_dtype(c_to_save.data.dtype) i = Nifti1Image(c_to_save.data, affine, header=header) i.update_header() logger.debug('Save Nifti image to %s ...', file_name) i.to_filename(file_name) logger.debug('Save Nifti image, done!') elif ext == '.csv': np.savetxt(file_name, c_to_save.data, fmt="%12.9G") elif has_ext(file_name, 'gii'): from pyhrf.tools._io import write_texture logger.info('Save Gifti image (dim=%d) ...', c_to_save.get_ndims()) logger.info('axes names: %s', str(c_to_save.axes_names)) if c_to_save.get_ndims() == 1: write_texture(c_to_save.data, file_name, meta_data=c_to_save.get_extra_info(fmt='xml')) elif c_to_save.get_ndims() == 2 and \ c_to_save.has_axes(['voxel', 'time']): saxes = ['voxel'] + \ list(set(c_to_save.axes_names).difference(['voxel'])) # make sure spatial axis is the 1st one logger.info('reorient as %s', str(saxes)) c_to_save = c_to_save.reorient(saxes) write_texture(c_to_save.data, file_name, meta_data=c_to_save.get_extra_info(fmt='xml')) else: if c_to_save.has_axes(['voxel']): saxes = list(set(c_to_save.axes_names).difference(['voxel', 'time'])) split_c = c_to_save.split(saxes[0]) for dval, subc in split_c.iteritems(): subc.save(add_suffix(file_name, '_%s_%s' % (saxes[0], str(dval)))) else: write_texture(c_to_save.data, file_name, meta_data=c_to_save.get_extra_info(fmt='xml')) else: raise Exception('Unsupported file format (ext: "%s")' % ext) @staticmethod def load(file_name): """ Load cuboid from file. Supported format: nifti1. Extra axis information is retrieved from a nifti extension if available. If it's not available, label the axes as: (sagittal, coronal, axial[, time]). TODO: gifti. """ from pyhrf.xmlio import from_xml, DeprecatedXMLFormatException has_deprecated_xml_header = False logger.info('xndarray.load(%s)', file_name) ext = op.splitext(file_name)[1] if ext == '.nii' or \ (ext == '.gz' and op.splitext(file_name[:-3])[1] == '.nii') or \ ext == '.img' or \ (ext == '.gz' and op.splitext(file_name[:-3])[1] == '.img'): import nibabel i = nibabel.load(file_name) h = i.get_header() data = np.array(i.get_data()) # avoid memmapping cuboid_info = {} cuboid_info['axes_names'] = MRI4Daxes[:min(4, data.ndim)] # TODO: fill spatial domains with position in mm, and time axis # according TR value. cuboid_info['value_label'] = 'intensity' # print 'extensions:', h.extensions if hasattr(h, 'extensions') and len(h.extensions) > 0: ecodes = h.extensions.get_codes() # print 'ecodes:', ecodes ccode = nibabel.nifti1.extension_codes['comment'] if ccode in ecodes: ic = ecodes.index(ccode) ext_content = h.extensions[ic].get_content() try: cuboid_info = from_xml(ext_content) except DeprecatedXMLFormatException, e: has_deprecated_xml_header = True try: from pyhrf.xmliobak import from_xml as from_xml_bak cuboid_info = from_xml_bak(ext_content) except: # Can't load xml -> ignore it # TODO: warn? cuboid_info = {} except Exception, e: raise IOError('Extension for xndarray meta info can not ' 'be read from "comment" extension. ' 'Content is:\n%s\n Exception was:\n%s' % (ext_content, str(e))) cuboid_info.pop('dummy', None) logger.info('Extra info loaded from extension:') logger.info(cuboid_info) meta_data = (i.get_affine(), h) cuboid_info = dict((str(k), v) for k, v in cuboid_info.iteritems()) data[np.where(np.isnan(data))] = 0 a = xndarray(data, meta_data=meta_data, **cuboid_info) a.has_deprecated_xml_header = has_deprecated_xml_header return a elif ext == '.gii' or \ (ext == '.gz' and op.splitext(file_name[:-3])[1] == '.gii'): from pyhrf.tools._io import read_texture data, gii = read_texture(file_name) md = gii.get_metadata().get_metadata() # print 'meta data loaded from gii:' # print md if md.has_key('pyhrf_cuboid_data'): cuboid_info = from_xml(md['pyhrf_cuboid_data']) else: cuboid_info = {} return xndarray(data, **cuboid_info) else: raise Exception('Unrecognised file format (ext: %s)' % ext) def xndarray_like(c, data=None): return xndarray.xndarray_like(c, data) def stack_cuboids(c_list, axis, domain=None, axis_pos='first'): """ Stack xndarray instances in list `c_list` along a new axis label `axis`. If `domain` (numpy array or list) is provided, it is associated to the new axis. All cuboids in `c_list` must have the same orientation and domains. `axis_pos` defines the position of the new axis: either `first` or `last`. Examples -------- >>> import numpy as np >>> from pyhrf.ndarray import xndarray, stack_cuboids >>> c1 = xndarray(np.arange(4*3).reshape(4,3), ['x','y']) >>> c1 axes: ['x', 'y'], array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) >>> c2 = xndarray(np.arange(4*3).reshape(4,3)*2, ['x','y']) >>> c2 axes: ['x', 'y'], array([[ 0, 2, 4], [ 6, 8, 10], [12, 14, 16], [18, 20, 22]]) >>> c_stacked = stack_cuboids([c1,c2], 'stack_axis', ['c1','c2']) >>> print c_stacked.descrip() # doctest: +NORMALIZE_WHITESPACE * shape : (2, 4, 3) * dtype : int64 * orientation: ['stack_axis', 'x', 'y'] * value label: value * axes domains: 'stack_axis': array(['c1', 'c2'], dtype='|S2') 'x': arange(0,3,1) 'y': arange(0,2,1) TODO: enable broadcasting (?) """ assert isinstance(axis, str) size = len(c_list) cub0 = c_list[0] axes = cub0.axes_names # print 'axes:', axes sh = (size,) + cub0.data.shape stackedData = np.zeros(sh, cub0.data.dtype) newDomains = cub0.axes_domains.copy() if domain is not None: newDomains[axis] = domain targetCub = xndarray(stackedData, axes_names=[axis] + cub0.axes_names, axes_domains=newDomains, value_label=cub0.value_label) # print 'c_list', c_list, c_list[0], c_list[1] for i, cuboid in enumerate(c_list): if debug: print 'targetCub.data[i] :', targetCub.data[i].shape if debug: print 'cuboid', cuboid.descrip() # print 'number:', i # print 'cuboid.axes:', cuboid.axes_names if axes != cuboid.axes_names: raise Exception('%dth cuboid in list does not match other cuboids' 'found axes: %s, should be: %s' % (i, str(cuboid.axes_names), str(axes))) # TODO: better use numpy stacking functions (faster) targetCub.data[i] = cuboid.data if axis_pos == 'last': targetCub.roll(axis) return targetCub def expand_array_in_mask(flat_data, mask, flat_axis=0, dest=None, m=None): """ Map the `flat_axis` of `flat_data` onto the region within mask. `flat_data` is then reshaped so that flat_axis is replaced with `mask.shape`. Notes ----- `m` is the result of `np.where(mask)` -> can be passed to speed up if already done before. Examples -------- >>> a = np.array([1,2,3]) >>> m = np.array([[0,1,0], [0,1,1]] ) >>> expand_array_in_mask(a,m) array([[0, 1, 0], [0, 2, 3]]) >>> a = np.array([[1,2,3],[4,5,6]]) >>> m = np.array([[0,1,0], [0,1,1]] ) >>> expand_array_in_mask(a,m,flat_axis=1) array([[[0, 1, 0], [0, 2, 3]], <BLANKLINE> [[0, 4, 0], [0, 5, 6]]]) """ flat_sh = flat_data.shape mask_sh = mask.shape target_shape = flat_sh[:flat_axis] + mask_sh + flat_sh[flat_axis + 1:] logger.debug('expand_array_in_mask ... %s -> %s', str(flat_sh), str(target_shape)) if dest is None: dest = np.zeros(target_shape, dtype=flat_data.dtype) assert dest.shape == target_shape assert dest.dtype == flat_data.dtype if m is None: m = np.where(mask) n = len(m[0]) if n != flat_data.shape[flat_axis]: raise Exception('Nb positions in mask (%d) different from length of ' 'flat_data (%d)' % (n, flat_data.shape[flat_axis])) sm = ([':'] * len(flat_sh[:flat_axis]) + ['m[%d]' % i for i in range(len(mask_sh))] + [':'] * len(flat_sh[flat_axis + 1:])) exec('dest[%s] = flat_data' % ','.join(sm)) return dest def merge(arrays, mask, axis, fill_value=0): """ Merge the given arrays into a single array according to the given mask, with the given axis being mapped to those of mask. Assume that arrays[id] corresponds to mask==id and that all arrays are in the same orientation. Arg: - arrays (dict of xndarrays): - mask (xndarray): defines the mapping between the flat axis in the arrays to merge and the target expanded axes. - axis (str): flat axis for the """ if len(arrays) == 0: raise Exception('Empty list of arrays') dest_c = None for i, a in arrays.iteritems(): dest_c = a.expand(mask.data == i, axis, mask.axes_names, dest=dest_c, do_checks=False) return dest_c def