blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
135
path
stringlengths
2
372
src_encoding
stringclasses
26 values
length_bytes
int64
55
3.18M
score
float64
2.52
5.19
int_score
int64
3
5
detected_licenses
sequencelengths
0
38
license_type
stringclasses
2 values
code
stringlengths
55
3.18M
used_libs
sequencelengths
1
5
ee92269ab11111536b7b926e909d4a4c4766270b
Python
PanditRohit/COVID-19-Data-Analysis
/COVID-19 Data Analysis.py
UTF-8
2,943
3.28125
3
[]
no_license
# Import Libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt #Import Covid-19 Dataset corona_dataset_csv = pd.read_csv("C:/Users/pandit/Downloads/covid19_Confirmed_dataset.csv") corona_dataset_csv.head() corona_dataset_csv.shape #Delete the useless columns after Exploratory Data Analysis corona_dataset_csv.drop(["Lat","Long"],axis=1,inplace=True) corona_dataset_csv.head(10) #Aggregating the rows by the country corona_dataset_aggregated=corona_dataset_csv.groupby("Country/Region").sum() corona_dataset_aggregated.head() corona_dataset_aggregated.shape #Visualizing Data related to Countries corona_dataset_aggregated.loc["China"].plot() corona_dataset_aggregated.loc["India"].plot() corona_dataset_aggregated.loc["Italy"].plot() plt.legend() #Calculating a good measure corona_dataset_aggregated.loc['China'][:3].plot() corona_dataset_aggregated.loc['China'].diff().plot() #Finding maximum infection rates for Selected countries corona_dataset_aggregated.loc['China'].diff().max() corona_dataset_aggregated.loc['India'].diff().max() corona_dataset_aggregated.loc['Italy'].diff().max() #Find maximum infection rate for all the countries countries = list(corona_dataset_aggregated.index) max_infection_rates=[] for c in countries : max_infection_rates.append(corona_dataset_aggregated.loc[c].diff().max()) corona_dataset_aggregated["max_infection_rates"] = max_infection_rates corona_dataset_aggregated.head() #Create a new dataframe with only needed column corona_data = pd.DataFrame(corona_dataset_aggregated["max_infection_rates"]) corona_data.head() #Now import world happiness report dataset happiness_report = pd.read_csv("C:/Users/pandit/Downloads/worldwide_happiness_report.csv") happiness_report.head() #Make a list of useless columns and drop the same useless_cols = ["Overall rank","Score","Generosity","Perceptions of corruption"] happiness_report.drop(useless_cols,axis=1,inplace=True) happiness_report.head() #Change the indices of the dataframe happiness_report.set_index("Country or region",inplace=True) happiness_report.head() #Check the shapes of both the dataframes corona_data.head() corona_data.shape happiness_report.shape #Join the two datasets using inner join as the shape of the datasets vary data=corona_data.join(happiness_report,how="inner") data.head() #Create a correlation matrix data.corr() #Visualization of the results data.head() #Plotting GDP vs maximum infection rates x = data["GDP per capita"] y = data["max_infection_rates"] sns.scatterplot(x,np.log(y)) sns.regplot(x,np.log(y)) #Plotting social support vs maximum infection rates x = data["Social support"] y = data["max_infection_rates"] sns.scatterplot(x,np.log(y)) sns.regplot(x,np.log(y)) #Plotting Healthy life expectancy vs maximum infection rates x = data["Healthy life expectancy"] y = data["max_infection_rates"] sns.scatterplot(x,np.log(y)) sns.regplot(x,np.log(y))
[ "matplotlib", "seaborn" ]
e435765339472ea9173527d546970d87a0d1c7fc
Python
elofamomo/btTTVT
/sampling.py
UTF-8
10,333
2.578125
3
[]
no_license
"""This file contains code used in "Think DSP", by Allen B. Downey, available from greenteapress.com Copyright 2015 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import thinkdsp import thinkplot import numpy as np import matplotlib.pyplot as plt PI2 = 2 * np.pi FORMATS = ['pdf', 'eps'] def plot_beeps(): wave = thinkdsp.read_wave('253887__themusicalnomad__positive-beeps.wav') wave.normalize() thinkplot.preplot(3) # top left ax1 = plt.subplot2grid((4, 2), (0, 0), rowspan=2) plt.setp(ax1.get_xticklabels(), visible=False) wave.plot() thinkplot.config(title='Input waves', legend=False) # bottom left imp_sig = thinkdsp.Impulses([0.01, 0.4, 0.8, 1.2], amps=[1, 0.5, 0.25, 0.1]) impulses = imp_sig.make_wave(start=0, duration=1.3, framerate=wave.framerate) ax2 = plt.subplot2grid((4, 2), (2, 0), rowspan=2, sharex=ax1) impulses.plot() thinkplot.config(xlabel='Time (s)') # center right convolved = wave.convolve(impulses) ax3 = plt.subplot2grid((4, 2), (1, 1), rowspan=2) plt.title('Convolution') convolved.plot() thinkplot.config(xlabel='Time (s)') thinkplot.save(root='sampling1', formats=FORMATS, legend=False) XLIM = [-22050, 22050] def plot_am(): wave = thinkdsp.read_wave('105977__wcfl10__favorite-station.wav') wave.unbias() wave.normalize() # top ax1 = thinkplot.preplot(6, rows=4) spectrum = wave.make_spectrum(full=True) spectrum.plot(label='spectrum') thinkplot.config(xlim=XLIM, xticklabels='invisible') #second carrier_sig = thinkdsp.CosSignal(freq=10000) carrier_wave = carrier_sig.make_wave(duration=wave.duration, framerate=wave.framerate) modulated = wave * carrier_wave ax2 = thinkplot.subplot(2, sharey=ax1) modulated.make_spectrum(full=True).plot(label='modulated') thinkplot.config(xlim=XLIM, xticklabels='invisible') # third demodulated = modulated * carrier_wave demodulated_spectrum = demodulated.make_spectrum(full=True) ax3 = thinkplot.subplot(3, sharey=ax1) demodulated_spectrum.plot(label='demodulated') thinkplot.config(xlim=XLIM, xticklabels='invisible') #fourth ax4 = thinkplot.subplot(4, sharey=ax1) demodulated_spectrum.low_pass(10000) demodulated_spectrum.plot(label='filtered') thinkplot.config(xlim=XLIM, xlabel='Frequency (Hz)') thinkplot.save(root='sampling2', formats=FORMATS) #carrier_spectrum = carrier_wave.make_spectrum(full=True) #carrier_spectrum.plot() #convolved = spectrum.convolve(carrier_spectrum) #convolved.plot() #reconvolved = convolved.convolve(carrier_spectrum) #reconvolved.plot() def sample(wave, factor): """Simulates sampling of a wave. wave: Wave object factor: ratio of the new framerate to the original """ ys = np.zeros(len(wave)) ys[::factor] = wave.ys[::factor] ts = wave.ts[:] return thinkdsp.Wave(ys, ts, wave.framerate) def make_impulses(wave, factor): ys = np.zeros(len(wave)) ys[::factor] = 1 ts = np.arange(len(wave)) / wave.framerate return thinkdsp.Wave(ys, ts, wave.framerate) def plot_segments(original, filtered): start = 1 duration = 0.01 original.segment(start=start, duration=duration).plot(color='gray') filtered.segment(start=start, duration=duration).plot() def plot_sampling(wave, root): ax1 = thinkplot.preplot(2, rows=2) wave.make_spectrum(full=True).plot(label='spectrum') thinkplot.config(xlim=XLIM, xticklabels='invisible') ax2 = thinkplot.subplot(2) sampled = sample(wave, 4) sampled.make_spectrum(full=True).plot(label='sampled') thinkplot.config(xlim=XLIM, xlabel='Frequency (Hz)') thinkplot.save(root=root, formats=FORMATS) def plot_sampling2(wave, root): ax1 = thinkplot.preplot(6, rows=4) wave.make_spectrum(full=True).plot(label='spectrum') thinkplot.config(xlim=XLIM, xticklabels='invisible') ax2 = thinkplot.subplot(2) impulses = make_impulses(wave, 4) impulses.make_spectrum(full=True).plot(label='impulses') thinkplot.config(xlim=XLIM, xticklabels='invisible') ax3 = thinkplot.subplot(3) sampled = wave * impulses spectrum = sampled.make_spectrum(full=True) spectrum.plot(label='sampled') thinkplot.config(xlim=XLIM, xticklabels='invisible') ax4 = thinkplot.subplot(4) spectrum.low_pass(5512.5) spectrum.plot(label='filtered') thinkplot.config(xlim=XLIM, xlabel='Frequency (Hz)') thinkplot.save(root=root, formats=FORMATS) def plot_sampling3(wave, root): ax1 = thinkplot.preplot(6, rows=3) wave.make_spectrum(full=True).plot(label='spectrum') thinkplot.config(xlim=XLIM, xticklabels='invisible') impulses = make_impulses(wave, 4) ax2 = thinkplot.subplot(2) sampled = wave * impulses spectrum = sampled.make_spectrum(full=True) spectrum.plot(label='sampled') thinkplot.config(xlim=XLIM, xticklabels='invisible') ax3 = thinkplot.subplot(3) spectrum.low_pass(5512.5) spectrum.plot(label='filtered') thinkplot.config(xlim=XLIM, xlabel='Frequency (Hz)') thinkplot.save(root=root, formats=FORMATS) #filtered = spectrum.make_wave() #plot_segments(wave, filtered) def make_boxcar(spectrum, factor): """Makes a boxcar filter for the given spectrum. spectrum: Spectrum to be filtered factor: sampling factor """ fs = np.copy(spectrum.fs) hs = np.zeros_like(spectrum.hs) cutoff = spectrum.framerate / 2 / factor for i, f in enumerate(fs): if abs(f) <= cutoff: hs[i] = 1 return thinkdsp.Spectrum(hs, fs, spectrum.framerate, full=spectrum.full) def plot_sinc_demo(wave, factor, start=None, duration=None): def make_sinc(t, i, y): """Makes a shifted, scaled copy of the sinc function.""" sinc = boxcar.make_wave() sinc.shift(t) sinc.roll(i) sinc.scale(y * factor) return sinc def plot_mini_sincs(wave): """Plots sinc functions for each sample in wave.""" t0 = wave.ts[0] for i in range(0, len(wave), factor): sinc = make_sinc(t0, i, wave.ys[i]) seg = sinc.segment(start, duration) seg.plot(color='green', linewidth=0.5, alpha=0.3) if i == 0: total = sinc else: total += sinc seg = total.segment(start, duration) seg.plot(color='blue', alpha=0.5) sampled = sample(wave, factor) spectrum = sampled.make_spectrum() boxcar = make_boxcar(spectrum, factor) start = wave.start if start is None else start duration = wave.duration if duration is None else duration sampled.segment(start, duration).plot_vlines(color='gray') wave.segment(start, duration).plot(color='gray') plot_mini_sincs(wave) def plot_sincs(wave): start = 1.0 duration = 0.01 factor = 4 short = wave.segment(start=start, duration=duration) #short.plot() sampled = sample(short, factor) #sampled.plot_vlines(color='gray') spectrum = sampled.make_spectrum(full=True) boxcar = make_boxcar(spectrum, factor) sinc = boxcar.make_wave() sinc.shift(sampled.ts[0]) sinc.roll(len(sinc)//2) thinkplot.preplot(2, cols=2) sinc.plot() thinkplot.config(xlabel='Time (s)') thinkplot.subplot(2) boxcar.plot() thinkplot.config(xlabel='Frequency (Hz)', ylim=[0, 1.05], xlim=[-boxcar.max_freq, boxcar.max_freq]) thinkplot.save(root='sampling6', formats=FORMATS) return # CAUTION: don't call plot_sinc_demo with a large wave or it will # fill memory and crash plot_sinc_demo(short, 4) thinkplot.config(xlabel='Time (s)') thinkplot.save(root='sampling7', formats=FORMATS) start = short.start + 0.004 duration = 0.00061 plot_sinc_demo(short, 4, start, duration) thinkplot.config(xlabel='Time (s)', xlim=[start, start+duration], ylim=[-0.06, 0.17], legend=False) thinkplot.save(root='sampling8', formats=FORMATS) def kill_yticklabels(): axis = plt.gca() plt.setp(axis.get_yticklabels(), visible=False) def show_impulses(wave, factor, i): thinkplot.subplot(i) thinkplot.preplot(2) impulses = make_impulses(wave, factor) impulses.segment(0, 0.001).plot_vlines(linewidth=2, xfactor=1000) if i == 1: thinkplot.config(title='Impulse train', ylim=[0, 1.05]) else: thinkplot.config(xlabel='Time (ms)', ylim=[0, 1.05]) thinkplot.subplot(i+1) impulses.make_spectrum(full=True).plot() kill_yticklabels() if i == 1: thinkplot.config(title='DFT of impulse train', xlim=[-22400, 22400]) else: thinkplot.config(xlabel='Frequency (Hz)', xlim=[-22400, 22400]) def plot_impulses(wave): thinkplot.preplot(rows=2, cols=2) show_impulses(wave, 4, 1) show_impulses(wave, 8, 3) thinkplot.save('sampling9', formats=FORMATS) def main(): wave = thinkdsp.read_wave('328878__tzurkan__guitar-phrase-tzu.wav') wave.normalize() plot_sampling3(wave, 'sampling5') plot_sincs(wave) plot_beeps() plot_am() wave = thinkdsp.read_wave('263868__kevcio__amen-break-a-160-bpm.wav') wave.normalize() plot_impulses(wave) plot_sampling(wave, 'sampling3') plot_sampling2(wave, 'sampling4') if __name__ == '__main__': main()