tree_to_xndarray(tree, level_labels=None): """Stack all arrays within input tree into a single array. Parameters ---------- tree : dict nested dictionaries of xndarray objects. Each level of the tree correspond to a target axis, each key of the tree correspond to an element of the domain associated to that axis. level_labels : list of str axis labels corresponding to each level of the tree Returns ------- xndarray object Examples -------- >>> from pyhrf.ndarray import xndarray, tree_to_xndarray >>> d = { 1 : { .1 : xndarray([1,2], axes_names=['inner_axis']), \ .2 : xndarray([3,4], axes_names=['inner_axis']), \ }, \ 2 : { .1 : xndarray([1,2], axes_names=['inner_axis']), \ .2 : xndarray([3,4], axes_names=['inner_axis']), \ } \ } >>> tree_to_xndarray(d, ['level_1', 'level_2']) axes: ['level_1', 'level_2', 'inner_axis'], array([[[1, 2], [3, 4]], <BLANKLINE> [[1, 2], [3, 4]]]) """ tree_depth = len(treeBranches(tree).next()) level_labels = level_labels or ['axis_%d' % i for i in xrange(tree_depth)] assert len(level_labels) == tree_depth def _reduce(node, level): if isinstance(node, xndarray): # leaf node return node else: domain = sorted(node.keys()) return stack_cuboids([_reduce(node[c], level + 1) for c in domain], level_labels[level], domain) return _reduce(tree, level=0) from pyhrf.tools import add_suffix def split_and_save(cub, axes, fn, meta_data=None, set_MRI_orientation=False, output_dir=None, format_dvalues=False): if len(axes) == 0: # print 'fn:', fn # print 'sub_c:' # print cub.descrip() if output_dir is None: output_dir = op.dirname(fn) cub.save(op.join(output_dir, op.basename(fn)), meta_data=meta_data, set_MRI_orientation=set_MRI_orientation) return axis = axes[0] split_res = cub.split(axis) split_dvals = np.array(split_res.keys()) if format_dvalues and np.issubdtype(split_dvals.dtype, np.number) and \ (np.diff(split_dvals) == 1).all(): ndigits = len(str(max(split_dvals))) if min(split_dvals) == 0: o = 1 else: o = 0 split_dvals = [str(d + o).zfill(ndigits) for d in split_dvals] for dvalue, sub_c in zip(split_dvals, split_res.values()): if axis != 'error': newfn = add_suffix(fn, '_%s_%s' % (axis, str(dvalue))) else: if dvalue == 'error': newfn = add_suffix(fn, '_error') else: newfn = fn[:] split_and_save(sub_c, axes[1:], newfn, meta_data=meta_data, set_MRI_orientation=set_MRI_orientation, output_dir=output_dir) # Html stuffs # Define the style of cells in html table output, especially the "rotate" class to # show axis labels in vertical orientation # This should be put in the <head> section of the final html doc ndarray_html_style = """<!-- td { border-collapse:collapse; border: 1px black solid; } .rotate { -moz-transform: rotate(-90.0deg); /* FF3.5+ */ -o-transform: rotate(-90.0deg); /* Opera 10.5 */ -webkit-transform: rotate(-90.0deg); /* Saf3.1+, Chrome */ filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=0.083); /* IE6,IE7 */ -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=0.083)"; /* IE8 */ } -->"""
[ "matplotlib" ]
f1f5f1339139a568c1fe2edc85c84fa707e8869f
Python
jakubsob/QuantumParticle
/Data/plots_full.py
UTF-8
1,684
2.75
3
[]
no_license
#!/usr/bin/python3 import os from os import path import sys import matplotlib.pyplot as plt import numpy as np import csv import pandas as pd import glob from scipy import stats from matplotlib.pyplot import cm def plot_subplots(n): height = 20 width = 20 t_label = "t[ps]" fig, ax = plt.subplots(2, 2, figsize=(width,height)) ax[0,0] = plot_on_ax(ax[0,0], t_label, "E", "e_n={:d}.dat".format(n)) ax[0,1] = plot_on_ax(ax[0,1], t_label, "X", "x_n={:d}.dat".format(n)) ax[1,0] = plot_on_ax(ax[1,0], t_label, "N", "n_n={:d}.dat".format(n)) ax[1,1] = plot_rho_on_ax(ax[1,1], "rho_n={:d}.dat".format(n)) plt.savefig("plots_n={:d}.png".format(n)) def plot_on_ax(ax, x_label, y_label, file): file_path = path.relpath(file) opacity = 1 data = pd.read_table(file, sep=" ") X = data[data.columns[0]].values Y = data[data.columns[1]].values name = file[:file.find(".dat")] ax.plot(X,Y,"-b", alpha=opacity, label=name) ax.set_title(name) ax.set_xlabel(x_label) ax.set_ylabel(y_label) return ax def plot_rho_on_ax(ax, file): file_path = path.relpath(file) opacity = 1 data = pd.read_table(file, sep=" ") X = data[data.columns[0]].values Y = data[data.columns[1]].values length = len(X) chunk = 100 name = file[:file.find(".dat")] ax.plot(X[:chunk],Y[:chunk],"-r", alpha=opacity, label="t=0") ax.plot(X[int(length*0.5):int(length*0.5) + 100],Y[int(length*0.5):int(length*0.5) + 100],"-g", alpha=opacity, label="t=0.5T") ax.plot(X[int(length*0.8):int(length*0.8) + 100],Y[int(length*0.8):int(length*0.8) + 100],"-b", alpha=opacity, label="t=0.8T") ax.set_title(name) ax.set_ylabel("rho") ax.legend() return ax plot_subplots(1) plot_subplots(2) plot_subplots(4)
[ "matplotlib" ]
93157cd393a9fd5bf5229daf731cf81a6a86d918
Python
heltonlucas/MapadeControle-AlgoritmoGenetico
/plotargrafico.py
UTF-8
816
2.921875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sat Oct 28 12:16:49 2017 @author: helto """ import xlrd import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt dataset = "ParametrosAG.xlsx" workbook = xlrd.open_workbook(dataset) sheet = workbook.sheet_by_index(0) x=[] y=[] z=[] #for line in dataset: # line = line.strip() # X,Y,Z = line.split(',') # x.append(X) # y.append(Y) # z.append(Z) for row in range(sheet.nrows): x.append(sheet.cell_value(row, 0)) y.append(sheet.cell_value(row, 1)) z.append(sheet.cell_value(row, 2)) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(x, y, z, c='blue') ax.set_xlabel('Populaçao') ax.set_ylabel('Crossover') ax.set_zlabel('Pressão de Seleção') plt.show()
[ "matplotlib" ]
78c8a5590f22dde4c4fd6715aceb3a51418afb84
Python
LIWEI233/computationalphysics_N2014301020157
/12代码.py
UTF-8
2,475
3
3
[]
no_license
import matplotlib import numpy as np import matplotlib.cm as cm import matplotlib.mlab as mlab import matplotlib.pyplot as plt import time from math import * print '''Exercise 5.7 Designed by roach ''' def printCV(CV): print "------" for n1 in range(len(CV)): for n2 in range(len(CV[0])): print CV[n1][n2], print "" print "------" return 0 steps=2000 timebegin=time.time() #initial CV CV=[[0 for i in range(31)] for j in range(31)] for n1 in range(31): for n2 in range(31): CV[n1][n2]=0.0 for n1 in range(10,21): CV[n1][10]=-1.0 CV[n1][20]=1.0 for n1 in range(31): CV[n1][0]=0.0 CV[n1][30]=0.0 CV[0][n1]=0.0 CV[30][n1]=0.0 #printCV(CV) CV2=[] n=0 maxdeltaV=[] for itotal in range(steps): CV2=None CV2=[[0 for i in range(31)] for j in range(31)] CVbegin=None CVbegin=[[0 for i in range(31)] for j in range(31)] for n1 in range(31): for n2 in range(31): CVbegin[n1][n2]=CV[n1][n2] CV2[n1][n2]=CV[n1][n2] #calculate CV2 for n1 in range(1,len(CV)-1): for n2 in range(1,len(CV[0])-1): CV2[n1][n2]=(CV[n1-1][n2]+CV[n1+1][n2]+CV[n1][n2-1]+CV[n1][n2+1])/4.0 for n3 in range(10,21): CV2[n3][10]=-1.0 CV2[n3][20]=1.0 CVdelta=None CVdelta=[] for n1 in range(31): for n2 in range(31): CVdelta.append(abs(CVbegin[n1][n2]-CV2[n1][n2])) CV=None CV=[[0 for i in range(31)] for j in range(31)] for n1 in range(31): for n2 in range(31): CV[n1][n2]=CV2[n1][n2] maxdeltaV.append(max(CVdelta)) print "V",itotal,max(CVdelta) ntotal=itotal strn=str(ntotal) print "Total V",ntotal print "Time used",time.time()-timebegin CX=[] CY=[] for i in range(31): CX.append(-3.0+6*i/30.0) CY.append(-3.0+6*i/30.0) plt.figure(figsize=(20,20)) CS = plt.contour(CX, CY, CV, 20,colors='brown') plt.clabel(CS, fontsize=9, inline=1) plt.title("Exercise5.7 V"+strn) plt.xlabel("x") plt.ylabel("y") plt.xlim(-3.1,3.1) plt.ylim(-3.1,3.1) plt.plot([-1,-1],[-1,1],color = "blue",linewidth=3) plt.plot([1,1],[1,-1],color = "red",linewidth=3) plt.plot([3,-3,-3,3,3],[3,3,-3,-3,3],color = "black",linewidth=3) plt.show() xcv=[] for i in range(steps): xcv.append(i) plt.figure(figsize=(24,18)) plt.title("Exercise5.7 Max deltaV - Update times") plt.xlabel("Update times") plt.ylabel("Max deltaV") plt.plot(xcv,maxdeltaV) plt.show()
[ "matplotlib" ]
86da608e1bd7d8a600e9699313c33f4c84780ab4
Python
angeloreale/tse-candidatesxgoods-script
/tse-candidatesxgoods-script.py
UTF-8
3,666
2.640625
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[2] importing libs: import pandas as pd import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats import seaborn as sns from matplotlib import rcParams import glob get_ipython().run_line_magic('matplotlib', 'inline') get_ipython().run_line_magic('pylab', 'inline') # In[3] fetching and merging data: dfConsulta = pd.read_csv('./data/candidatos-consulta/consulta_cand_2018_BRASIL.csv', sep=";", encoding = 'latin1', error_bad_lines=False) dfBens = pd.read_csv('./data/candidatos-bens/bem_candidato_2018_BRASIL.csv', sep=";", encoding = 'latin1', error_bad_lines=False) dfMerged = dfConsulta.merge(dfBens, on='SQ_CANDIDATO') dfMerged.head() # In[4] filtering data: dfMergedFilteredBens = dfMerged.filter(items=['NM_URNA_CANDIDATO','NR_PARTIDO','SG_PARTIDO','SQ_CANDIDATO','VR_BEM_CANDIDATO','CD_COR_RACA','DS_COR_RACA','CD_GRAU_INSTRUCAO','DS_GRAU_INSTRUCAO','CD_GENERO','DS_GENERO','NR_IDADE_DATA_POSSE','CD_CARGO','DS_CARGO','SG_UE_y']) # In[5] formatting currency: dfMergedFilteredBens["VR_BEM_CANDIDATO"] = dfMergedFilteredBens["VR_BEM_CANDIDATO"].str.replace(',','.').astype(float) # In[6] summing goods: dfMergedFilteredBensSum = dfMergedFilteredBens.groupby(['NM_URNA_CANDIDATO','NR_PARTIDO','SG_PARTIDO','SQ_CANDIDATO','CD_COR_RACA','DS_COR_RACA','CD_GRAU_INSTRUCAO','DS_GRAU_INSTRUCAO','CD_GENERO','DS_GENERO','NR_IDADE_DATA_POSSE','CD_CARGO','DS_CARGO','SG_UE_y'])['VR_BEM_CANDIDATO'].sum().reset_index() # In[7] exporting to csv: dfMergedFilteredBensSum.to_csv('/home/angeloreale/candidatura-redebahia/teste-python/dados/dfMergedFilteredBensSum.csv', encoding = 'latin1') # In[8] previewing processed data: dfMergedFilteredBensSum.describe() # In[9] drawing histograms: fig = plt.figure(figsize=(12, 6)) age = fig.add_subplot(121) goods = fig.add_subplot(122) age.hist(dfMergedFilteredBensSum.NR_IDADE_DATA_POSSE, bins=80) age.set_xlabel('Age') age.set_title("Histogram of Age") goods.hist(dfMergedFilteredBensSum.VR_BEM_CANDIDATO, bins=20) goods.set_xlabel('Goods') goods.set_title("Histogram of Candidate's Goods") plt.show() # In[10] processing statistics and displaying them: import statsmodels.api as sm from statsmodels.formula.api import ols m = ols('VR_BEM_CANDIDATO ~ NR_IDADE_DATA_POSSE + CD_COR_RACA + CD_GENERO + CD_GRAU_INSTRUCAO + CD_GENERO + CD_CARGO', dfMergedFilteredBensSum).fit() print (m.summary()) # In[11] drawing plot: sns.jointplot(x="NR_IDADE_DATA_POSSE", y="VR_BEM_CANDIDATO", data=dfMergedFilteredBensSum, kind = 'reg',fit_reg= True, size = 7) plt.show() # In[13] drawing plot: sns.jointplot(x="CD_GENERO", y="VR_BEM_CANDIDATO", data=dfMergedFilteredBensSum, kind = 'reg',fit_reg= True, size = 7) plt.show() # In[14] drawing plot: sns.jointplot(x="CD_COR_RACA", y="VR_BEM_CANDIDATO", data=dfMergedFilteredBensSum, kind = 'reg',fit_reg= True, size = 7) plt.show() # In[15] drawing plot: sns.jointplot(x="CD_GRAU_INSTRUCAO", y="VR_BEM_CANDIDATO", data=dfMergedFilteredBensSum, kind = 'reg',fit_reg= True, size = 7) plt.show() # In[16] drawing plot: sns.jointplot(x="CD_CARGO", y="VR_BEM_CANDIDATO", data=dfMergedFilteredBensSum, kind = 'reg',fit_reg= True, size = 7) plt.show() # In[17] drawing plot: sns.jointplot(x="NR_PARTIDO", y="VR_BEM_CANDIDATO", data=dfMergedFilteredBensSum, kind = 'reg',fit_reg= True, size = 7) plt.show() # In[147] drawing and saving plot: with sns.axes_style(style='ticks'): g = sns.factorplot("CD_COR_RACA", "VR_BEM_CANDIDATO", "DS_GENERO", data=dfMergedFilteredBensSum, size=10, kind="box") g.set_axis_labels("Etnia", "Bens"); g.savefig('factorplot01.png')
[ "matplotlib", "seaborn" ]
695de4e0a51bae346f87b65508916c20513fe5c8
Python
rohit1607/TimeOpt_VI_det_Test
/grid_world_multistate_index_exactpos.py
UTF-8
13,653
3
3
[]
no_license
import numpy as np import itertools import math from custom_functions import * #import matplotlib.pyplot as plt class Grid: #start and end are indices #srelx and srely range from (-0.5,0.5) def __init__(self,tlist, xs, ys, start_ind, srelx, srely, end_ind): self.nj=len(xs) self.ni=len(ys) self.nt=len(tlist) print("shapes=",len(xs),len(ys),len(tlist)) self.dj=np.abs(xs[1] - xs[0]) self.di=np.abs(ys[1] - ys[0]) self.dt=tlist[1] - tlist[0] print("diffs=", self.dt, self.di, self.dj) self.xs=xs self.ys=ys self.tlist=tlist self.x=xs[start_ind[1]] self.y=ys[self.ni - 1 - start_ind[0]] self.x=self.x + srelx*self.dj self.y=self.y + srely*self.di #i, j, t , start and end store indices!! self.t = int(0) self.pos_to_state_index(self.x, self.y) self.endind=end_ind self.start_state=(0, start_ind[0], start_ind[1]) def pos_to_state_index(self, x, y): if x > self.xs[-1]: x = self.xs[-1] elif x < self.xs[0]: x = self.xs[0] if y > self.ys[-1]: y= self.ys[-1] elif y < self.ys[0]: y = self.ys[0] remx = (x - self.xs[0]) % self.dj remy = -(y - self.ys[-1]) % self.di xind = (x - self.xs[0]) // self.dj yind = -(y - self.ys[-1]) // self.di # print("rex,remy,xind,yind", remx,remy,xind,yind) if remx >= 0.5 * self.dj and remy >= 0.5 * self.di: xind += 1 yind += 1 elif remx >= 0.5 * self.dj and remy < 0.5 * self.di: xind += 1 elif remx < 0.5 * self.dj and remy >= 0.5 * self.di: yind += 1 self.i = int(yind) self.j = int(xind) return self.i, self.j #Rewards and Actions to be dicitonaries def set_AR(self, Actions): self.actions= Actions # self.rewards= Rewards #explicitly set state. state is a tuple of indices(m,n,p) def set_state(self, state): self.t = state[0] self.i = state[1] self.j = state[2] def current_state(self): return (int(self.t), int(self.i), int(self.j)) def current_pos(self): return (int(self.i), int(self.j)) #MAY NEED TO CHANGE DEFINITION def is_terminal(self): #return self.actions[state]==None return (self.current_pos()==self.endpos) def move(self, action, Vx, Vy): r=0 so=self.current_state() if self.is_terminal()==False: thrust,angle=action #x0.01 for cm/s to m/s #x0.0091 for m to degrees vnetx= (thrust*math.cos(angle)+(Vx)) vnety= (thrust*math.sin(angle)+(Vy)) xnew=(self.xs[int(self.j)]) + (vnetx*self.dt) ynew=(self.ys[int(self.ni-1-self.i)]) + (vnety*self.dt) # print("xnew, ynew",xnew,ynew) #if state happens to go out of of grid, bring it back inside if xnew>self.xs[-1]: xnew=self.xs[-1] elif xnew<self.xs[0]: xnew=self.xs[0] if ynew>self.ys[-1]: ynew=self.ys[-1] elif ynew<self.ys[0]: ynew=self.ys[0] # print("xnew, ynew after boundingbox", xnew, ynew) # rounding to prevent invalid keys remx = (xnew - self.xs[0]) % self.dj remy = -(ynew - self.ys[-1]) % self.di xind = (xnew - self.xs[0]) // self.dj yind = -(ynew - self.ys[-1]) // self.di # print("rex,remy,xind,yind", remx,remy,xind,yind) if remx >= 0.5 * self.dj and remy >= 0.5 * self.di: xind+=1 yind+=1 elif remx >= 0.5 * self.dj and remy < 0.5 * self.di: xind+=1 elif remx < 0.5 * self.dj and remy >= 0.5 * self.di: yind+=1 # print("rex,remy,xind,yind after upate", remx, remy, xind, yind) # print("(i,j)", (yind,xind)) self.i=int(yind) self.j=int(xind) self.t=self.t + 1 sn=(self.t, self.i, self.j) # Pi=math.pi # if angle in [0, 0.5*Pi, Pi, 1.5*Pi]: # r=-1 # elif angle in [0.25*Pi, 0.75*Pi, 1.25*Pi, 1.75*Pi]: # r=-1.414 r=calculate_reward(self.dt, self.xs, self.ys, so, sn, xnew, ynew, vnetx, vnety ) if self.is_terminal(): r+=10 return r def move_exact(self, action, Vx, Vy): r=0 if self.is_terminal()==False: thrust,angle=action #x0.01 for cm/s to m/s #x0.0091 for m to degrees vnetx= (thrust*math.cos(angle)+(Vx)) vnety= (thrust*math.sin(angle)+(Vy)) xnew= self.x + (vnetx*self.dt) ynew= self.y + (vnety*self.dt) # print("xnew, ynew",xnew,ynew) #if state happens to go out of of grid, bring it back inside if xnew>self.xs[-1]: xnew=self.xs[-1] elif xnew<self.xs[0]: xnew=self.xs[0] if ynew>self.ys[-1]: ynew=self.ys[-1] elif ynew<self.ys[0]: ynew=self.ys[0] # print("xnew, ynew after boundingbox", xnew, ynew) # rounding to prevent invalid keys self.x=xnew self.y=ynew remx = (xnew - self.xs[0]) % self.dj remy = -(ynew - self.ys[-1]) % self.di xind = (xnew - self.xs[0]) // self.dj yind = -(ynew - self.ys[-1]) // self.di # print("rex,remy,xind,yind", remx,remy,xind,yind) if remx >= 0.5 * self.dj and remy >= 0.5 * self.di: xind+=1 yind+=1 elif remx >= 0.5 * self.dj and remy < 0.5 * self.di: xind+=1 elif remx < 0.5 * self.dj and remy >= 0.5 * self.di: yind+=1 # print("rex,remy,xind,yind after upate", remx, remy, xind, yind) # print("(i,j)", (yind,xind)) self.i=int(yind) self.j=int(xind) self.t=self.t + 1 sn=(self.t, self.i, self.j) # Pi=math.pi # if angle in [0, 0.5*Pi, Pi, 1.5*Pi]: # r=-1 # elif angle in [0.25*Pi, 0.75*Pi, 1.25*Pi, 1.75*Pi]: # r=-1.414 r=-self.dt if self.is_terminal(): r+=10 return r # !! time to mentioned by index !! def ac_state_space(self, time=None): a=set() if time==None: for t in range((self.nt)-1): #does not include the states in the last time stice. for i in range(self.ni): for j in range(self.nj): if ((i,j)!