[ "matplotlib" ]
abc604ebfa2ec99d8d085881172baa783c2b5325
Python
haidaodao/sdc-term3-p4-capstone-carla
/graph_waypoints.py
UTF-8
2,608
3.15625
3
[]
no_license
#!/usr/bin/env python import matplotlib.pyplot as plt import csv from math import cos, sin wp_x = [] wp_y = [] path = './data/wp_yaw_const.csv' def closest_waypoint(waypoints, pos): best_distance = float('inf') best_wp_index = 0 best_wp = None for i, wp in enumerate(waypoints): dist = ((pos[0] - wp[0]) ** 2 + (pos[1] - wp[1]) ** 2) ** 0.5 if dist < best_distance: best_distance = dist best_wp, best_wp_index = wp, i yaw = waypoints[best_wp_index][2] nx = pos[0] - waypoints[best_wp_index][0] ny = pos[1] - waypoints[best_wp_index][1] # Check if waypoint is ahead of stop line ahead = nx * cos(0 - yaw) - ny * sin(0 - yaw) if ahead < 0: best_wp_index -= 1 print (best_wp_index) return best_wp_index def all_stop_line_closest_wp(waypoints, traffic_light_posts): stop_wp = [] stop_x = [] stop_y = [] for pos in traffic_light_posts: print (pos) best_index = closest_waypoint(waypoints, pos) # print (best_index) stop_x.append(waypoints[best_index][0]) stop_y.append(waypoints[best_index][1]) return stop_x, stop_y traffic_light_pos = [[1148.56, 1184.65], \ [1559.2, 1158.43], \ [2122.14, 1526.79], \ [2175.237, 1795.71], \ [1493.29, 2947.67], \ [821.96, 2905.8], \ [161.76, 2303.82], \ [351.84, 1574.65]] # IMPORT WAYPOINTS waypoints = [] with open(path, 'r') as file: reader = csv.reader(file, delimiter=',') for i in reader: # print (i) x, y, yaw = float(i[0]), \ float(i[1]), \ float(i[3]) waypoints.append([x, y, yaw]) wp_x.append(x) wp_y.append(y) # print (waypoints) # IMPORT TRAFFIC LIGHT POSITIONS light_x = [] light_y = [] for pos in traffic_light_pos: light_x.append(pos[0]) light_y.append(pos[1]) # FIND CLOSET WAYPOINT TO TRAFFIC LIGHT stop_x, stop_y = all_stop_line_closest_wp(waypoints, traffic_light_pos) # print ("X stops", stop_x) # print ("Y stops", stop_y) # print ("Waypoint Index: ", closest_waypoint(waypoints, traffic_light_pos[0])) # print ("Waypoint Index: ", closest_waypoint(waypoints, traffic_light_pos[1])) plt.plot(wp_x, wp_y, label='Waypoints Path') plt.plot(light_x, light_y, 'ro', label='Traffic Light Posts') plt.plot(stop_x, stop_y, 'g^', label='Stopping Waypoints') plt.plot plt.xlabel('x') plt.ylabel('y') plt.title('Simulator path') plt.legend() plt.show()
[ "matplotlib" ]
d138ddaab06030d1555161e0e06144546ced464c
Python
jhadhiraj1/predictive_analytics
/predictive_analytics.py
UTF-8
4,706
2.984375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Jul 22 14:36:01 2021 @author: RUDRA """ import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.svm import SVR from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor data=pd.read_csv("insurance.csv") count_nan=data.isnull().sum() print(count_nan[count_nan>0]) data['bmi'].fillna(data['bmi'].mean(),inplace=True) count_nan=data.isnull().sum() print(count_nan) print(data['smoker']) print(data) sex=data.iloc[:,1:2].values smoker=data.iloc[:,4:5].values le=LabelEncoder() sex[:,0]=le.fit_transform(sex[:,0]) sex=pd.DataFrame(sex) sex.columns=['sex'] le_sex_mapping=dict(zip(le.classes_,le.transform(le.classes_))) print(le_sex_mapping) le=LabelEncoder() smoker[:,0]=le.fit_transform(smoker[:,0]) smoker=pd.DataFrame(smoker) smoker.coulumn=['smoker'] le_smoker_mapping=dict(zip(le.classes_,le.transform(le.classes_))) print(le_smoker_mapping) print(data['smoker']) region=data.iloc[:,5:6].values ohe=OneHotEncoder() region=ohe.fit_transform(region).toarray() region=pd.DataFrame(region) region.columns=['northeast','northwest','southeast','southwest'] print(region[:10]) X_num=data[['age','bmi','children']] X_final=pd.concat([X_num,sex,smoker,region],axis=1) y_final=data[['expenses']].copy() X_train,X_test,y_train,y_test=train_test_split(X_final,y_final,test_size=0.33,random_state=0) ##NOrmalization using MinMax n_scaler=MinMaxScaler() X_train=n_scaler.fit_transform(X_train.astype(np.float)) X_test=n_scaler.transform(X_test.astype(np.float)) ##Normalization using Standardization s_scaler=StandardScaler() X_train=s_scaler.fit_transform(X_train.astype(np.float)) X_test=s_scaler.transform(X_test.astype(np.float)) lr=LinearRegression().fit(X_train,y_train) y_train_pred=lr.predict(X_train) y_test_pred=lr.predict(X_test) print("lr co-efficient is {}".format(lr.coef_)) print("Intercep {}".format(lr.intercept_)) print("y_train Score: %.3f and y_test score: %.3f" % (lr.score(X_train,y_train),lr.score(X_test,y_test))) ##Applying Polynomial Features to the datas poly_f=PolynomialFeatures(degree=2) poly_X=poly_f.fit_transform(X_final) X_train,X_test,y_train,y_test=train_test_split(poly_X,y_final,test_size=0.33,random_state=0) s_scaler=StandardScaler() X_train=s_scaler.fit_transform(X_train.astype(np.float)) X_test=s_scaler.transform(X_test.astype(np.float)) poly_lr=LinearRegression().fit(X_train,y_train) poly_y_train_pred=poly_lr.predict(X_train) poly_y_test_pred=poly_lr.predict(X_test) print("Polynomoial lr Co-efficient:{}".format(poly_lr.coef_)) print("Y-intercept is :{}".format(poly_lr.intercept_)) print("y_train score: %.3f and y_test score:%.3f" % (poly_lr.score(X_train,y_train),poly_lr.score(X_test,y_test))) ## SVR Modelling svr=SVR(kernel='linear',C=300) X_train,X_test,y_train,y_test=train_test_split(X_final,y_final,test_size=0.33,random_state=0) s_scaler=StandardScaler() X_train=s_scaler.fit_transform(X_train.astype(np.float)) X_test=s_scaler.transform(X_test.astype(np.float)) svr=svr.fit(X_train,y_train.values.ravel()) y_train_pred=svr.predict(X_train) y_test_pred=svr.predict(X_test) print("y_train score: %.3f and y_test score: %.3f" %(svr.score(X_train,y_train),svr.score(X_test,y_test))) dt=DecisionTreeRegressor(random_state=0); dt=dt.fit(X_train,y_train.values.ravel()) y_train_pred=dt.predict(X_train) y_test_pred=dt.predict(X_test) print("y_train Score : %.3f and y_test score :%.3f" %(dt.score(X_train,y_train),dt.score(X_test,y_test))) ## Random Forest Regressor rf=RandomForestRegressor(n_estimators=100, criterion='mse', random_state=1, n_jobs=-1) X_train,X_test,y_train,y_test=train_test_split(X_final,y_final,test_size=0.33,random_state=0) n_scaler=StandardScaler() X_train=n_scaler.fit_transform(X_train.astype(np.float)) X_test=n_scaler.transform(X_test.astype(np.float)) rf=rf.fit(X_train,y_train.values.ravel()) y_train_pred=rf.predict(X_train) y_test_pred=rf.predict(X_test) print("y_train score :%.3f and y_test score: %.3f"%(rf.score(X_train,y_train),rf.score(X_test,y_test)))
[ "matplotlib" ]
f2f3772d22c33ab225566c39dd12a142ee862bf9
Python
Combustion-Zhen/OpenFOAM_py
/SFD/python2.7/plot_scat.py
UTF-8
3,049
2.828125
3
[]
no_license
#Zhen Lu, 03/04/2017 <[email protected]> # plot Sandia Flame results, as title, the scatter at different x/D import glob from file_read import csv_read, cm2inch, SF_read # suppress the display of matplotlib.pyplot import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt # data to plot # only one var, two columns, left: exp., right: sim. rows for x/D var = 'T' # import data xD=[] data={} expr={} for filename in glob.glob('scat*.csv'): pos = filename.find('.csv') z = float('{0}.{1}'.format(filename[7:9],filename[9:pos])) xD.append(z) data.update({z:csv_read(filename)}) expr.update({z:SF_read('D.scat',filename[7:pos],'all')}) xD.sort() # plot # use TEX for interpreter plt.rc('text',usetex=True) # use serif font plt.rc('font',family='serif') # figure and axes parameters # total width is fixed plot_width =19.0 subplot_h =4.0 margin_left =2.0 margin_right =0.3 margin_bottom =1.5 margin_top =1.0 space_width =0.0 space_height =1.0 ftsize =12 # total height determined by the number of vars plot_height =(subplot_h+space_height)*float(len(xD)) \ -space_height+margin_top+margin_bottom # min and max of axis xmin = 0.0 xmax = 1.0 xtick= (0.0,0.2,0.4,0.6,0.8) # generate the figure fig, axes = plt.subplots(len(xD),2, sharex='col',sharey='all', figsize=cm2inch(plot_width, plot_height)) # generate the axis for x in xD: axes[xD.index(x),0].scatter(expr[x]['Z'],expr[x][var], marker='.',c='k',edgecolor='none') axes[xD.index(x),1].scatter(data[x]['Z'],data[x][var], marker='.',c='k',edgecolor='none') # ylabel, temperature has a unit if var == 'T': axes[xD.index(x),0].set_ylabel(r"$\tilde {0}\;(\mathrm{{K}})$".format(var), fontsize=ftsize) else: axes[xD.index(x),0].set_ylabel(r"$\tilde Y\;{0}$".format(var), fontsize=ftsize) # location note # the text position determined by axes axis axes[xD.index(x),1].text(0.7,2000,'$x/D={0:.2g}$'.format(x), fontsize=ftsize) # ylabel, temperature has a unit # title and xlabel axes[0,0].set_title('Exp.',fontsize=ftsize) axes[0,1].set_title('Sim.',fontsize=ftsize) for i in range(2): axes[len(xD)-1,i].set_xlim(xmin,xmax) axes[len(xD)-1,i].set_xticks(xtick) axes[len(xD)-1,i].set_xlabel(r'$\tilde Z$',fontsize=ftsize) axes[len(xD)-1,1].set_xticks(xtick+(xmax,)) # legend # set margins plt.subplots_adjust(left =margin_left/plot_width, bottom =margin_bottom/plot_height, right =1.0-margin_right/plot_width, top =1.0-margin_top/plot_height, wspace =space_width/plot_width, hspace =space_height/plot_height) # save plot plt.savefig('radial_scat.png',dpi=400) plt.savefig('radial_scat.pdf') plt.savefig('radial_scat.eps')
[ "matplotlib" ]
98c417d6de736140ac9bfe9d0bdf19b56028ec4a
Python
Domdoug/LSTM_Mortality_Table_Actuarial
/4-expectativa_vida_lstm-Bidirecional.py
UTF-8
13,592
2.984375
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[1]: # importar bibliotecas import pandas as pd from pandas.tseries.offsets import DateOffset import numpy as np import os import matplotlib.pyplot as plt # get_ipython().run_line_magic('matplotlib', 'inline') #from sklearn.metrics import mean_squared_error from statsmodels.tools.eval_measures import rmse from sklearn.preprocessing import MinMaxScaler from keras.preprocessing.sequence import TimeseriesGenerator from keras.callbacks import CSVLogger from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout from keras.layers import Bidirectional import time import warnings warnings.filterwarnings("ignore") # ### Modelagem com a utilização do pacote embeding para Bi-direcional # ##### # Os humanos não começam a pensar do zero a cada segundo. Ao ler este ensaio, você entende cada palavra com base na sua compreensão das palavras anteriores. Você não joga tudo fora e começa a pensar do zero novamente. Seus pensamentos têm persistência. # # As redes neurais tradicionais não podem fazer isso, e isso parece uma grande falha. Por exemplo, imagine que você queira classificar que tipo de evento está acontecendo em todos os momentos do filme. Não está claro como uma rede neural tradicional poderia usar seu raciocínio sobre eventos anteriores do filme para informar os posteriores. # # Redes neurais recorrentes abordam esse problema. São redes com loops, permitindo que as informações persistam. # # Em comparação com o LSTM, BLSTMou BiLSTMpossui duas redes, uma pastinformação de acesso na forwarddireção e outro acesso futurena reversedireção. # # LSTMse suas variantes bidirecionais são populares porque tentaram aprender como e quando esquecer e quando não usar portas em sua arquitetura. Em RNNarquiteturas anteriores , o desaparecimento de gradientes era um grande problema e fazia com que essas redes não aprendessem muito. # # Usando Bidirecional LSTMs, você alimenta o algoritmo de aprendizado com os dados originais uma vez do começo ao fim e uma vez do fim ao começo. Existem debates aqui, mas geralmente ele aprende mais rápido que a abordagem unidirecional, embora dependa da tarefa. # # #### 1 - carregar base tratada # In[2]: # Verifica a pasta corrente pasta = os.getcwd() # In[3]: pasta_resultados = os.path.join(pasta, "resultados") pasta_graficos = os.path.join(pasta, "graficos1") # In[ ]: # Regex notation by "\s+". This means a single space, or multiple spaces are all to be treated as a single separator. # df_dados = pd.read_csv('bltper_1x1.txt', skiprows=2, sep = '\s+') df_dados = pd.read_csv(os.path.join(pasta, "dados") + "/" + 'bltper_1x1.txt', skiprows=2, sep = '\s+') # In[ ]: df_dados.head().append(df_dados.tail()) # #### 2 - criar features, entre elas a logqx, que corresponde já convertido a escala logarítma da probabilidade de morte # # In[ ]: # Tratamento da idade 110+ para os anos. # DataFrame.loc[condition, column_name] = new_value df_dados.loc[(df_dados.Age == '110+'),'Age'] = 110 # In[ ]: # Criar a feature log qx df_dados['logqx'] = np.log(df_dados['qx']) # Aproveitar e corrigir a tipagem da feature Age df_dados["Age"] = df_dados["Age"].astype(int) # In[ ]: df_dados.head().append(df_dados.tail()) # In[ ]: df_dados.shape # #### 3 - Criar a feature tempo t, com base na feature ano, que corresponde ao elemento temporal da série # In[8]: # Preparar dataset #serie = {'t': ano, 'logqx_prob': logqx_prob} df_lstm = pd.DataFrame(df_dados, columns=['Age','Year','logqx']) df_lstm['t'] = pd.to_datetime(df_lstm['Year'], format='%Y') #df_lstm.drop(['ano'], axis=1, inplace=True) df_lstm.set_index('t', inplace=True) # In[9]: #df_lstm[df_lstm['t'].dt.year == 1998] df_lstm.head() # In[10]: df_lstm[df_lstm['Age']==0] # #### 4 - Separar a base em base de treino e base de teste para cada idade x ao longo dos anos t, ou seja, para a idade 0, entre os anos 1998 a 2018, para a idade 1, no mesmo período e assim por diante. # ##### Rotina LSTM, métricas e gráficos # In[12]: # proximos testes: n_epochs = 1000 e base teste de 3 anos. Sugestão. No programa em script. # Usar, também, o código para salvar o log do compilie predict_res = [] pred_actual_rmse_res = [] w_max = max(df_dados['Age']) # definir maior idade nas tábuas. testes: 3 # inicio do cronometro do processamento start = time.time() n_input = 30 # 10 # Length of the output sequences (in number of timesteps). Corresponde ao número de dados # que usaremos para a rede. No caso, 10 anos na idade = 0, 10 anos na idade=1, etc.Vamos testar com 3 anos?? n_features = 1 # Número de features, variáveis. O modelo é univariavel (qx) para cada idade. n_epochs = 500 # 1000 #500 n_batch = 2 # Number of timeseries samples in each batch (except maybe the last one). n_neurons = 50 t_projecao = 30 # (#batch_size,#inputs,#features) 3D for x in range(0, w_max+1): # Série para cada idade ao longo dos anos de 1998 a 2018 #serie = df_lstm[df_lstm['idade']==x]['logqx_prob'] serie = df_lstm[df_lstm['Age']==x] serie.drop(['Age', 'Year'], axis=1, inplace=True) # Separar base de treino e teste === preparar dados treino, teste = serie[:-30], serie[-30:] # Padronizar dados: Normalizar entre 0 e 1 scaler = MinMaxScaler() scaler.fit(treino) treino = scaler.transform(treino) teste = scaler.transform(teste) #generator = TimeseriesGenerator(treino, treino, length=n_input, batch_size=n_batch) # length: The number of lag observations to use in the input portion of each sample (e.g. 3) # That is the desired number of lag observations to use as input = VAmos tentar 21: 2018-1998 # batch_size: The number of samples to return on each iteration (e.g. 32) # The samples are not shuffled by default. This is useful for some recurrent neural networks # like LSTMs that maintain state across samples within a batch. # both the data and target for this generator is “treino”. generator = TimeseriesGenerator(treino, treino, length=n_input, batch_size=n_batch) # ============================ CAMADAS =========== CAMADAS ================================= # A camada LSTM já possui, em sua construção, funções default de ativação: # activation="tanh",recurrent_activation="sigmoid", # três funções sigmoide e 1 tangente hiperbólica # Modelo bidirecional model = Sequential() model.add(Bidirectional(LSTM(n_neurons, return_sequences=True), input_shape=(n_input, n_features))) model.add(Bidirectional(LSTM(n_neurons))) model.add(Dropout(0.20)) model.add(Dense(1)) #model.add(Activation('softmax')) #model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.compile(optimizer='adam', loss='mse', metrics=["mae"]) #model = Sequential() # #reshape the data into LSTM required (#batch,#timesteps,#features) #Adding the first LSTM layer and some Dropout regularisation #model.add(LSTM(n_neurons, activation='relu', input_shape=(n_input, n_features), return_sequences=True)) #model.add(LSTM(n_neurons, activation='relu', input_shape=(n_input, n_features))) #model.add(Dropout(0.20)) # Adding a second LSTM layer and some Dropout regularisation #model.add(LSTM(n_neurons)) #model.add(Dropout(0.20)) # Adding a third LSTM layer and some Dropout regularisation #model.add(LSTM(n_neurons, return_sequences=True)) #model.add(Dropout(0.20)) # Adding a fourth LSTM layer and some Dropout regularisation #model.add(LSTM(n_neurons)) #model.add(Dropout(0.20)) # Adding the output layer #model.add(Dense(1)) # ============================ CAMADAS =========== CAMADAS ================================= #model.add(Dense(y.shape[1], activation='sigmoid')) #model.compile(optimizer='adam', loss='mse', metrics=["mae"]) # fit model #model.fit_generator(generator, epochs=n_epochs) # ADAPTADO PARA A ATUALIZAÇÃO DO KERAS (28/11/2020) csv_logger = CSVLogger('log_modelo_demography_bidirecional.csv', append=True, separator=';') model.fit(generator, epochs=n_epochs, callbacks=[csv_logger]) # model.fit(X_train, Y_train, callbacks=[csv_logger]) #Previsão pred_list = [] batch = treino[-n_input:].reshape((1, n_input, n_features)) for i in range(n_input): # n_input pred_list.append(model.predict(batch)[0]) batch = np.append(batch[:,1:,:], [[pred_list[i]]], axis=1) #inverse transform forecasts and test. Need to scale them back so we can compare the final results df_predict = pd.DataFrame(scaler.inverse_transform(pred_list), index=serie[-n_input:].index, columns=['Prediction']) df_teste = pd.concat([serie, df_predict], axis=1) # Gráfico da estimativa, com a base de teste #plt.figure(figsize=(10,5)) ''' fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot(111) ax.plot(df_teste.index, df_teste['logqx']) ax.plot(df_teste.index, df_teste['Prediction'], color='r') ax.legend(loc='best', fontsize='xx-large', labels=['logqx', 'Estimativa']) fig.suptitle('logqx Bi-Direcional LSTM dataset teste na idade = %i' %x, fontweight="bold") plt.savefig(pasta_graficos + '/' + 'prev_Bi_Direcional_LSTM_test_idade'+str(x)+'.png') ''' pred_actual_rmse = rmse(df_teste.iloc[-n_input:, [0]], df_teste.iloc[-n_input:, [1]]) print("idade:", x, "rmse: ", pred_actual_rmse) pred_actual_rmse_res.append(pred_actual_rmse) treino = serie scaler.fit(treino) treino = scaler.transform(treino) #generator = TimeseriesGenerator(treino, treino, length=n_input, batch_size=n_batch) #model.fit_generator(generator,epochs=n_epochs) # ADAPTADO PARA A ATUALIZAÇÃO DO KERAS (28/11/2020) # length: The number of lag observations to use in the input portion of each sample (e.g. 3) # batch_size: The number of samples to return on each iteration (e.g. 32) generator = TimeseriesGenerator(treino, treino, length=n_input, batch_size=n_batch) #model.fit(generator, epochs=n_epochs, batch_size=n_batch) model.fit(generator, epochs=n_epochs) pred_list = [] batch = treino[-n_input:].reshape((1, n_input, n_features)) for i in range(n_input): pred_list.append(model.predict(batch)[0]) batch = np.append(batch[:,1:,:],[[pred_list[i]]],axis=1) # prever para t_projecao anos add_dates = [serie.index[-1] + DateOffset(years=x) for x in range(0, t_projecao + 1)] #add_dates = [serie.index[-1] + pd.offsets.YearBegin(x) for x in range(0,6)] future_dates = pd.DataFrame(index=add_dates[1:],columns=serie.columns) #inverse transform forecasts and test. Need to scale them back so we can compare the final results df_predict = pd.DataFrame(scaler.inverse_transform(pred_list), index=future_dates[-n_input:].index, columns=['Prediction']) predict_res.append(df_predict.values.tolist()) df_proj = pd.concat([serie,df_predict], axis=1) ''' fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot(111) # "111" means "1x1 grid, first subplot" ax.plot(df_proj.index, df_proj['logqx']) ax.plot(df_proj.index, df_proj['Prediction'], color='r') ax.legend(loc='best', fontsize='xx-large', labels=['logqx', 'Predição']) plt.xticks(fontsize=18) plt.yticks(fontsize=16) fig.suptitle('Logqx Bi-Direcional LSTM projetado na idade = %i' %x, fontweight = "bold") # Título parametrizado com a idade plt.savefig(pasta_graficos + '/' + 'proj_Bi_Direcional_LSTM_log_qx'+str(x)+'.png') ''' # fim do cronometro do processamento end = time.time() hours, rem = divmod(end-start, 3600) minutes, seconds = divmod(rem, 60) print() print('Tempo de processamento:') print('{:0>2}:{:0>2}:{:05.2f}'.format(int(hours), int(minutes), seconds)) print() #Tempo de processamento: 22:32:14.93 # Tempo de processamento sem imprimir os gráficos: 18:35:29.37 # #### 5 - Valores de RMSE por idade # In[13]: pd.DataFrame(pred_actual_rmse_res) # RMSE para cada idade # In[52]: #### 5 - Base resultante dos anos de 2019 a 2028, por idade # In[14]: df_lstm_res = pd.DataFrame(predict_res) # In[15]: df_lstm_res.head() # In[16]: df_lstm_res[0][0][0] # In[17]: df_lstm_res.info() # In[18]: # Função para unir as listas em linha def unirSeries(df, explode): idx = df.index.repeat(df[explode[0]].str.len()) df1 = pd.concat([ pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1) df1.index = idx return df1.join(df.drop(explode, 1), how='left') # In[19]: colunas = np.arange(2020, 2050) df_temp = pd.DataFrame(predict_res, columns=colunas) df_lstm_res = unirSeries(df_temp,colunas) df_lstm_res = df_lstm_res.reset_index(drop=True) # In[20]: df_lstm_res.head() # In[21]: df_forecast_res_exp = pd.DataFrame(np.exp(df_lstm_res)) # In[22]: df_forecast_res_exp.head() # In[ ]: # Gravar resultados # In[23]: df_forecast_res_exp.to_csv(pasta_resultados + '/' + 'lstm_previsao_qx_500_Bi_Direcional_demography.csv') # In[24]: pd.DataFrame(pred_actual_rmse_res).to_csv(pasta_resultados + '/' + 'pred_actual_rmse_res_500_Bi_Direcional_demography.csv', header=['RMSE']) # In[ ]:
[ "matplotlib" ]
a8e6c9b155b7fea2843ab234592911ffd5c20076
Python
ideProject/tribo
/matplot_test.py
UTF-8
116
2.515625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt data = np.random.randn(1000) plt.hist(data, bins=30) plt.show()
[ "matplotlib" ]
c5ccdd97c16a369006efa97019f42fc8d3c7c709
Python
terdenan/cs102
/homework04/getHistory.py
UTF-8
712
2.5625
3
[]
no_license
import requests import plotly.plotly as py import plotly.graph_objs as go from datetime import datetime from vk_api import get_messages_history from pprint import pprint as pp from collections import Counter def count_dates_from_messages(messages): def parse(d): return datetime.fromtimestamp(d).strftime("%Y-%m-%d") msg_list = [parse(c.get('date')) for c in messages] counted = Counter(msg_list) x = [] y = [] for key in counted: x.append(key) y.append(counted[key]) return x, y if __name__ == '__main__': messages = get_messages_history(223703977) x, y = count_dates_from_messages(messages) data = [go.Scatter(x=x, y=y)] py.plot(data)
[ "plotly" ]
a61509497f4b666c0c079910c969cf52ab1dda71
Python
wubonian/ADSAlgo
/PathPlan/InterpolatingCurve/CubicSpline.py
UTF-8
2,337