=self.endpos):# does not include states with pos as endpos a.add((t,i,j)) else: for i in range(self.ni): for j in range(self.nj): if ((i,j)!=self.endpos): a.add((time,i,j)) return sorted(a) def state_space(self,edge=None): a=set() if edge==None: for t in range(self.nt): for i in range(self.ni): for j in range(self.nj): a.add((t,i,j)) elif edge=='l': j=0 for t in range(self.nt): for i in range(self.ni): a.add((t,i,j)) elif edge=='d': i=self.ni -1 for t in range(self.nt): for j in range(self.nj): a.add((t,i,j)) elif edge=='r': j=(self.nj)-1 for t in range(self.nt): for i in range(self.ni): a.add((t,i,j)) elif edge=='u': i=0 for t in range(self.nt): for j in range(self.nj): a.add((t,i,j)) elif edge=='m': for t in range(self.nt): for i in range(1, (self.ni)-1): for j in range(1, (self.nj)-1): a.add((t,i,j)) elif edge=='llc': j=0 i=self.ni - 1 for t in range(self.nt): a.add((t,i,j)) elif edge=='ulc': j=0 i=0 for t in range(self.nt): a.add((t,i,j)) elif edge=='lrc': j=(self.nj)-1 i=self.ni - 1 for t in range(self.nt): a.add((t,i,j)) elif edge=='urc': j=(self.nj)-1 i=0 for t in range(self.nt): a.add((t,i,j)) elif edge=='end': i=self.endpos[0] j=self.endpos[1] for t in range(self.nt): a.add((t,i,j)) return sorted(a) def if_within_grid(self): return self.t>=0 and self.t<self.nt def intersection(lst1, lst2): lst3 = [value for value in lst1 if value in lst2] return lst3 def timeOpt_grid(tlist, xs, ys, startpos, endpos): g = Grid(tlist, xs, ys, startpos, endpos) #define actions and rewards Pi=math.pi #speeds in m/s speed_list=[1] #speeds except zero # angle_list_l=[0.0*Pi, 0.125*Pi, 0.25*Pi, 0.375*Pi, 0.5*Pi, # 1.5 * Pi, 1.625 * Pi, 1.75 * Pi, 1.875 * Pi] # angle_list_d=[0.0*Pi, 0.125*Pi, 0.25*Pi, 0.375*Pi, 0.5*Pi, 0.625*Pi, 0.75*Pi, # 0.875*Pi, 1.0*Pi] # angle_list_u=[ 1.0*Pi, 1.125*Pi, 1.25*Pi, 1.375*Pi, 1.5*Pi, 1.625*Pi, 1.75*Pi, 1.875*Pi, 0] # angle_list_r=[0.5*Pi, 0.625*Pi, 0.75*Pi, 0.875*Pi, 1.0*Pi, 1.125*Pi, 1.25*Pi, 1.375*Pi, 1.5*Pi] # angle_list_m=[0.0*Pi, 0.125*Pi, 0.25*Pi, 0.375*Pi, 0.5*Pi, 0.625*Pi, 0.75*Pi, 0.875*Pi, # 1.0*Pi, 1.125*Pi, 1.25*Pi, 1.375*Pi, 1.5*Pi, 1.625*Pi, 1.75*Pi, 1.875*Pi] angle_list_l = [0, 0.25 * Pi, 0.5 * Pi, 1.5 * Pi, 1.75 * Pi] angle_list_d = [0, 0.25 * Pi, 0.5 * Pi, 0.75 * Pi, Pi] angle_list_u = [0, Pi, 1.25 * Pi, 1.5 * Pi, 1.75 * Pi] angle_list_r = [0.5 * Pi, 0.75 * Pi, Pi, 1.25 * Pi, 1.5 * Pi] angle_list_m = [0, 0.25 * Pi, 0.5 * Pi, 0.75 * Pi, Pi, 1.25 * Pi, 1.5 * Pi, 1.75 * Pi] action_list_l= list(itertools.product(speed_list,angle_list_l)) action_list_l.append((0,0)) action_list_d= list(itertools.product(speed_list,angle_list_d)) action_list_d.append((0,0)) action_list_u= list(itertools.product(speed_list,angle_list_u)) action_list_u.append((0,0)) action_list_r= list(itertools.product(speed_list,angle_list_r)) action_list_r.append((0,0)) action_list_m= list(itertools.product(speed_list,angle_list_m)) action_list_m.append((0,0)) actions={} for s in g.state_space(): actions[s]=action_list_m #update action set for grid edges for s in g.state_space('l'): actions[s]=action_list_l for s in g.state_space('u'): actions[s]=action_list_u for s in g.state_space('r'): actions[s]=action_list_r for s in g.state_space('d'): actions[s]=action_list_d #update action set for grid corners for s in g.state_space('llc'): actions[s]=intersection(action_list_d,action_list_l) for s in g.state_space('ulc'): actions[s]=intersection(action_list_u,action_list_l) for s in g.state_space('lrc'): actions[s]=intersection(action_list_d,action_list_r) for s in g.state_space('urc'): actions[s]=intersection(action_list_u,action_list_r) #update action for terminal state for s in g.state_space('end'): actions[s]=None #set action set for states in last time step to none for s in g.ac_state_space((g.nt)-1): actions[s]=None #set ations for grid g.set_AR(actions) return g def print_values(V, g): for t in range(g.nt): print('t=',t) print("") for j in reversed(range(g.ni)): print("---------------------------") for i in range(g.nj): v = V[t,i,j] print(v, end=" ") print("") print("") def print_policy(P, g): for t in range(g.nt-1): print('t=',t) print("") for j in reversed(range(g.ni)): print("---------------------------") for i in range(g.nj): if (i,j)!=g.endpos: a = P[(t,i,j)] if a[0]!=0: if a[1]==0: a=(a[0],' R') elif a[1]==math.pi*0.5: a=(a[0],' U') elif a[1]==math.pi: a=(a[0],' L') elif a[1]==math.pi*1.5: a=(a[0],' D') elif a[1]==math.pi*0.25: a=(a[0],'UR') elif a[1]==math.pi*0.75: a=(a[0],'UL') elif a[1]==math.pi*1.25: a=(a[0],'DL') elif a[1]==math.pi*1.75: a=(a[0],'DR') else: a='None' print(a,end=" ") print("") print("") def print_test(g): for t in range(g.nt): for j in reversed(range(g.ni)): for i in range(g.nj): print(t,i,j), print("")
[ "matplotlib" ]
848a89efa53cb81f91a26ac17adda9f3b05d3b53
Python
forkkr/Data-Mining-Lab
/DecisionTree/CHECK.py
UTF-8
667
2.703125
3
[]
no_license
# from sklearn.datasets import load_iris # from sklearn import tree # from sklearn.tree.export import export_text # import matplotlib.pyplot as plt # # iris = load_iris() # clf = tree.DecisionTreeClassifier(criterion="entropy") # clf = clf.fit(iris.txt, iris.target) # print(iris.txt) # print(iris.target) # tree.plot_tree(clf.fit(iris.txt, iris.target)) # # plt.show() # r = export_text(clf, feature_names=iris['feature_names']) # print(r) file = open('Dataset/WineQuality/winequality-white.csv', 'r') wfile = open('Dataset/WineQuality/winequality.data', 'w') for tp in file: tp = tp.replace(';', ',') print(tp) wfile.write(tp) wfile.close() file.close()
[ "matplotlib" ]
090d3babc1298cc9e243ea69bbd1dbd755f8e36e
Python
mohdazfar/t20-cricket-analytics
/cricket_stats.py
UTF-8
11,952
2.859375
3
[]
no_license
import pandas as pd import matplotlib.pyplot as plt import numpy as np import operator import collections from pandas.tools.plotting import parallel_coordinates df = pd.read_csv('D:/kaggle/T20_matches_ball_by_ball_data.csv', parse_dates=["date"], low_memory=False) def get_batting_stats(df): ''' The methods includes the complete process of calculating batting statistics of each batsman available in the data set :param df: Dataframe of complete ball by ball data from ICC :return: batting statistics dataframe ''' # Acculmulate each batsman score in each match runs_scored = df.groupby(["Match_Id", "Batting_Team", "Striker"], as_index=False)["Run_Scored"].sum() # Count all the balls each batsman faced in a match balls_faced = df.groupby(["Match_Id", "Batting_Team", "Striker"], as_index=False)["Run_Scored"].count() balls_faced.columns = ["Match_Id", "Batting_Team", "Striker", "Balls_Faced"] # Merging the two dataframes to make a complete batting scoreboard batting_scoreboard = pd.merge(runs_scored, balls_faced, on=["Match_Id", "Batting_Team", "Striker"], how="left") t20_dismissal = df[["Match_Id", "Batting_Team", "Striker", "Dismissal"]] t20_dismissal["concat_key"] = t20_dismissal["Match_Id"].map(str) + ":" + t20_dismissal["Striker"] t20_dismissal = t20_dismissal.drop_duplicates(subset=["concat_key"], keep="last") t20_dismissal = t20_dismissal.drop(labels="concat_key", axis=1) t20_dismissal = t20_dismissal.sort_values(["Match_Id", "Batting_Team"]) t20_dismissal.Dismissal.fillna("not out", inplace=True) batting_scoreboard = pd.merge(batting_scoreboard, t20_dismissal, on=["Match_Id", "Batting_Team", "Striker"], how="left") # Get a unique