3.40625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt class cubic_spline: def __init__(self, x, y): self.x = x self.y = y self.n = len(x) self.a = [] self.b = [] self.c = [] self.d = [] self.d_mtx = [] def calc_d_mtx(self): A = np.zeros((self.n, self.n)) for i in range(self.n): if i == 0: A[i][i] = 2 A[i][i+1] = 1 elif i == self.n - 1: A[i][i] = 2 A[i-1][i] = 1 else: A[i-1][i] = 1 A[i][i] = 2 A[i][i+1] = 1 Y = np.zeros((self.n, 1)) for i in range(self.n): if i == 0: Y[i] = 3*(self.y[i+1] - self.y[0]) elif i == self.n-1: Y[i] = 3*(self.y[i] - self.y[i-1]) else: Y[i] = 3*(self.y[i+1] - self.y[i-1]) IA = np.linalg.inv(A) self.d_mtx = np.dot(IA, Y) def calc_coef(self): for i in range(self.n-1): self.a.append(self.y[i]) self.b.append(self.d_mtx[i]) c_tmp = 3*(self.y[i+1] - self.y[i]) - 2*self.d_mtx[i] - self.d_mtx[i+1] self.c.append(c_tmp) d_tmp = 2*(self.y[i] - self.y[i+1]) + self.d_mtx[i] + self.d_mtx[i+1] self.d.append(d_tmp) def find_index(self, u): i = 0 while self.x[i] < u: i = i+1 if u > self.x[0]: return i - 1 else: return 0 def calc_prop(self, i, u): return (u - self.x[i]) / (self.x[i+1] - self.x[i]) def eval_val(self, u): i = self.find_index(u) p = self.calc_prop(i, u) y = self.a[i] + self.b[i]*p + self.c[i]*p*p + self.d[i]*p*p*p return y def main(): x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y = [2, 3, 5, 4, 8, 9, 4, 2, 3, 5, 7] cubic = cubic_spline(x, y) cubic.calc_d_mtx() cubic.calc_coef() xs = np.linspace(0, 10, 1000) ys = [] for x_tmp in xs: y_tmp = cubic.eval_val(x_tmp) ys.append(y_tmp) plt.figure(figsize=(5, 5)) ax = plt.gca() ax.set_xlim([-5, 20]) ax.set_ylim([-5, 20]) plt.plot(x, y, '-g') plt.plot(xs, ys, '-y') plt.show() if __name__ == "__main__": main()
[ "matplotlib" ]
750dbfa49f1c96652db147d30fbfceb7005fc2fa
Python
geckotian96/qbb2019-answers
/day4-morning/01-histogram.py
UTF-8
1,664
3.203125
3
[]
no_license
#!/usr/bin/env python3 """ USAGE: ./00-scatter.py <ctab> plot fpkm """ #../results/stringtie/SRR072893/t_data.ctab import sys import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats fpkms=[] for i, line in enumerate (open(sys.argv[1])): if i ==0: continue fields = line.rstrip("\n").split("\t") if float(fields[-1]) > 0: fpkms.append(float(fields[-1])) #notice that fpkms field is a string. you need to convert to float first #the reason to use log is becuase most of the data gather in the 10000, so need to take log to further visualize the sub columns my_data = np.log2(fpkms) # mu = 0 # sigma =1 # x = np.linspace (-15, 15, 100) #range of the normal distribution with how many groups # y = stats.norm.pdf (x, mu, sigma) #a=-2.1, mu=5.8, signma = 2.8 mu1=0 sigma1=1 x1 = np.linspace (-15, 15, 100) #range of the normal distribution with how many groups y1= stats.norm.pdf (x1, mu1, sigma1) a=-2.1 mu=5.8 sigma=2.8 x2 = np.linspace(-15, 15, 100) y2= stats.skewnorm.pdf(x2, a, mu, sigma) fig, ax = plt.subplots() ax.hist(my_data, bins=100, density=True) #bin=100 can divide the range into 100 columns, default is 10. Density?? ax.plot(x1, y1, label="Normal distribution") ax.legend() ax.plot(x2, y2, label="Skew curve") ax.legend() ax.set_xlabel ("Log2(FPKM)") ax.set_ylabel ("Probability") fig.suptitle("Distribution Curve of FPKM") plt.text(-15, 0.20, "a=-2.1, mu=5.8, signma=2.8") fig.savefig("fpkms.png") plt.close(fig) #x = np.linspace(norm.ppf(0.01), --> x coordinace #norm.ppf(0.99), 100) #ax.plot(x, norm.pdf(x), #'r-', lw=5, alpha=0.6, label='norm pdf')
[ "matplotlib" ]
f3f40c5c36a301d20d65a1524362502ed6aa564d
Python
hbates00/12.009-Nonlinear-Dynamics-in-the-Natural-Environment
/PSET 1/PSET4_1.py
UTF-8
1,725
3.75
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Mar 16 16:43:08 2017 @author: Haley """ #numpy random, generate list of random 1 or neg 1 and sum to get a number -- this is position import numpy as np import matplotlib.pyplot as plt # Gets location after number of steps n and returns a location def get_location(t): choice = np.array([-1, 1]) moves = np.random.choice(choice, t) return np.sum(moves) # Builds a vector of walker position def do_the_thing(n, t): a = map(lambda p: get_location(t), range(n)) return a # Creates and populates an rxr A matrix def matrix(r): mat = np.zeros((r, r)) for i in xrange(r): for j in xrange(r): if j == (i + 1) or j == (i - 1): mat[i][j] = .5 else: pass return mat # Advances a given number of time steps, returns a vector of probabilities def do_it(r, t): t_0 = np.array([0] * r) t_0[len(t_0)/2.0] = 1 A = np.linalg.matrix_power(matrix(r), t) b = np.dot(A, np.transpose(t_0)) return b # Plots a histagram of walker locations def plot(n, t, b): pos = do_the_thing(n, t) plt.hist(pos, bins = b, color = 'white', label = 'Simulated Values') # Plots the probability histogram def plot_probabilities(n, t, r): probs = do_it(r, t) * 2 * n x = range((-r/2), (r/2)) plt.plot(x, probs, label = 'Predicted Values') plot(50000, 50, 15) plot_probabilities(50000, 50, 50) plt.xlabel('Position') plt.ylabel('Number of Walkers at Position') plt.title('Number of Random Walkers at Position After 50 Steps') plt.legend() plt.show()
[ "matplotlib" ]
66a94bfb126ee8ae2c5afe9d7fc4956e7e3617e9
Python
samithaj/COPDGene
/feature_selection/aim1_redraw_figure.py
UTF-8
849
3
3
[]
no_license
""" Draw plots from data in gap_4/features_sel_backward_gap_run_1.csv Label Y axis """ import csv import matplotlib.pyplot as plt import numpy as np # Load GAP values file_csv = open("gap_4/features_sel_backward_gap_run_1.csv","rb") reader = csv.reader(file_csv) lines = [line for line in reader] file_csv.close() gap_value = [] fs_index = [55] fs_name = ['pre_FVC'] for i in range(61): gap_value.append(lines[62-i][1]) fs_index.append(lines[62-i][2]) fs_name.append(lines[62-i][3]) gap_value.append(lines[1][1]) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(range(1,63),gap_value) ax.plot((13,13),(-0.05,gap_value[12]),'r--') ax.annotate('MAX(13, 0.2658)',xy=(13,gap_value[12])) plt.xlabel("The Number of Features") plt.ylabel("GAP statistic(Clustering Quality)") plt.title("Backward Search with GAP statistic") plt.show()
[ "matplotlib" ]
82d86634717983bd6aa6c5fa3c596263ec6996cd
Python
seanwayland/matplotlibpractice
/pymaceuticals_starter.py
UTF-8
3,244
3.3125
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # ## Observations and Insights # # ## Dependencies and starter code # In[1]: # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st # Study data files mouse_metadata = "data/Mouse_metadata.csv" study_results = "data/Study_results.csv" # Read the mouse data and the study results mouse_metadata = pd.read_csv(mouse_metadata) study_results = pd.read_csv(study_results) print(mouse_metadata.groupby('Mouse ID').count()) # Combine the data into a single dataset ds = pd.merge(mouse_metadata, study_results, how="left", on=["Mouse ID"]) print(fourFive) #print(ds) # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen dsMean = pd.DataFrame(ds.groupby("Drug Regimen").mean()) dsMean = dsMean['Tumor Volume (mm3)'] dsMedian = pd.DataFrame(ds.groupby("Drug Regimen").median()) dsMedian = dsMedian['Tumor Volume (mm3)'] dsVar = pd.DataFrame(ds.groupby("Drug Regimen").var()) dsVar = dsVar['Tumor Volume (mm3)'] dsStd = pd.DataFrame(ds.groupby("Drug Regimen").std()) dsStd = dsStd['Tumor Volume (mm3)'] dsSem = pd.DataFrame(ds.groupby("Drug Regimen").sem()) dsSem = dsSem['Tumor Volume (mm3)'] dsStats = pd.DataFrame([dsMean,dsMedian,dsVar,dsStd,dsSem],index=['mean','Median','Var','Std','SEM']) #print(dsStats) # ## Summary statistics # In[2]: # ## Bar plots # In[3]: # Generate a bar plot showing number of data points for each treatment regimen using pandas dsCount = ds.groupby("Drug Regimen").count() dsCount['data points'] = dsCount['Mouse ID'] ax = dsCount.plot.bar(y = "data points") # In[4]: # Generate a bar plot showing number of data points for each treatment regimen using pyplot #plt.bar(dsCount, x = 'Drug Regimen', y = 'data points', align='center', alpha=0.5) labels = dsCount.index.tolist() #print(labels) plt.bar(labels, dsCount['Mouse ID']) plt.title('Data Points by Drug Regimen') #plt.show() # ## Pie plots # In[5]: # Generate a pie plot showing the distribution of female versus male mice using pandas SexCount = mouse_metadata.groupby("Sex").count() SexCount['sex'] = SexCount['Mouse ID'] print(SexCount) #plot = SexCount.plot.pie(y='sex') # In[6]: # Generate a pie plot showing the distribution of female versus male mice using pyplot pie = plt.pie(SexCount['sex']) plt.show() # ## Quartiles, outliers and boxplots # In[7]: # Calculate the final tumor volume of each mouse across four of the most promising treatment regimens. Calculate the IQR and quantitatively determine if there are any potential outliers. fourFive = ds[ds['Timepoint']==45] # get all mice for each drug # Capomulin, Ramicane, Infubinol, and Ceftamin # In[8]: # Generate a box plot of the final tumor volume of each mouse across four regimens of interest # ## Line and scatter plots # In[9]: # Generate a line plot of time point versus tumor volume for a mouse treated with Capomulin # In[10]: # Generate a scatter plot of mouse weight versus average tumor volume for the Capomulin regimen # In[11]: # Calculate the correlation coefficient and linear regression model for mouse weight and average tumor volume for the Capomulin regimen # In[ ]:
[ "matplotlib" ]
b0ef290ef16eb0c5e793da6db635d312939f0499
Python
meck93/UU_ML_Project
/dqn/environment.py
UTF-8
4,315
2.671875
3
[ "MIT" ]
permissive
import gym import numpy as np import retro from baselines.common.atari_wrappers import FrameStack import cv2 from config import HEIGHT, N_FRAMES, WIDTH # hyperparameters cv2.ocl.setUseOpenCL(False) class PreprocessFrames(gym.ObservationWrapper): def __init__(self, env): """Preprocess and wrap frames to HEIGHTxWIDTH.""" gym.ObservationWrapper.__init__(self, env) self.width = WIDTH self.height = HEIGHT self.observation_space = gym.spaces.Box(low=0, high=255, shape=(self.height, self.width, 1), dtype=np.uint8) def observation(self, frame): # transform color to grayscale frame_gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) # crop the image top and bottom since it's static frame_cropped = frame_gray[9:-35, :] # normalize the values to range [0,1] frame_normalized = frame_cropped / 255.0 # resize the cropped image to WIDTHxHEIGHT frame = cv2.resize(frame_normalized, (self.width, self.height), interpolation=cv2.INTER_AREA) return frame[:, :, None] class MarioDiscretizer(gym.ActionWrapper): """ Wrap a gym-retro environment and make it use discrete actions for the SuperMarioBros game. """ def __init__(self, env): super(MarioDiscretizer, self).__init__(env) # All buttons of the NES buttons = ['B', None, 'SELECT', 'START', 'UP', 'DOWN', 'LEFT', 'RIGHT', 'A'] # Custom discrete actions defined by ourselves # Limits the number of possible actions and should improve training time # actions = [[None], ['LEFT'], ['RIGHT'], ['RIGHT', 'A'], ['RIGHT', 'B'], ['RIGHT', 'A', 'B'], ['A'], ['A', 'A']] actions = [[None], ['LEFT'], ['RIGHT'], ['RIGHT', 'A'], ['A'], ['A', 'A']] self._actions = [] for action in actions: arr = np.array([False] * len(buttons)) for button in action: arr[buttons.index(button)] = True self._actions.append(arr) # maps each action to a discrete number self.action_space = gym.spaces.Discrete(len(self._actions)) def action(self, a): # pylint: disable=W0221 return self._actions[a].copy() def make_custom_env(disc_acts=True): """ Create an environment with some standard wrappers. """ env = retro.make(game='SuperMarioBros3-Nes', state="1Player.World1.Level1.state", scenario="./data/scenario.json", record="./recordings/") if disc_acts: # Build the actions array env = MarioDiscretizer(env) # PreprocessFrame env = PreprocessFrames(env) # Stack N_FRAMES number of frames env = FrameStack(env, N_FRAMES) return env # TODO: code that can be used to plot the preprocessing # import matplotlib.pyplot as plt # f, axs = plt.subplots(2, 2, figsize=(15, 15)) # axs[0, 0].set_title("Raw Input Image") # axs[0, 0].imshow(frame) # axs[0, 0].set_ylim((224, 0)) # axs[0, 0].set_yticks(np.arange(0, 225, 224//16)) # axs[0, 0].set_xlim((0, 240)) # axs[0, 0].set_xticks(np.arange(0, 241, 240//16)) # # transform color to grayscale # frame_gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) # axs[0, 1].set_title("Gray-Scale Image") # axs[0, 1].imshow(frame_gray, cmap="gray", vmin=0, vmax=255) # axs[0, 1].set_ylim((224, 0)) # axs[0, 1].set_yticks(np.arange(0, 225, 224//16)) # axs[0, 1].set_xlim((0, 240)) # axs[0, 1].set_xticks(np.arange(0, 241, 240//16)) # # crop the image top and bottom since it's static # frame_cropped = frame_gray[9:-35, :] # axs[1, 0].set_title("Cropped Image") # axs[1, 0].imshow(frame_cropped, cmap="gray", vmin=0, vmax=255) # axs[1, 0].set_ylim((224, 0)) # axs[1, 0].set_yticks(np.arange(0, 225, 224//16)) # axs[1, 0].set_xlim((0, 240)) # axs[1, 0].set_xticks(np.arange(0, 241, 240//16)) # # normalize the values to range [0,1] # frame_normalized = frame_cropped / 255.0 # # resize the cropped image to WIDTHxHEIGHT # frame = cv2.resize(frame_normalized, (self.width, self.height), interpolation=cv2.INTER_AREA) # axs[1, 1].set_title("Downsized Image") # axs[1, 1].imshow(frame, cmap="gray", vmin=0, vmax=1) # axs[1, 1].set_ylim((84, 0)) # axs[1, 1].set_yticks(np.arange(0, 85, 84//7)) # axs[1, 1].set_xlim((0, 84)) # axs[1, 1].set_xticks(np.arange(0, 85, 84//7)) # plt.show()
[ "matplotlib" ]
b90f4f9d02871e5847d5fc4503074a99cdb46566
Python
NishanthMHegde/Pandas-practice
/pandasgraphs.py
UTF-8
1,042
3.421875
3
[]
no_license
import numpy as np import pandas as pd import matplotlib.pyplot as plt df1 = pd.read_csv('df1.csv', index_col=0) df2 = pd.read_csv('df2.csv') #df1 print("df1") print(df1.head()) print("\n\n") #plotting a histogram print("plotting a histogram") df1['A'].hist(bins=50) plt.show() print("\n\n") #another way of plotting a histogram print("another way of plotting a histogram") df1['B'].plot(kind='hist', bins=50) plt.show() print("\n\n") #yet another way of plotting a histogram print("yet another way of plotting a histogram") df1['C'].plot.hist(bins=60) plt.show() print("\n\n") #bar graph print("bar graph") df2.plot.bar() plt.show() print("\n\n") #stacked bar graph print("stacked bar graph") df2.plot.bar(stacked=True) plt.show() print("\n\n") #line graph print("line graph") df2.plot.line(figsize=(10,5)) plt.show() print("\n\n") #area graph print("area graph") df2.plot.area(alpha=0.75) plt.show() print("\n\n") #scatter graph print("scatter graph") df2.plot.scatter(x='a', y='b', s = df2['c']) plt.show() print("\n\n")
[ "matplotlib" ]
0a271df930365656572b30bd0c305611861ba6a3
Python
pkozilek/kaggle-titanic
/src/features_analysis.py
UTF-8
4,452
3.078125
3
[]
no_license
import plotly as plt import numpy as np import pandas as pd import functions.graphs as g features = pd.read_csv('datasets/features.csv', index_col=0) features_survived = features.loc[features.Survived == 1] features_died = features.loc[features.Survived == 0] features_ac = features.loc[features.Age != 0] # Age completed features_ac_survived = features_ac.loc[features_ac.Survived == 1] features__ac_died = features_ac.loc[features_ac.Survived == 0] ### Bias Analysis # Age bias age_bias = g.histogram( data_list=[features_survived.Age, features_died.Age], labels=['Survived', 'Died'], title='Normalized age bias analysis', x_bins=[-1, 100, 5], histnorm='percent', xaxis_title='Age', yaxis_title='%' ) # Sex bias sex_bias = g.histogram( data_list=[features_survived.Sex, features_died.Sex], labels=['Survived', 'Died'], title='Normalized sex bias analysis', x_bins=[1, 3, 1], histnorm='percent', xaxis_title='Sex', yaxis_title='%' ) # Pclass bias pclass = g.histogram( data_list=[features_survived.Pclass, features_died.Pclass], labels=['Survived', 'Died'], title='Normalized Pclass bias analysis', x_bins=[0, 20, 1], histnorm='percent', xaxis_title='Pclass', yaxis_title='%' ) # SibSp bias sibsp = g.histogram( data_list=[features_survived.SibSp, features_died.SibSp], labels=['Survived', 'Died'], title='Normalized SibSp bias analysis', x_bins=[0, 9, 1], histnorm='percent', xaxis_title='SibSp', yaxis_title='%' ) # Parch bias parch = g.histogram( data_list=[features_survived.Parch, features_died.Parch], labels=['Survived', 'Died'], title='Normalized Parch bias analysis', x_bins=[0, 7, 1], histnorm='percent', xaxis_title='Parch', yaxis_title='%' ) # Embarked bias embarked = g.histogram( data_list=[features_survived.Embarked, features_died.Embarked], labels=['Survived', 'Died'], title='Normalized Embarked bias analysis', x_bins=[0, 4, 1], histnorm='percent', xaxis_title='Embarked', yaxis_title='%' ) # Fare bias fare = g.histogram( data_list=[features_survived.Fare, features_died.Fare], labels=['Survived', 'Died'], title='Normalized Fare bias analysis', x_bins=[0, 100, 5], histnorm='percent', xaxis_title='Fare', yaxis_title='%' ) # age_bias.show() # sex_bias.show() # pclass.show() # sibsp.show() # parch.show() # embarked.show() # fare.show() ### Age correlation analysis age_sex_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.Sex, features__ac_died.Sex], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='Sex x Age', xaxis_title='Age', yaxis_title='Sex' ) age_pclass_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.Pclass, features__ac_died.Pclass], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='Pclass x Age', xaxis_title='Age', yaxis_title='Pclass' ) age_sibsp_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.SibSp, features__ac_died.SibSp], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='SibSp x Age', xaxis_title='Age', yaxis_title='SibSp' ) age_parch_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.Parch, features__ac_died.Parch], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='Parch x Age', xaxis_title='Age', yaxis_title='Parch' ) age_embarked_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.Embarked, features__ac_died.Embarked], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='Embarked x Age', xaxis_title='Age', yaxis_title='Embarked' ) age_fare_scatter = g.scatterplot( x=[features_ac_survived.Age, features__ac_died.Age], y=[features_ac_survived.Fare, features__ac_died.Fare], labels=['Survived', 'Died'], x_jitter=0.5, y_jitter=0.25, title='Fare x Age', xaxis_title='Age', yaxis_title='Fare' ) # age_sex_scatter.show() # age_pclass_scatter.show() # age_sibsp_scatter.show() # age_parch_scatter.show() # age_embarked_scatter.show() # age_fare_scatter.show()
[ "plotly" ]
2c0a45344ce5db816a1b9b87232689e56ccbf009
Python
gauravsaxena1997/pycode
/matplotlib/16.annotations_and_text.py
UTF-8
748
2.8125
3
[]
no_license
import matplotlib.pyplot as plt import csv from matplotlib import style import numpy as np style.use('mystyle') x,y = np.loadtxt('file.txt', delimiter=',', unpack=True) plt.plot(x,y,label='Loaded from file') # -------------------Text--------------------- font_dict = { 'family':'serif', 'color':'darkred', 'size':10 } plt.text(9,6,'Text',fontdict=font_dict) # ------------------------------------------- # -----------------Annotation---------------- plt.annotate('Annotation',(10,8), xytext=(0.4,0.9), textcoords='axes fraction', arrowprops= dict(facecolor='w',color='m') ) # ------------------------------------------ plt.xlabel('xlabel') plt.ylabel('ylabel') plt.title('matplotlib\nfirst graph') plt.legend() plt.show()
[ "matplotlib" ]
0bd83ee004ef026cf05c529462a0d44e0e2fbc13
Python
dho619/ImageTransformations
/P06/p06.py
UTF-8
572
2.859375
3
[]
no_license
''' Transformação de perspectiva ''' import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread('senko.jpeg') rows,cols,ch = img.shape pts1 = np.float32([[306,665],[618,652],[278,987],[639,990]]) pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]]) M = cv2.getPerspectiveTransform(pts1,pts2) dst = cv2.warpPerspective(img,M,(300,300)) cv2.imwrite('senko_TransformacaoDePerspectiva.png', dst) plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() print('..|imagem salva com sucesso')
[ "matplotlib" ]
34f8902b5967546a30d46dee410e4c779b3f2017
Python
fgurri/kpi
/nautilus/plots.py
UTF-8
62,315
2.546875
3
[]
no_license
from django.db import connections import configparser import datetime import pandas as pd import mysql.connector from mysql.connector import Error import plotly as py import plotly.graph_objs as go from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import numpy as np import dateutil.relativedelta import nautilus.utils as u import nautilus.queries as q """ Generates a offline plotly plot with the graph 'total visits per month'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_visits_per_month() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: :rtype: string """ def plot_visits_per_month(): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as Mes, CONCAT(f_year, "-", f_monthname) as MesNom, sum(f_count) as Total FROM datawarehouse.dm1_visits_per_agenda GROUP BY f_month, CONCAT(f_year, "-", f_monthname) ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_visites = go.Scatter(x=df['MesNom'], y=df['Total'], mode='lines+markers', name='Visites per mes') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['Total']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_visites = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia') trace_omi_annotation = go.Scatter(x=["2017-Dec", "2017-Dec"], y=[0, df['Total'].max()], mode='lines', name='Inici odontologia a OMI360', line=dict(dash='dot')) data = [trace_visites, trace_regression_visites, trace_omi_annotation] layout = go.Layout( title='Evolució del número de visites per mes', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Distribution of visits per speciality'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_distribution_visits_per_speciality('201801', '201812') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param p_first_month: starting month of range values in YYYYMM format :param p_last_month: ending month of range values in YYYYMM format :rtype: string """ def plot_distribution_visits_per_speciality(p_first_month, p_last_month): try: connection = connections['datawarehouse'] sql = 'SELECT f_nomEspecialitat as Spec, sum(f_count) as Total FROM datawarehouse.dm1_visits_per_agenda WHERE f_month >= '+str(p_first_month)+' and f_month <= '+str(p_last_month)+' GROUP BY f_nomEspecialitat ORDER BY sum(f_count) DESC' df = pd.read_sql(sql, connection) trace = go.Pie(labels=df['Spec'], values=df['Total']) graph_title = 'Distribució visites per especialitat (Del ' + u.yyyymmToMonthName(p_first_month) + ' al ' + u.yyyymmToMonthName(p_last_month) + ')' data = [trace] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), autosize=False, width=1000, height=700, xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Visits per month by speciality'. You can choose to filter by speciality or by agenda, but one of both must be set. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_visits_per_month_speciality(p_id_especiality=19) >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param p_id_especiality: speciality identifier :param p_id_agenda: agenda identifier :rtype: string """ def plot_visits_per_month_speciality(p_id_especiality=None, p_id_agenda=None): try: connection = connections['datawarehouse'] sql = 'SELECT CONCAT(f_year, "-", f_monthname) as MesNom, f_month, sum(f_count) as Total FROM datawarehouse.dm1_visits_per_agenda WHERE ' if (p_id_especiality is None) and (p_id_agenda is None): p_id_especiality = 19 # medicina general per defecte if (p_id_especiality is not None) and (p_id_especiality != ""): sql = sql + 'f_idEspecialitat='+str(p_id_especiality)+' ' else: if (p_id_agenda is not None) and (p_id_agenda != ""): sql = sql + 'f_idAgenda=\''+str(p_id_agenda)+'\' ' sql = sql + 'GROUP BY CONCAT(f_year, "-", f_monthname), f_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) if df.empty: return None linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['Total']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia Especialitat') trace = go.Scatter(x=df['MesNom'], y=df['Total'], mode='lines+markers', name='Visites per mes') graph_title = 'Evolució mensual de visites' if p_id_especiality is not None: graph_title = q.get_Spec_Name(p_id_especiality) + ': '+ graph_title if p_id_agenda is not None: graph_title = q.get_Agenda_Name(p_id_agenda) + ': '+ graph_title data = [trace, trace_regression] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Frequency by agenda'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_frequency_per_agenda(p_id_agenda='AG100') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param p_id_agenda: agenda identifier :rtype: string """ def plot_frequency_per_agenda(p_id_agenda): try: connection = connections['datawarehouse'] sql = 'SELECT CONCAT(f_year, "-", f_monthname) as MesNom, f_month as Mes, f_count/f_patients as rep FROM datawarehouse.dm1_visits_per_agenda WHERE f_idAgenda=\''+str(p_id_agenda)+'\' ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_frequency = go.Scatter(x=df['MesNom'], y=df['rep'], mode='lines+markers', name='repetitivitat') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['rep']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='regressio repetitivitat') graph_title = q.get_Agenda_Name(p_id_agenda) + ': repetitivitat' data = [trace_frequency, trace_regression] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Patients per month'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_patients_per_month() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_patients_per_month(): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as Mes , CONCAT(LEFT(f_month, 4), "-", f_monthname) as MesNom, f_patients as Patients, f_new_patients FROM datawarehouse.dm2_stats_per_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_patients = go.Scatter(x=df['MesNom'], y=df['Patients'], mode='lines+markers', name='Total pacients') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['Patients']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_patients = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia total pacients') trace_omi_annotation = go.Scatter(x=["2017-Dec", "2017-Dec"], y=[0, df['Patients'].max()], mode='lines', name='Inici odontologia a OMI360', line=dict(dash='dot')) graph_title = 'Pacients per mes' data = [trace_patients, trace_regression_patients, trace_omi_annotation] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'New patients per month'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_new_patients_per_month() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_new_patients_per_month(): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as Mes, CONCAT(LEFT(f_month, 4), "-", f_monthname) as MesNom, f_patients as Patients, f_new_patients as NewPatients FROM datawarehouse.dm2_stats_per_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_new_patients = go.Scatter(x=df['MesNom'], y=df['NewPatients'], mode='lines+markers', name='Pacients nous') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['NewPatients']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_new_patients = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia nous pacients') trace_omi_annotation = go.Scatter(x=["2017-Dec", "2017-Dec"], y=[0, df['NewPatients'].max()], mode='lines', name='Inici odontologia a OMI360', line=dict(dash='dot')) graph_title = 'Pacients nous per mes' data = [trace_new_patients, trace_regression_new_patients, trace_omi_annotation] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Distribution patients vs new patients'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_distribution_new_patients() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_distribution_new_patients(): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as Mes, CONCAT(LEFT(f_month, 4), "-", f_monthname) as MesNom, f_patients-f_new_patients as Patients, f_new_patients as NewPatients FROM datawarehouse.dm2_stats_per_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_new_patients = go.Scatter(x=df['MesNom'], y=df['NewPatients'], mode='lines', name='Pacients nous', stackgroup='one', groupnorm='percent') trace_patients = go.Scatter(x=df['MesNom'], y=df['Patients'], mode='lines', name='Pacients vells', stackgroup='one') graph_title = 'Distribució nous pacients' data = [trace_new_patients, trace_patients] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict( type='linear', range=[1, 100], dtick=20, ticksuffix='%')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'month evolution of new Patients per speciality'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_new_patients_per_speciality_per_month() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_new_patients_per_speciality_per_month(): try: connection = connections['datawarehouse'] sql = 'SELECT f_nomEspecialitat as Spec, CONCAT(LEFT(f_month,4), "-", f_monthname) as MesNom, f_month as Mes, sum(f_newPatients) as NewPatients FROM dm2_newpatient_per_month_agenda GROUP BY f_nomEspecialitat, CONCAT(LEFT(f_month,4), "-", f_monthname), f_month' df = pd.read_sql(sql, connection) arraySpecs = df['Spec'].unique() df = df.set_index('Spec') data = list() for spec in arraySpecs: df_spec = pd.DataFrame(df.loc[df.index == spec, ['MesNom', 'Mes', 'NewPatients']]) df_spec = df_spec.sort_values(['Mes'], ascending=[1]) trace = go.Scatter(x=df_spec['MesNom'], y=df_spec['NewPatients'], mode='lines', name=spec, stackgroup='one', groupnorm='percent') data.append(trace) layout = go.Layout( title='Evolució de la distribució de nous pacients per especialitat', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict( type='linear', range=[1, 100], dtick=20, ticksuffix='%')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'New Patients per Speciality or Agenda'. You can choose to call by spec o agenda, but not both. If you set both values Spec is used. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_evolution_new_patients_per_spec(p_id_agenda='100') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_evolution_new_patients_per_spec(p_id_especiality=None, p_id_agenda=None): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as Mes, CONCAT(LEFT(f_month,4), "-", f_monthname) as MesNom, sum(f_newPatients) as NewPatients from dm2_newpatient_per_month_agenda WHERE ' if (p_id_especiality is None or p_id_especiality == '') and p_id_agenda is None: p_id_especiality = 19# medicina general per defecte if (p_id_especiality is not None) and p_id_especiality != "": sql = sql + 'f_idEspecialitat=' + str(p_id_especiality) + ' ' else: if (p_id_agenda is not None) and p_id_agenda != "": sql = sql + 'f_idAgenda=\'' + str(p_id_agenda) + '\' ' sql = sql + 'GROUP BY f_month, CONCAT(LEFT(f_month,4), "-", f_monthname) ' sql = sql + 'ORDER BY f_month ASC' df = pd.read_sql(sql, connection) if df.empty: return None trace_new_patients = go.Scatter(x=df['MesNom'], y=df['NewPatients'], mode='lines+markers', name='Pacients nous') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['NewPatients']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_new_patients = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia nous pacients') graph_title = 'Evolució del número de pacients nous' if p_id_especiality is not None: graph_title = q.get_Spec_Name(p_id_especiality) + ': '+ graph_title if p_id_agenda is not None: graph_title = q.get_Agenda_Name(p_id_agenda) + ': '+ graph_title data = [trace_new_patients, trace_regression_new_patients] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Distribution of new patients by speciality'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_distribution_new_patients_per_spec('201801', '201812') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param p_first_month: starting month of range values in YYYYMM format :param p_last_month: ending month of range values in YYYYMM format :rtype: string """ def plot_distribution_new_patients_per_spec(p_first_month, p_last_month): try: connection = connections['datawarehouse'] sql = 'SELECT f_nomEspecialitat as Spec, sum(f_newPatients) as NewPatients FROM datawarehouse.dm2_newpatient_per_month_agenda WHERE f_month >= '+str(p_first_month)+' and f_month <= '+str(p_last_month)+' GROUP BY f_nomEspecialitat ORDER BY sum(f_newPatients) DESC' df = pd.read_sql(sql, connection) trace_new_patients = go.Pie(labels=df['Spec'], values=df['NewPatients']) graph_title = 'Nous pacients per especialitat (Del ' + u.yyyymmToMonthName(p_first_month) + ' al ' + u.yyyymmToMonthName(p_last_month) + ')' data = [trace_new_patients] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'New Patients per agenda'. Optionally, you can show by speciallity. If no speciality is set it shows whole data. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_first_blood_per_agenda('201801', '201812') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param p_first_month: starting month of range values in YYYYMM format :param p_last_month: ending month of range values in YYYYMM format :param p_id_especiality: optional identifier of speciality :rtype: string """ def plot_first_blood_per_agenda(p_first_month, p_last_month, p_id_especiality=None): try: connection = connections['datawarehouse'] sql = 'SELECT f_nomAgenda as nomAgenda, sum(f_totalVisits) as Total, COUNT(*) as Patients, sum(f_totalVisits)/COUNT(*) as PerPatient FROM datawarehouse.dm_first_visit WHERE f_month between '+str(p_first_month)+' and '+str(p_last_month) if p_id_especiality is not None: sql = sql + ' AND f_idEspecialitat=' + str(p_id_especiality) + ' ' sql = sql + ' GROUP BY f_nomAgenda' sql = sql + ' ORDER BY sum(f_totalVisits) DESC' df = pd.read_sql(sql, connection) trace_visits = go.Bar(x=df['nomAgenda'], y=df['Total'], name='Total visites al centre') trace_per_patient = go.Bar(x=df['nomAgenda'], y=df['PerPatient'], name='Mitjana per pacient') graph_title = 'Visites per captació en agenda (Del ' + u.yyyymmToMonthName(p_first_month) + ' al ' + u.yyyymmToMonthName(p_last_month) + ')' if p_id_especiality is not None: graph_title = q.get_Spec_Name(p_id_especiality) + ': ' + graph_title data = [trace_visits, trace_per_patient] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=12, color='black'), ), yaxis=dict(showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Last visits per month'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_last_visits_per_month() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_last_visits_per_month(): try: connection = connections['datawarehouse'] # we don't want to show future months, so we filter till past month now = datetime.datetime.now() + dateutil.relativedelta.relativedelta(months=-1) last_month = str(now.year) + str(now.month+1).zfill(2) sql = 'SELECT f_lastmonth as Mes, CONCAT(LEFT(f_lastmonth,4), "-", f_lastmonthname) as MesNom, count(*) as Total FROM datawarehouse.dm_first_visit WHERE f_lastmonth < '+ last_month + ' GROUP BY f_lastmonth, CONCAT(LEFT(f_lastmonth,4), "-", f_lastmonthname) ORDER BY f_lastmonth ASC' df = pd.read_sql(sql, connection) trace_visits = go.Scatter(x=df['MesNom'], y=df['Total'], mode='lines+markers', name='Ultimes visites per mes') linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['Total']) predicted_y = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_visits = go.Scatter(x=df['MesNom'], y=predicted_y, mode='lines', name='Tendencia') trace_omi_annotation = go.Scatter(x=["2017-Dec", "2017-Dec"], y=[0, df['Total'].max()], mode='lines', name='Inici odontologia a OMI360', line=dict(dash='dot')) data = [trace_visits, trace_regression_visits, trace_omi_annotation] layout = go.Layout( title='Evolució del número de últimes visites per mes', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none'), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Visits per