list of batsman from the scoreboard dataframe batsman_statistics = pd.DataFrame({"Batsman": batting_scoreboard.Striker.unique()}) # Compute "Innings" information for each batsman from the scoreboard dataframe Innings = pd.DataFrame(batting_scoreboard.Striker.value_counts()) Innings.reset_index(inplace=True) Innings.columns = ["Batsman", "Innings"] # Compute "Not outs" information for each batsman from the scoreboard dataframe Not_out = batting_scoreboard.Dismissal == "not out" batting_scoreboard["Not_out"] = Not_out.map({True: 1, False: 0}) Not_out = pd.DataFrame(batting_scoreboard.groupby(["Striker"])["Not_out"].sum()) Not_out.reset_index(inplace=True) Not_out.columns = ["Batsman", "Not_out"] # Compute "Balls" information for each batsman from the scoreboard dataframe Balls = pd.DataFrame(batting_scoreboard.groupby(["Striker"])["Balls_Faced"].sum()) Balls.reset_index(inplace=True) Balls.columns = ["Batsman", "Balls_Faced"] # Compute "Runs" information for each batsman from the scoreboard dataframe Run_Scored = pd.DataFrame(batting_scoreboard.groupby(["Striker"])["Run_Scored"].sum()) Run_Scored.reset_index(inplace=True) Run_Scored.columns = ["Batsman", "Run_Scored"] # Compute "Highest score" information for each batsman from the scoreboard dataframe Highest_Score = pd.DataFrame(batting_scoreboard.groupby(["Striker"])["Run_Scored"].max()) Highest_Score.reset_index(inplace=True) Highest_Score.columns = ["Batsman", "Highest_Score"] # Compute "Centuries " information for each batsman from the scoreboard dataframe Centuries = pd.DataFrame( batting_scoreboard.loc[batting_scoreboard.Run_Scored >= 100,].groupby(["Striker"])["Run_Scored"].count()) Centuries.reset_index(inplace=True) Centuries.columns = ["Batsman", "Centuries"] # Compute "Half Centuries " information for each batsman from the scoreboard dataframe Half_Centuries = pd.DataFrame(batting_scoreboard.loc[(batting_scoreboard.Run_Scored >= 50) & (batting_scoreboard.Run_Scored < 100),].groupby(["Striker"])[ "Run_Scored"].count()) Half_Centuries.reset_index(inplace=True) Half_Centuries.columns = ["Batsman", "Half_Centuries"] # Merge all the metric to the batsman statitics dataframe batsman_statistics = pd.merge(batsman_statistics, Innings, on=["Batsman"], how="left") batsman_statistics = pd.merge(batsman_statistics, Not_out, on=["Batsman"], how="left") batsman_statistics = pd.merge(batsman_statistics, Balls, on=["Batsman"], how="left") batsman_statistics = pd.merge(batsman_statistics, Run_Scored, on=["Batsman"], how="left") batsman_statistics = pd.merge(batsman_statistics, Highest_Score, on=["Batsman"], how="left") batsman_statistics = pd.merge(batsman_statistics, Centuries, on=["Batsman"], how="left") batsman_statistics.Centuries.fillna(0, inplace=True) batsman_statistics.Centuries = batsman_statistics.Centuries.astype("int") batsman_statistics = pd.merge(batsman_statistics, Half_Centuries, on=["Batsman"], how="left") batsman_statistics.Half_Centuries.fillna(0, inplace=True) batsman_statistics.Half_Centuries = batsman_statistics.Half_Centuries.astype("int") # Compute "Batting average" for each batsman from the scoreboard dataframe batsman_statistics["Batting_Average"] = batsman_statistics.Run_Scored / ( batsman_statistics.Innings - batsman_statistics.Not_out) batsman_statistics.loc[batsman_statistics["Batting_Average"] == np.inf, "Batting_Average"] = 0 batsman_statistics.loc[batsman_statistics["Batting_Average"].isnull(), "Batting_Average"] = 0 # Compute "Strike rate for each batsman from the scoreboard dataframe batsman_statistics["Strike_Rate"] = (batsman_statistics.Run_Scored * 100) / batsman_statistics.Balls_Faced batsman_statistics = batsman_statistics.round({"Batting_Average": 2, "Strike_Rate": 2}) batsman_statistics = batsman_statistics.sort_values(['Run_Scored'], ascending=False) return batsman_statistics def get_bowling_statistics(df): ''' :param df: :return: ''' # Creating a column to determine bowling team for each ball bowled df["Bowling_Team"] = pd.DataFrame( np.where(df.Batting_Team == df.team, df.team2, df.team)) # Balls bowled by each bowler balls_bowled = pd.DataFrame(df["Bowler"].value_counts()) balls_bowled.index.name = 'Bowler' balls_bowled.columns = ["Total_Ball_Bowled"] # Calculate Runs given by each bowler df["runs_plus_extras"] = df["Run_Scored"] + df["Extras"] runs_given = df.groupby(["Bowler"])["runs_plus_extras"].sum() runs_given = pd.DataFrame(runs_given) runs_given.reset_index() # Wickets taken by each bowler df["wickets_taken"] = df["Dismissal"].isnull().map({True: 0, False: 1}) wickets_taken = pd.DataFrame(df.groupby(["Bowler"])["wickets_taken"].sum()) wickets_taken.reset_index() # Calculating major bowling statistics here including # bowling average, economy, strike rate, total wickets etc bowling_statistics = pd.merge(balls_bowled, runs_given, how="left", left_index=True, right_index=True) bowling_statistics = pd.merge(bowling_statistics, wickets_taken, how="left", left_index=True, right_index=True) bowling_statistics["Economy"] = bowling_statistics["runs_plus_extras"] / ( bowling_statistics["Total_Ball_Bowled"] / 6) bowling_statistics["Average"] = bowling_statistics["runs_plus_extras"] / bowling_statistics["wickets_taken"] bowling_statistics["Overs"] = bowling_statistics["Total_Ball_Bowled"] / 6 bowling_statistics = bowling_statistics.round({"Economy": 2, "Average": 2, "Overs": 0}) bowling_statistics.columns = ["Total_Ball_Bowled", "Total Runs", "Total Wickets", "Economy", "Average", "Overs"] bowling_statistics = bowling_statistics[["Overs", "Total Runs", "Total Wickets", "Economy", "Average"]] return bowling_statistics def get_net_run_rate(df): # Now let's calculate the Net Run Rate (NRR) for each team as a whole # Batting rate per over for each team as a whole df["Total_Runs"] = df["Run_Scored"] + df["Extras"] # Adding runs scored + extras to get total runs col df["Bowling_Team"] = pd.DataFrame( np.where(df.Batting_Team == df.team, df.team2, df.team)) runs_scored_by_X_team = pd.DataFrame( df.groupby(["Batting_Team"])["Total_Runs"].sum()) # Runs scored by each team in total balls_played_by_X_team = pd.DataFrame( df.groupby(["Bowling_Team"])["Bowling_Team"].count() / 6) # Overs played by each team in total balls_played_by_X_team.columns = ["Overs_Played"] batting_rpo = pd.merge(runs_scored_by_X_team, balls_played_by_X_team, left_index=True, right_index=True) # RATE PER OVER (RPO) in batting batting_rpo = pd.DataFrame(batting_rpo["Total_Runs"] / batting_rpo["Overs_Played"]) batting_rpo.columns = ["Batting_RPO"] # Bowling rate per over of each team as a whole runs_scored_by_rest_of_the_teams = pd.DataFrame( df.groupby(["Bowling_Team"])["Total_Runs"].sum()) # Runs scored against each team in total balls_played_by_rest_of_the_teams = pd.DataFrame(df.groupby(["Bowling_Team"])[ "Match_Id"].unique().str.len()) * 20 # To calculate bowling rate per over total ball (120) are considered instead of balls played balls_played_by_rest_of_the_teams.columns = ['Overs_Played'] bowling_rpo = pd.merge(runs_scored_by_rest_of_the_teams, balls_played_by_rest_of_the_teams, left_index=True, right_index=True) # RATE PER OVER (RPO) in bowling bowling_rpo = pd.DataFrame(bowling_rpo["Total_Runs"] / (bowling_rpo["Overs_Played"])) bowling_rpo.columns = ["Bowling_RPO"] # NET RUN RATE CALCULATION: RPO of (REQUIRED TEAM) - RPO of all against teams # RPO of (REQUIRED TEAM) = TOTAL RUNS SCORED AGAISNT ALL TEAMS / TOTAL BALLS PLAYED TO SCORE THOSE RUNS # RPO of all against teams = TOTAL RUNS SCORED BY ALL OTHER TEAMS AGAINST REQUIRED TEAM / 20*MATCHES net_run_rate = pd.merge(batting_rpo, bowling_rpo, left_index=True, right_index=True) net_run_rate["Net_Run_Rate"] = net_run_rate["Batting_RPO"] - net_run_rate["Bowling_RPO"] # Calc of net run rate net_run_rate = net_run_rate.sort_values(["Net_Run_Rate"], ascending=False) return net_run_rate def plot_teams_win_pct(df): all_teams = df['team'].unique().tolist() winning_pct = {} for team in all_teams: team_matches = df[(df['team'] == team) | (df['team2'] == team)] team_match_ids = team_matches['Match_Id'].unique() total_matches = len(team_match_ids) df_winnings = df[df['winner'] == team] total_wins = len(df_winnings['Match_Id'].unique()) winning_pct[team] = int(total_wins) / int(total_matches) * 100 winning_pct_sorted = sorted(winning_pct.items(), key=operator.itemgetter(1)) winning_pct_sorted = collections.OrderedDict(winning_pct_sorted) plt.barh(range(len(winning_pct_sorted)), list(winning_pct_sorted.values()), align='center') plt.yticks(range(len(winning_pct_sorted)), list(winning_pct_sorted.keys())) plt.xlabel('Percentage Wins (%)') plt.ylabel('Teams') plt.show() def plot_top5_batsman(df): # Top 5 Batsman of T20 cricket in each team df_sub = df[['Striker', 'Run_Scored', 'Batting_Team']] df_sub['Run_Scored'] = df_sub['Run_Scored'].astype(int) x = df_sub.pivot_table(index='Striker', columns='Batting_Team', aggfunc=sum) all_teams = df['team'].unique().tolist() top5players = {} for team in all_teams: y = x['Run_Scored'][team] y = y.dropna() top5players[team] = dict(y.sort_values(ascending=False)[:5]) df_plot = pd.DataFrame(top5players).stack().reset_index() df_plot.columns = ['Player Name', 'Country', 'Total Score'] parallel_coordinates(df_plot, class_column='Country') plt.show()
[ "matplotlib" ]
ff184b6840e521b6c7a60c02e8317e10340acbb6
Python
gcvalderrama/Jarvis
/graphview/Program.py
UTF-8
2,591
3.21875
3
[ "Apache-2.0" ]
permissive
import networkx as nx import matplotlib.pyplot as plt import xml.etree.ElementTree as ET def hierarchy_pos(G, root, width=2000, vert_gap = 200, vert_loc = 0, xcenter = 0.5, pos = None, parent = None): '''If there is a cycle that is reachable from root, then this will see infinite recursion. G: the graph root: the root node of current branch width: horizontal space allocated for this branch - avoids overlap with other branches vert_gap: gap between levels of hierarchy vert_loc: vertical location of root xcenter: horizontal location of root pos: a dict saying where all nodes go if they have been assigned parent: parent of this branch.''' if pos == None: pos = {root:(xcenter,vert_loc)} else: pos[root] = (xcenter, vert_loc) neighbors = G.neighbors(root) if parent != None: neighbors.remove(parent) if len(neighbors)!=0: dx = width/len(neighbors) nextx = xcenter - width/2 - dx/2 for neighbor in neighbors: nextx += dx pos = hierarchy_pos(G,neighbor, width = dx, vert_gap = vert_gap, vert_loc = vert_loc-vert_gap, xcenter=nextx, pos=pos, parent = root) return pos class RSTNode: def __init__(self): self.id = None self.label = None def __str__(self): return self.label class RSTRelation: def __init__(self): self.start = None self.end = None self.label = None tree = ET.parse('LA091790-0041.txt.xml.xml') root = tree.getroot() nodes = list() relations = list() for token_xml in root.iter('node'): node = RSTNode() node.id = int(token_xml.get('id')) node.label = token_xml.get('label') nodes.append(node) for token_xml in root.iter('relation'): relation = RSTRelation() relation.start = int(token_xml.get('start')) relation.end= int(token_xml.get('end')) relation.label = token_xml.get('label') relations.append(relation) labels = {} g = nx.Graph() for node in nodes: g.add_node(node.id) labels[node.id] = node.label for relation in relations: g.add_edge(relation.start, relation.end) #g.add_edge('a','b', weight=0.1) pos = hierarchy_pos(g,1,vert_gap = 20) #pos = nx.spring_layout(g) plt.figure(figsize=(80,80)) plt.axis('equal') nx.draw(g,pos=pos, with_labels=False, node_size=200, node_color='#A0CBE2') nx.draw_networkx_labels(g,pos, labels) nx.draw_networkx_edge_labels(g, pos=pos) plt.savefig('circular_tree.png')
[ "matplotlib" ]
48a08031d737221e166e572cea2c8bb38f2a18c8
Python
Kamesh-K/ML-SKLearn
/SVM_Parameters.py
UTF-8
591
2.515625
3
[ "MIT" ]
permissive
import sklearn import mglearn import matplotlib.pyplot as plt from sklearn.svm import SVC X,y=mglearn.tools.make_handcrafted_dataset() svm=SVC(kernel='rbf',C=10,gamma=0.1).fit(X,y) plt.scatter(X[:,0],X[:,1],s=60,c=y,cmap=mglearn.cm2) sv = svm.support_vectors_ plt.scatter(sv[:, 0], sv[:, 1], s=200, facecolors='none', zorder=10, linewidth=3) plt.show() plt.scatter(X[:, 0], X[:, 1], s=60, c=y, cmap=mglearn.cm2) # plot support vectors sv = svm.support_vectors_ plt.scatter(sv[:, 0], sv[:, 1], s=200, facecolors='none',edgecolors='black', zorder=5, linewidth=2) plt.show()
[ "matplotlib" ]
f37f3cbc7726d9d7358b5a0eae12f9d5956b7ed9
Python
johny322/lab8
/anim.py
UTF-8
1,288
2.8125
3
[]
no_license
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.animation as animation import numpy as np import pylab #data1 = np.loadtxt("u.txt") fig1, ax1 = plt.subplots() fig2, ax2 = plt.subplots() #plt.close() ax1.set_xlim((0,1)) ax1.set_ylim((-2,2)) ax2.set_xlim((0,1)) ax2.set_ylim((-2,2)) line1, = ax1.plot([],[], lw=2, label='U(x)') line2, = ax2.plot([],[], lw=2, label='U(t)') ax1.grid() ax1.legend(loc=1) ax2.grid() ax2.legend(loc=1) def init1(): line1.set_data([],[]) return line1, def animate1(i): x = np.linspace(0,1,50) y = np.linspace(0,1,50) z = np.exp(-4.0 * np.pi * np.pi * y[i]) * np.sin(2.0*np.pi * x) line1.set_data(x, z) ax1.set_title(str(i)) return line1, def init2(): line2.set_data([],[]) return line2, def animate2(i): x = np.linspace(0,1,50) y = np.linspace(0,1,50) z = np.exp(-4.0 * np.pi * np.pi * y) * np.sin(2.0*np.pi * x[i]) line2.set_data(x, z) ax2.set_title(str(i)) return line2, anim = animation.FuncAnimation(fig1, animate1, init_func=init1, frames=50, interval=100, blit=True) anim = animation.FuncAnimation(fig2, animate2, init_func=init2, frames=50, interval=100, blit=True) plt.show()
[ "matplotlib" ]
9e3a4a208a5bf8b63523e97f611adfc95d19b707
Python
cxzhangqi/MastersProject
/error_model.py
UTF-8
4,724
2.953125
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt import sys def R(a, H, model='3D'): """ Calculates the distance from source to microphone i. :param i: integer :param a: 3x1 np.darray, co-ordinates of source :param H: 4x3 np.darray, co-ordinates of microphones :return: 1x4 ndarray, distance from microphones to source a """ if model == '3D': z = H - a return np.sqrt(np.sum(np.square(z), axis=1)) else: z = H[:][:-1] - a[:-1] return np.sqrt(np.sum(np.square(z), axis=1)) # Could also dot Z with Z.T, don't know which is better def M(a, H): m = np.divide((H - a), R(a, H, model="3D"), out=np.zeros_like(H - a), where=R(a, H)!=0) # When R returns 0 this will just put 0 in array, rather than a divide by 0 error return np.concatenate((m, np.ones((4, 1))), axis=1) def D(a, H, v_sound): d = np.divide((H - a), v_sound * R(a, H), out=np.zeros_like((H - a), where=R(a,H) != 0)) # When R returns 0 this will just put 0 in array, rather than a divide by 0 error return np.concatenate(d, np.ones((4, 1)), axis=1) def d(i, j, a, H, v_sound): """ :param i: integer, denotes microphone :param j: integer, denotes co-ordinate x=0, y=1 or z=2 :param a: 3x1 np.darray, co-ordinates of source :param H: 4x3 np.darray, co-ordinates of microphones :param v_sound: float, speed of sound :return: Returns element i,j or matrix D """ if R(i, a, H) == 0: return 0 else: return np.divide(np.subtract(H[i][j], a[0][j]), np.multiply(v_sound, R(i, a_x, a_y, a_z, H))) def dDt_dv_ij(i, j, a, H, v_sound): """ :param i: :param j: :param a: :param H: :param v_sound: :return: """ h_i = np.sqrt(np.power((a_x - H[i][0]), 2) + np.power((a_y - H[i][1]), 2)) h_j = np.sqrt(np.power((a_x - H[j][0]), 2) + np.power((a_y - H[j][1]), 2)) return np.multiply(np.divide(a_z, v_sound), np.subtract(np.divide(1, np.sqrt(np.power(a_z, 2) + np.power(h_i, 2))), np.divide(1, np.sqrt(np.power(a_z, 2) + np.power(h_j, 2))))) def E_sos(a, H, dc, v_sound): """ Returns a 4x1 matrix containing the position estimate errors for error in speed of sound, dc First index is error in x Second index is error in y Third index is error in z :param a: 3x1 ndarray, co-ordinates of source :param H: 4x3 ndarray, co-ordinates of microphones :param dc: float, error in speed of sound estimate :return: 4x1 ndarray containing position estimate errors DAx, DAy, DAz and ... """ M_matrix = M(a, H) try: M_inv = np.linalg.inv(M_matrix) except: M_inv = np.zeros((4, 4)) T = R(a, H, model="3D") / v_sound print(T) return np.matmul(M_inv, T) * dc # This is a 4x1 array with all the errors in position and that final Rm def E_time(a_x, a_y, a_z, H, DT, v_sound): """ Returns a 4x1 matrix containing the position estimate errors for error in time of arrivals to each microphone, 4x1 matrix ToA First index is error in x Second index is error in y Third index is error in z :param a: 3x1 ndarray, co-ordinates of source :param H: 4x3 ndarray, co-ordinates of microphones :param DT: 4x1 ndarray, error in speed of sound estimate :return: 4x1 ndarray containing position estimate errors DAx, DAy, DAz and ... """ D = np.zeros((4, 4)) for i in range(4): D[i][3] = 1 for j in range(3): D[i][j] = d(i, j, a_x, a_y, a_z, H, v_sound) if np.linalg.det(D) == 0: # Need to figure out a better way of handling this. For now just do this? print("\n We got here!") D_inv = np.linalg.inv(D) return np.matmul(D_inv, DT) # Should be a 3 x 1 array # plot hyperbola(a,) # For now, just do it between two microphones rather than getting into a matrix. def E_2D(a_x, a_y, a_z, H, v_sound, i, j): dDt_dv = dDt_dv_ij(i, j, a_x, a_y, a_z, H, v_sound) return np.multiply(a_z, dDt_dv) # Returns the change in arrival time between microphones i and j def calculate_error_indicator(error_matrix,xrange,yrange): # Integrate sum = 0 for i in range(5, 15): for j in range(5, 15): sum += error_matrix[j][i] # Return error square divided by area of the box return np.divide(np.power(sum, 2), 100) h1 = [0, 0, 0] h2 = [0, 10, 0] h3 = [10, 10, 0] h4 = [10, 0, 0] H = np.array([h1, h2, h3, h4], dtype=float) x = np.linspace(-20, 20, 100) y = np.linspace(-20, 20, 100) X, Y = np.meshgrid(x, y, indexing='xy') a = np.array([X, Y, np.zeros_like(X)]) #print(X) #print(Y) #print(M(a, H))
[ "matplotlib" ]
fc852a982b33e1abf22c80694eb14ed2d4dcd184
Python
guidocioni/eumetsat-python
/plot_eumetsat.py
UTF-8
3,515
2.640625
3
[]
no_license
# Required libraries import matplotlib.pyplot as plt # %matplotlib from netCDF4 import Dataset from mpl_toolkits.basemap import Basemap # Import the Basemap toolkit import numpy as np # Import the Numpy package from cpt_convert import loadCPT # Import the CPT convert function from matplotlib.colors import LinearSegmentedColormap # Linear interpolation for color maps from datetime import datetime from glob import glob import os # Converts the CPT file to be used in Python cpt = loadCPT('IR4AVHRR6.cpt') # Makes a linear interpolation with the CPT file cpt_convert = LinearSegmentedColormap('cpt', cpt) folder = '/Users/thd5tt/Downloads/sat/' first=True for fname in glob(folder+"*.nc"): # Search for the Scan Start in the file name time = (fname[fname.find("MG_")+3:fname.find(".nc")]) # Format the "Observation Start" string date = datetime.strptime(time,'%Y%m%d%H%M%S') # Check if we already created the image image_string = folder + 'images/' + datetime.strftime(date,'%Y%m%d%H%M%S') + '.png' if os.path.isfile(image_string): print('Skipping '+fname) continue print('Using '+fname) # Open the file using the NetCDF4 library nc = Dataset(fname) # Extract the Brightness Temperature values from the NetCDF ir_10p8 = np.ma.masked_less(nc.variables['ch9'][:], 10) nu_c=930.659 alpha=0.9983 beta=0.627 C1=1.19104E-5 C2=1.43877 temp_b=( (C2*nu_c) / (alpha*np.ma.log((C1*nu_c**3/ir_10p8)+1)) )- ( beta/alpha ) temp_b=temp_b-273.15 if first: lons = np.ma.masked_less(np.array(nc.variables['lon']), -180) lats = np.ma.masked_less(np.array(nc.variables['lat']), -90) # bmap = Basemap(projection='cyl', llcrnrlon=15, llcrnrlat=37,\ # urcrnrlon=22, urcrnrlat=42, resolution='i') # bmap = Basemap(projection='cyl', llcrnrlon=-50, llcrnrlat=20, urcrnrlon=-5, urcrnrlat=60, resolution='l') # bmap = Basemap(projection='stere', llcrnrlon=lons[0,0], llcrnrlat=lats[0,0], urcrnrlon=lons[-1,-1], urcrnrlat=lats[-1,-1],\ # lon_0=0, lat_0=35, resolution='l') bmap = Basemap(projection='stere', llcrnrlon=7, llcrnrlat=30, urcrnrlon=30, urcrnrlat=44,\ lon_0=15, lat_0=38, resolution='i') # Draw the coastlines, countries, parallels and meridians first=False x,y=bmap(lons,lats) print(temp_b.min()) print(temp_b.max()) bmap.contourf(x,y,temp_b,np.arange(-60,40,0.1),cmap=cpt_convert,extend="both") #bmap.contourf(x,y,ir_10p8,np.arange(0,120,1),cmap="gist_gray_r",extend="both") bmap.drawcoastlines(linewidth=1, linestyle='solid', color='white') bmap.drawcountries(linewidth=1, linestyle='solid', color='white') bmap.drawparallels(np.arange(-90.0, 90.0, 10.), linewidth=0.5, color='white', labels=[False, False, False, False]) bmap.drawmeridians(np.arange(0.0, 360.0, 10.), linewidth=0.5, color='white', labels=[False, False, False, False]) # Insert the legend # bmap.colorbar(location='right', label='Brightness Temperature [K]') date_formatted = datetime.strftime(date,'%H:%MZ %a %d %b %Y') # plt.title(date_formatted+" | "+u"\N{COPYRIGHT SIGN}"+'EUMETSAT - prepared by Guido Cioni (www.guidocioni.it)',fontsize=10 ) # plt.title(date_formatted+" | "+u"\N{COPYRIGHT SIGN}"+'EUMETSAT',fontsize=10 ) # plt.show() plt.savefig('./images/%s.png' % datetime.strftime(date,'%Y%m%d%H%M%S'), bbox_inches='tight', dpi=150) plt.clf() plt.close('all')
[ "matplotlib" ]
bcd5d9aea00a3d658cf1529ab9b9b10819141d21
Python
Oscarlsson/RL-competition
/src/lambdaplot.py
UTF-8
674
2.671875
3
[]
no_license
#!/usr/bin/env python import pandas as pd import matplotlib.pyplot as plt import sys # ../outputs/131218-12-27-39-LibRLAgent-Episod100/finalOutput csvfile = sys.argv[1] data = pd.read_table(csvfile, sep=' ', header=None, index_col=[0,1]) indexes = set([a for (a,b) in data.index]) for index in indexes: plotdata = data.loc[index] # Normal plot #plotdata[3].sort_index().plot() # Normalized plotdata = (plotdata[3])#-plotdata[3].min()) (plotdata/plotdata.abs().max()).sort_index().plot() plt.xlabel("Change i reward for different values of lambda") plt.xlabel("Lambda") plt.ylabel("Cumulative reward") plt.legend(indexes, loc='best') plt.show()
[ "matplotlib" ]
7b91f77d76829f80c5c2903597360bbd1c278231
Python
DevotionZhu/carla-code-pad
/plottoplist.py
UTF-8
872
2.9375
3
[]
no_license
import math import carla import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt client = carla.Client('localhost', 2000) world = client.get_world() world_map = world.get_map() topology = world_map.get_topology() count = 0 for segment in topology: x1, y1 = segment[0].transform.location.x, segment[0].transform.location.y x2, y2 = segment[1].transform.location.x, segment[1].transform.location.y x1, x2 = -x1, -x2 if math.sqrt((x2-x1)**2+(y2-y1)**2) > 0.01: if segment[0].is_intersection: plt.plot([x1, x2], [y1, y2], color='black') plt.plot([x1, x2], [y1, y2], 'o') else: plt.plot([x1, x2], [y1, y2]) plt.plot([x1, x2], [y1, y2], 'o') plt.arrow(x1, y1, (x2+x1)/2 - x1, (y2+y1)/2 - y1, shape='full', lw=0, length_includes_head=True, head_width=2) else: print 'Found zero segment', segment[0].transform.location plt.show()
[ "matplotlib" ]
de9c07b244b9aaa6266c299d69a77b6413554819
Python
treverhines/ModEst
/modest/cv.py
UTF-8
9,770
2.6875
3
[ "MIT" ]
permissive
#!/usr/bin/env python # Generalize Cross Validation import numpy as np from scipy.sparse import isspmatrix import scipy.optimize import matplotlib.pyplot as plt import matplotlib.tri as tri import logging import rbf.halton from myplot.cm import viridis import modest.petsc import modest.solvers import modest.mp from myplot.colorbar import pseudo_transparent_cmap logger = logging.getLogger(__name__) def chunkify(list,N): # make chunks random list = np.asarray(list) K = list.shape[0] # I need a randomly mixed list, but i need to to be mixed the # same time every time current_random_state = np.random.get_state() np.random.seed(1) if K > 0: mix_range = np.random.choice(range(K),K,replace=False) else: # np.random.choice does not work for K==0 mix_range = np.zeros(0,dtype=int) np.random.set_state(current_random_state) chunked_mix_range = [mix_range[i::N] for i in range(N)] return [list[c] for c in chunked_mix_range] def dense_predictive_error(damping,A,L,data,fold=10): ''' Description ----------- Computes the predictive error for the given damping parameter(s). Parameters ---------- damping: list of damping parameters for each regularization matrix A: (N,M) dense system matrix L: list of regularization matrices data: (N,) data array fold (default=10): number of cross validation folds ''' if len(damping) != len(L): raise ValueError( 'number of damping parameters must equal number of ' 'regularization matrices') A = np.asarray(A) L = [np.asarray(k) for l in L] data = np.asarray(data) N = data.shape[0] if hasattr(fold,'__iter__'): testing_sets = fold else: fold = min(fold,N) # make sure folds is smaller than the number of data points testing_sets = chunkify(range(N),fold) # scale regularization matrices. note that this makes copies L = (k*d for d,k in zip(damping,L)) # stack regularization matrices L = np.vstack(L) # make sure folds is smaller than the number of data points fold = min(fold,N) res = np.zeros(N) for rmidx in testing_sets: # build weight matrix. data points are excluded by given them # nearly zero weight W = np.ones(N) W[rmidx] = 1e-10 A_new = W[:,None]*A data_new = W*data soln = modest.solvers.reg_dsolve(A_new,L,data_new) pred = A.dot(soln) res[rmidx] = pred[rmidx] - data[rmidx] return res.dot(res)/N def sparse_predictive_error(damping,A,L,data,fold=10,solver='spsolve',**kwargs): ''' Description ----------- Computes the predictive error for the given damping parameter(s). Parameters ---------- damping: list of damping parameters for each regularization matrix A: (N,M) sparse system matrix L: list of regularization matrices data: (N,) data array fold (default=10): number of cross validation testing sets. The data is randomly split into the desired number of testing sets. If you want more control over which data points are in which testing set then fold can also be specified as a list of testing set indices. For example, if there are 5 data points then fold can be specified as [[0,1],[2,3],[4]] which does 3-fold cross validation. solver: which solver to use. choices are 'spsolve': scipy.spares.linalg.spsolve 'lgmres': scipy.sparse.linalg.lgmres 'lsqr': scipy.sparse.linalg.lsqr 'petsc': modest.petsc.petsc_solve additional key word arguments are passed to the solver ''' solver_dict = {'spsolve':modest.solvers.sparse_reg_dsolve, 'lgmres':modest.solvers.sparse_reg_lgmres, 'lsqr':modest.solvers.sparse_reg_lsqr, 'petsc':modest.solvers.sparse_reg_petsc} if len(damping) != len(L): raise ValueError( 'number of damping parameters must equal number of ' 'regularization matrices') if not all(isspmatrix(k) for k in L): raise TypeError( 'L must be a list of sparse matrices') if not isspmatrix(A): raise TypeError( 'A must be a list of sparse matrices') data = np.asarray(data) N = data.shape[0] if hasattr(fold,'__iter__'): testing_sets = fold else: fold = min(fold,N) # make sure folds is smaller than the number of data points testing_sets = chunkify(range(N),fold) # scale regularization matrices. note that this makes copies L = (k*d for d,k in zip(damping,L)) # stack regularization matrices L = scipy.sparse.vstack(L) # empty residual vector res = np.zeros(N) for rmidx in testing_sets: # build weight matrix. data points are excluded by giving them zero # weight diag = np.ones(N) diag[rmidx] = 1e-10 W = scipy.sparse.diags(diag,0) # note that there are multiple matrix copies made here A_new = W.dot(A) data_new = W.dot(data) soln = solver_dict[solver](A_new,L,data_new,**kwargs) pred = A.dot(soln) res[rmidx] = pred[rmidx] - data[rmidx] return res.dot(res)/N def predictive_error(damping,A,L,data,fold=10,**kwargs): if isspmatrix(A): return sparse_predictive_error(damping,A,L,data,fold=fold,**kwargs) else: return dense_predictive_error(damping,A,L,data,fold=fold,**kwargs) def mappable_predictive_error(args): damping = args[0] A = args[1] L = args[2] data = args[3] fold = args[4] kwargs = args[5] index = args[6] total = args[7] out = predictive_error(damping,A,L,data,fold=fold,**kwargs) logger.info('computed predictive error %s of %s' % (index,total)) return out def optimal_damping_parameters(A,L,data, fold=10,log_bounds=None, itr=100,procs=None,plot=False, **kwargs): ''' returns the optimal penalty parameter for regularized least squares using generalized cross validation Parameters ---------- A: (N,M) system matrix L: list of (K,M) regularization matrices data: (N,) data vector plot: whether to plot the predictive error curve log_bounds: list of lower and upper bounds for each penalty parameter ''' # number of damping parameters P = len(L) # values range from 0 to 1 tests = rbf.halton.halton(itr,P) # scale tests to the desired bounds if log_bounds is None: log_bounds = [[-6.0,6.0]]*P log_bounds = np.asarray(log_bounds) if log_bounds.shape != (P,2): raise TypeError('log_bounds must be a length P list of lower and upper bounds') bounds_diff = log_bounds[:,1] - log_bounds[:,0] bounds_min = log_bounds[:,0] tests = tests*bounds_diff tests = tests + bounds_min tests = 10**tests args = ((t,A,L,data,fold,kwargs,i,len(tests)) for i,t in enumerate(tests)) errs = modest.mp.parmap(mappable_predictive_error,args,workers=procs) errs = np.asarray(errs) best_err = np.min(errs) best_idx = np.argmin(errs) best_test = tests[best_idx] logger.info('best predictive error: %s' % best_err) logger.info('best damping parameters: %s' % best_test) if (P > 2) & plot: logger.info( 'cannot plot predictive error for more than two damping ' 'parameters') elif (P == 1) & plot: # sort for plotting purposes sort_idx = np.argsort(tests[:,0]) tests = tests[sort_idx,:] errs = errs[sort_idx] fig,ax = plt.subplots() if hasattr(fold,'__iter__'): ax.set_title('%s-fold cross validation curve' % len(fold)) else: ax.set_title('%s-fold cross validation curve' % fold) ax.set_ylabel('predictive error') ax.set_xlabel('penalty parameter') ax.loglog(tests[:,0],errs,'k-') ax.loglog(best_test[0],best_err,'ko',markersize=10) ax.grid(zorder=-1) fig.tight_layout() elif (P == 2) & plot: fig,ax = plt.subplots() log_tests = np.log10(tests) log_errs = np.log10(errs) vmin = np.min(log_errs) vmax =np.max(log_errs) viridis_alpha = pseudo_transparent_cmap(viridis,0.5) # if fewer than three tests were made then do not triangulate if tests.shape[0] >= 3: # make triangularization in logspace triangles = tri.Triangulation(log_tests[:,0],log_tests[:,1]) # set triangles to linear space triangles.x = tests[:,0] triangles.y = tests[:,1] ax.tripcolor(triangles,log_errs, vmin=vmin,vmax=vmax,cmap=viridis_alpha,zorder=0) ax.scatter([best_test[0]],[best_test[1]], s=200,c=[np.log10(best_err)], vmin=vmin,vmax=vmax,zorder=2,cmap=viridis) c = ax.scatter(tests[:,0],tests[:,1],s=50,c=log_errs, vmin=vmin,vmax=vmax,zorder=1,cmap=viridis) if hasattr(fold,'__iter__'): ax.set_title('%s-fold cross validation curve' % len(fold)) else: ax.set_title('%s-fold cross validation curve' % fold) ax.set_xscale('log') ax.set_yscale('log') cbar = fig.colorbar(c) cbar.set_label('log predictive error') ax.set_xlabel('damping parameter 1') ax.set_ylabel('damping parameter 2') ax.grid(zorder=0) fig.tight_layout() return best_test, best_err, tests, errs def optimal_damping_parameter(A,L,data, fold=10,log_bounds=None, itr=100,**kwargs): ''' used when only searching for one penalty parameter ''' if log_bounds is None: log_bounds = [-6.0,6.0] out = optimal_damping_parameters(A,[L],data,fold=fold, log_bounds=[log_bounds], itr=itr,**kwargs) best_test,best_err,tests,errs = out best_test = best_test[0] tests = tests[:,0] return best_test, best_err, tests, errs
[ "matplotlib" ]
c3cf79ce96628316f8b3eb5106edefa7d17d6b8b
Python
SStar1314/ML
/show_picture/reverse_img.py
UTF-8
511
3.046875
3
[]
no_license
import scipy.misc import matplotlib.pyplot as plt lena = scipy.misc.ascent() plt.subplot(221) plt.title('Original') plt.axis('off') plt.imshow(lena) plt.subplot(222) plt.title('Flipped') plt.axis('off') plt.imshow(lena[:,::-1]) plt.subplot(223) plt.title('Sliced') plt.axis('off') plt.imshow(lena[:lena.shape[0]/2,:lena.shape[1]/2]) mask = lena % 2 == 0 masked_lena = lena.copy() masked_lena[mask] = 0 plt.subplot(224) plt.title('Masked') plt.axis('off') plt.imshow(masked_lena) plt.show()
[ "matplotlib" ]