patient'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_visits_per_patient() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_visits_per_patient(): try: connection = connections['datawarehouse'] df = pd.read_sql('SELECT f_numHistoria as Patient, f_totalVisits as Total FROM datawarehouse.dm_first_visit', connection) #max outliners to 50 for better visualization df[df['Total'] > 50] = 50 trace_visits = go.Histogram(x=df['Total'], name='Visites per pacient') data = [trace_visits] layout = go.Layout( title='Distribució del número de visites per pacient', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none', title='Visites'), yaxis=dict(showticklabels=True, title='Número de pacients', tickformat='.0f', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Distribution casual vs fidelizied'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_distribution_casual_vs_fidelizied() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_distribution_casual_vs_fidelizied(): try: connection = connections['datawarehouse'] sql = 'SELECT f_month as mes, CONCAT(LEFT(f_month,4), "-", f_monthname) as MesNom, f_casuals as casuals, f_fidelitzats as fidelitzats, f_visits_casuals as visitsCasuals, f_visits_fidelitzats as visitsFidelitzats FROM datawarehouse.dm2_stats_per_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) trace_casual = go.Scatter(x=df['MesNom'], y=df['casuals'], mode='lines', name='Pacients casuals', stackgroup='one', groupnorm='percent') trace_fidelizied = go.Scatter(x=df['MesNom'], y=df['fidelitzats'], mode='lines', name='Pacients fidelitzats', stackgroup='one') data = [trace_casual, trace_fidelizied] layout = go.Layout( title='Distribució pacients casuals vs fidelitzats', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict( type='linear', range=[1, 100], dtick=20, ticksuffix='%')) fig = go.Figure(data=data, layout=layout) plotdiv_patients = py.offline.plot(fig, include_plotlyjs=False, output_type='div') trace_visits_casual = go.Scatter(x=df['MesNom'], y=df['visitsCasuals'], mode='lines', name='Visites casuals', stackgroup='one', groupnorm='percent') trace_visits_fidelizied = go.Scatter(x=df['MesNom'], y=df['visitsFidelitzats'], mode='lines', name='Visites fidelitzats', stackgroup='one') data = [trace_visits_casual, trace_visits_fidelizied] layout = go.Layout( title='Distribució visites casuals vs fidelitzats', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), type='category', ), yaxis=dict( type='linear', range=[1, 100], dtick=20, ticksuffix='%')) fig = go.Figure(data=data, layout=layout) plotdiv_visits = py.offline.plot(fig, include_plotlyjs=False, output_type='div') return plotdiv_patients, plotdiv_visits except Error as e: print("Error while connecting to MySQL", e) """ Generates a offline plotly plot with the graph 'Distance to last visit'. Return HTML div code that builds the graph. It is necessary to include 'plotly.js' in your html file. usage:: >>> import plots >>> plot = plot_distance_to_lastmonth() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot}) :param: None :rtype: string """ def plot_distance_to_lastmonth(): try: connection = connections['datawarehouse'] df = pd.read_sql('SELECT f_numHistoria as Patient, PERIOD_DIFF(IF(f_lastmonth=f_month,EXTRACT(YEAR_MONTH FROM CURRENT_DATE()),f_lastmonth), f_month) as mesos FROM datawarehouse.dm_first_visit', connection) df = df[df['mesos']>0] trace_distance = go.Histogram(x=df['mesos'], name='Mesos des de última visita') data = [trace_distance] layout = go.Layout( title='Conteig dels mesos que fa que no ve cada pacient', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=45, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none', title='Mesos des de última visita'), yaxis=dict(showticklabels=True, title='Número de pacients', tickformat='.0f', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) return py.offline.plot(fig, include_plotlyjs=False, output_type='div') except Error as e: print("Error while connecting to MySQL", e) """ Callcenter plots to analyse performance. usage:: >>> import plots >>> plots = plots_callcenter_period('2018/01/01', '2018/01/31') >>> render (request, 'someViewWithPlot.html', {'plot_name': plot[1]}) :param p_date_ini: string representation of starting date in YYYY/MM/DD format :param p_date_fin: string representation of ending date in YYYY/MM/DD format :rtype: array of plots """ def plots_callcenter_period (p_date_ini, p_date_fin): try: connection = connections['datawarehouse'] # format date to use in a between condition: YYYYMMDD date_ini = datetime.datetime.strptime(str(p_date_ini), "%d/%m/%Y").strftime("%Y/%m/%d") date_fin = datetime.datetime.strptime(str(p_date_fin), "%d/%m/%Y").strftime("%Y/%m/%d") sql = "SELECT f_hour, sum(f_total) as total, sum(f_answered) as answered, sum(f_not_answered) as not_answered, if(sum(f_answered)>0,sum(f_not_answered)/sum(f_answered),sum(f_not_answered)) as overcall_factor FROM dm3_callcenter_general WHERE f_day BETWEEN \'"+date_ini+"\' AND \'"+date_fin+"\' and f_dst_id='6000' and f_hour between '07' and '23' GROUP BY f_hour ORDER BY f_hour ASC" df = pd.read_sql(sql, connection) if df.empty: return "No hi han dades en el periode triat.", None, None, None, None, None trace_answered = go.Scatter(x=df['f_hour'], y=df['answered'], mode='lines', name='Contestades', stackgroup='one', fillcolor='#81d386', line = dict( color = ('#81d386'),), hovertemplate = '%{y:.2f}%', groupnorm='percent') trace_not_answered = go.Scatter(x=df['f_hour'], y=df['not_answered'], mode='lines', name='No contestades', hovertemplate = '%{y:.2f}%', line = dict( color = ('#f28282'),), fillcolor= '#f28282', stackgroup='one') graph_title = 'Distribució contestades vs no contestades' data = [trace_answered, trace_not_answered] layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), yaxis=dict(type='linear', range=[1, 100], dtick=20, ticksuffix='%') ) fig = go.Figure(data=data, layout=layout) plot_distrib = py.offline.plot(fig, include_plotlyjs=False, output_type='div') trace_abs_lost_calls = go.Bar(x=df['f_hour'], y=df['not_answered'], name='total no agafades') layout = go.Layout( title='Quantitat trucades no agafades', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), showlegend=True, xaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) data=[trace_abs_lost_calls] fig = go.Figure(data=data, layout=layout) plot_abs_values = py.offline.plot(fig, include_plotlyjs=False, output_type='div') df = pd.read_sql("select f_week_day_order, f_week_day, f_hour, sum(f_not_answered) as not_answered, sum(f_total) as total from dm3_callcenter_general where f_day BETWEEN \'"+date_ini+"\' AND \'"+date_fin+"\' and f_dst_id='6000' and f_hour between '07' and '22' group by f_week_day_order, f_week_day, f_hour order by f_week_day_order ASC, f_hour ASC", connection) days = df['f_week_day'].unique() hours = sorted(df['f_hour'].unique()) values = [] for hour in hours: line = [] for day in days: v = df.loc[(df['f_week_day'] == day) & (df['f_hour'] == hour), 'not_answered'].values if v.size >0: line.append(v[0]) else: line.append(0) values.append(line) trace_heatmap_no_answer = go.Heatmap(z=values, x=days, y=hours, colorscale='Reds') data = [trace_heatmap_no_answer] layout = go.Layout( title='No contestades (valor absolut)', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), yaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) fig = go.Figure(data=data, layout=layout) plot_heatmap_no_answer = py.offline.plot(fig, include_plotlyjs=False, output_type='div') # total calls total_values = [] for hour in hours: line = [] for day in days: v = df.loc[(df['f_week_day'] == day) & (df['f_hour'] == hour), 'total'].values if v.size >0: line.append(v[0]) else: line.append(0) total_values.append(line) trace_heatmap_total = go.Heatmap(z=total_values, x=days, y=hours, colorscale='Blues', reversescale=True) data = [trace_heatmap_total] layout = go.Layout( title='Rebudes (valor absolut)', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), yaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) fig = go.Figure(data=data, layout=layout) plot_heatmap_total = py.offline.plot(fig, include_plotlyjs=False, output_type='div') df = pd.read_sql("select f_day, f_hour, sum(f_not_answered) as not_answered, sum(f_total) as total from dm3_callcenter_general where f_day BETWEEN \'"+date_ini+"\' AND \'"+date_fin+"\' and f_dst_id='6000' and f_hour between '07' and '22' group by f_day, f_hour order by f_day ASC, f_hour ASC", connection) days = df['f_day'].unique() hours = sorted(df['f_hour'].unique()) values_day = [] values_total = [] for hour in hours: line = [] line_total = [] for day in days: v = df.loc[(df['f_day'] == day) & (df['f_hour'] == hour), 'not_answered'].values v_total = df.loc[(df['f_day'] == day) & (df['f_hour'] == hour), 'total'].values if v.size >0: line.append(v[0]) else: line.append(0) if v_total.size >0: line_total.append(v_total[0]) else: line_total.append(0) values_day.append(line) values_total.append(line_total) trace_heatmap_per_day_no_answer = go.Heatmap(z=values_day, x=days, y=hours, colorscale='Reds') data = [trace_heatmap_per_day_no_answer] layout = go.Layout( title='No contestades per dia (valor absolut)', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), yaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) fig = go.Figure(data=data, layout=layout) plot_heatmap_per_day_no_answer = py.offline.plot(fig, include_plotlyjs=False, output_type='div') trace_heatmap_per_day_total = go.Heatmap(z=values_total, x=days, y=hours, colorscale='Blues', reversescale=True) data = [trace_heatmap_per_day_total] layout = go.Layout( title='Rebudes per dia (valor absolut)', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), yaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) fig = go.Figure(data=data, layout=layout) plot_heatmap_per_day_total = py.offline.plot(fig, include_plotlyjs=False, output_type='div') return plot_distrib, plot_abs_values, plot_heatmap_no_answer, plot_heatmap_total, plot_heatmap_per_day_no_answer, plot_heatmap_per_day_total except Error as e: print("Error while connecting to MySQL", e) """ Callcenter plots representing evolution usage:: >>> import plots >>> plots = plots_callcenter_evo() >>> render (request, 'someViewWithPlot.html', {'plot_name': plot[1]}) :param: None :rtype: array of plots """ def plots_callcenter_evo(): try: connection = connections['datawarehouse'] current_month = datetime.date.today().strftime('%Y%m') sql = 'SELECT f_month, sum(f_total) as total, sum(f_answered) as answered, sum(f_not_answered) as not_answered, sum(f_answered)/sum(f_total) as percent_answered, sum(f_not_answered)/sum(f_total) as percent_not_answered FROM datawarehouse.dm3_callcenter_general WHERE f_month < ' + current_month +' GROUP BY f_month ORDER BY f_month ASC' df = pd.read_sql(sql, connection) df['f_month_order'] = np.arange(len(df)) trace_total = go.Scatter(x=df['f_month_order'], y=df['total'], mode='lines', name='Rebudes per mes', line = dict( color = ('blue'), dash = 'solid'),) trace_answered = go.Scatter(x=df['f_month_order'], y=df['answered'], mode='lines', name='Contestades per mes', line = dict( color = ('green'), dash = 'solid',),) trace_not_answered = go.Scatter(x=df['f_month_order'], y=df['not_answered'], mode='lines', name='No contestades per mes', line = dict( color = ('red'), dash = 'solid',),) linear_x = np.r_[0:len(df)] linear_x = np.arange(0, len(df)).reshape(-1, 1) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(linear_x) pol_reg = LinearRegression() pol_reg.fit(X_poly, df['total']) predicted_y_total = pol_reg.predict(poly_reg.fit_transform(linear_x)) pol_reg.fit(X_poly, df['answered']) predicted_y_answered = pol_reg.predict(poly_reg.fit_transform(linear_x)) pol_reg.fit(X_poly, df['not_answered']) predicted_y_not_answered = pol_reg.predict(poly_reg.fit_transform(linear_x)) trace_regression_total = go.Scatter(x=df['f_month_order'], y=predicted_y_total, mode='lines', name='Tendencia trucades rebudes', line = dict( color = ('blue'), dash = 'dot'),) trace_regression_answered = go.Scatter(x=df['f_month_order'], y=predicted_y_answered, mode='lines', name='Tendencia trucades contestades', line = dict( color = ('green'), dash = 'dot'),) trace_regression_not_answered = go.Scatter(x=df['f_month_order'], y=predicted_y_not_answered, mode='lines', name='Tendencia trucades no contestades', line = dict( color = ('red'), dash = 'dot'),) data = [trace_total, trace_regression_total, trace_answered, trace_regression_answered, trace_not_answered, trace_regression_not_answered] layout = go.Layout( title='Evolució del número de trucades per mes', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=60, tickfont=dict(family='Old Standard TT, serif', size=10, color='black'), showexponent='none', tickmode = 'array', tickvals = df['f_month_order'], ticktext = df['f_month']), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) plot_absolute = py.offline.plot(fig, include_plotlyjs=False, output_type='div') trace_visits_casual = go.Scatter(x=df['f_month_order'], y=df['percent_answered'], mode='lines', name='Contestades', stackgroup='one', groupnorm='percent') trace_visits_fidelizied = go.Scatter(x=df['f_month_order'], y=df['percent_not_answered'], mode='lines', name='No contestades', stackgroup='one') data = [trace_visits_casual, trace_visits_fidelizied] layout = go.Layout( title='Distribució contestades vs no contestades mes a mes', titlefont=dict(family='Arial, sans-serif', size=24, color='green'), xaxis=dict(showticklabels=True, tickangle=60, tickfont=dict(family='Old Standard TT, serif', size=10, color='black'), showexponent='none', tickmode = 'array', tickvals = df['f_month_order'], ticktext = df['f_month']), yaxis=dict(titlefont=dict(family='Arial, sans-serif', size=18, color='lightgrey'), showticklabels=True, tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), showexponent='none')) fig = go.Figure(data=data, layout=layout) plot_distrib_percent = py.offline.plot(fig, include_plotlyjs=False, output_type='div') return plot_absolute, plot_distrib_percent, plot_absolute except Error as e: print("Error while connecting to MySQL", e) def plots_ext_performance(p_date_ini, p_date_fin): try: connection = connections['datawarehouse'] # format date to use in a between condition: YYYYMMDD date_ini = datetime.datetime.strptime(str(p_date_ini), "%d/%m/%Y").strftime("%Y/%m/%d") date_fin = datetime.datetime.strptime(str(p_date_fin), "%d/%m/%Y").strftime("%Y/%m/%d") sql = "SELECT f_extension as extension, sum(f_answered) as answered, sum(f_spoken_time) as spoken_time, sum(f_spoken_time)/sum(f_answered) as time_per_call FROM dm3_callcenter_per_extension WHERE f_day BETWEEN \'"+date_ini+"\' AND \'"+date_fin+"\' and f_extension IN (100, 101, 102, 104, 111, 112) GROUP BY f_extension" df = pd.read_sql(sql, connection) lines = [] line = {} calls = 0 spoken_time = 0 time_per_call = 0 total = 0 for index, row in df.iterrows(): calls += row[1] spoken_time += row[2] time_per_call += row[3] total += 1 line = {'extension': row[0], 'answered': f'{row[1]:10.0f}', 'spoken_time': f'{row[2]/3600:10.2f}', 'time_per_call': f'{row[3]/60:10.2f}'} lines.append(line) # add averages if total > 0: line = {'extension': 'promig', 'answered': f'{calls/total:10.0f}', 'spoken_time': f'{spoken_time/(3600*total):10.2f}', 'time_per_call': f'{time_per_call/(60*total):10.2f}'} lines.append(line) sql = "SELECT f_extension as extension, f_day, f_hour, sum(f_answered) as answered, sum(f_spoken_time) as spoken_time, sum(f_spoken_time)/sum(f_answered) as time_per_call FROM dm3_callcenter_per_extension WHERE f_day BETWEEN \'"+date_ini+"\' AND \'"+date_fin+"\' and f_extension IN (100, 101, 102, 104, 111, 112) GROUP BY f_extension, f_day, f_hour ORDER BY f_extension, f_day, f_hour" df = pd.read_sql(sql, connection) extensions = sorted(df['extension'].unique()) days = sorted(df['f_day'].unique()) hours = sorted(df['f_hour'].unique()) plots = [] for extension in extensions: values_day = [] for hour in hours: line = [] for day in days: v = df.loc[(df['extension'] == extension) & (df['f_day'] == day) & (df['f_hour'] == hour), 'answered'].values if v.size >0: line.append(v[0]) else: line.append(0) values_day.append(line) trace_heatmap_per_extension = go.Heatmap(z=values_day, x=days, y=hours, colorscale='Reds', name=extension) graph_title = 'Trucades ateses per l\'extensió ' + extension layout = go.Layout( title=graph_title, titlefont=dict(family='Arial, sans-serif', size=24, color='green'), yaxis=dict( showticklabels=True, ticksuffix='h', tickfont=dict(family='Old Standard TT, serif', size=14, color='black'), tickmode='linear', ), ) heatmap_data = [trace_heatmap_per_extension] fig = go.Figure(data=heatmap_data, layout=layout) plots.append(py.offline.plot(fig, include_plotlyjs=False, output_type='div')) return lines, plots except Error as e: print("Error while connecting to MySQL", e)
[ "plotly" ]
8fefca3afd7864bd1ae1df08b3c1e58f494d01b4
Python
antoniosj/data-science-playground
/machine-learning-az/data_processing_template.py
UTF-8
1,923
3.609375
4
[]
no_license
# data preprocessing # importing libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # importing dataset dataset = pd.read_csv('Data.csv') # creates matrix of independents variables until last column minus 1 X = dataset.iloc[:, :-1].values # creates matrix of dependent variable. The last column. lastColumn = 3 Y = dataset.iloc[:, lastColumn].values """ # tirar a media para preencher valor faltando from sklearn.preprocessing import Imputer imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) # fit colunas 1 e 2 do index imputer = imputer.fit(X[:, 1:3]) X[:, 1:3] = imputer.transform(X[:, 1:3])""" """ # Encoding categorical data # Colunas que tem um mesmo padrão (ex: 10 linhas com 3 tipos de países vão ser divididos # em 0, 1 e 2 e depois vão ter 3 valores (0, 0, 1) para o ml não achar que um valor é # maior que o outro apenas por causa da categoria dele from sklearn.preprocessing import LabelEncoder, OneHotEncoder # X = colunas independentes e X[:, ] = todas as linhas da coluna 0 labelEncoder_X = LabelEncoder() X[:, 0] = labelEncoder_X.fit_transform(X[:, 0]) #OneHotEncoder vai transformar minhas categorias em uma tabela de 0, 0, 1 oneHotEncoder = OneHotEncoder(categorical_features = [0]) # lembrar de formatar os valores em .0f X = oneHotEncoder.fit_transform(X).toarray() # Y = coluna dependente labelEncoder_Y = LabelEncoder() # como essa coluna só são dois valores (0 e 1) não precisa do onehotencoder. Y = labelEncoder_Y.fit_transform(Y) """ # Splitting the dataset into training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0) # Feature scalling # Standard or Normalization from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)
[ "matplotlib" ]
4b56ae0997fede4b989912d881f79888d454d73a
Python
qapquiz/TSP_With_GA
/main.py
UTF-8
4,965
3.296875
3
[]
no_license
from Town import Town from costMatrix import CostMatrix from salesMan import SalesMan import random #import matplotlib.pyplot as plt #initial variable for Genetic Algorithm MAX_ITERATION = 1000 MAX_POPULATION = 20 PC = 0.8 PM = 0.05 #create list of object town townList = list() townData = open("town.txt", 'r') while townData: line = townData.readline().split() if (line == []): break; townList.append(Town(line[0], line[1], line[2])) #createCostMatrix costMatrixDict = CostMatrix(townList).createCostMatrix() #create population populationList = list() for i in range(20): populationList.append(SalesMan()) populationList[i].randomFirstPath(townList) populationList[i].calculateFitness(costMatrixDict, townList) #start iteration iteration = 1 while iteration <= MAX_ITERATION: #roulette selection #sort populationList populationList = sorted(populationList, key=lambda population: population.fitness) #end sort populationList sumFitness = 0 for population in populationList: sumFitness = sumFitness + population.getFitness() probability = 0 sumProbabilities = 0 for population in populationList: population.setProbability(sumProbabilities + ((float(population.getFitness()) / float(sumFitness)))) sumProbabilities += population.getProbability() - sumProbabilities population.setProbability(1 - population.getProbability()) #print "fitness: " + str(population.getFitness()) #print "prob: " + str(population.getProbability()) #selection phase populationList = populationList[::-1] populationIndex = 0 populationIndexSelectionList = list() #/2 while (len(populationIndexSelectionList) != MAX_POPULATION): randNumber = random.uniform(0, 1) for population in populationList: if randNumber < population.getProbability(): populationIndexSelectionList.append(populationIndex) break #if populationIndex not in populationIndexSelectionList: # populationIndexSelectionList.append(populationIndex) # break populationIndex = populationIndex + 1 populationIndex = 0 populationSelectionList = list() #/2 for i in range(MAX_POPULATION): populationSelectionList.append(populationList[populationIndexSelectionList[i]]) #print "SelectionList: " + str(populationIndexSelectionList) #end selection phase #crossover phase crossoverCount = 0 while crossoverCount < (MAX_POPULATION): parent1 = populationSelectionList[crossoverCount] parent2 = populationSelectionList[crossoverCount+1] #occur crossover if random.uniform(0, 1) < PC: child1 = SalesMan() child2 = SalesMan() #child1 child1.setPath(parent1.getPath()[:100]) while len(child1.getPath()) != len(townList): parent2Path = parent2.getPath() for town in parent2Path: if town not in child1.getPath(): child1.getPath().append(town) #child2 child2.setPath(parent2.getPath()[:100]) while len(child2.getPath()) != len(townList): parent1Path = parent1.getPath() for town in parent1Path: if town not in child2.getPath(): child2.getPath().append(town) populationList.append(child1) populationList.append(child2) #not occur crossover then copy parent to child else: child1 = SalesMan() child2 = SalesMan() child1.setPath(parent1.getPath()) child1.setFitness(parent1.getFitness()) child2.setPath(parent2.getPath()) child2.setFitness(parent2.getFitness()) populationList.append(child1) populationList.append(child2) crossoverCount = crossoverCount + 2 #print "=========================================================================" #print child1.getPath() child1.calculateFitness(costMatrixDict, townList) #print child1.getFitness() #end crossover phase #end roulette selection #print "len of populationList: " + str(len(populationList)) calculateFitnessCount = 20 while calculateFitnessCount < len(populationList): populationList[calculateFitnessCount].calculateFitness(costMatrixDict, townList) calculateFitnessCount = calculateFitnessCount + 1 mutationIndex = 0 for population in populationList: if mutationIndex >= 20: pathIndex = 0 pathIndexList = list() for path in population.getPath(): if random.uniform(0, 1) < PM: pathIndexList.append(pathIndex) if len(pathIndexList) == 2: temp = population.getPath()[pathIndexList[0]] population.getPath()[pathIndexList[0]] = population.getPath()[pathIndexList[1]] population.getPath()[pathIndexList[1]] = temp pathIndexList = list() pathIndex = pathIndex + 1 mutationIndex = mutationIndex + 1 #sort populationList populationList = sorted(populationList, key=lambda population: population.fitness) #end sort populationList #for population in populationList: # print population.getFitness() delIndex = 20 while delIndex < len(populationList): del populationList[delIndex] iteration = iteration + 1 #end iteration print populationList[0].getPath() print "Total distance: " + str(populationList[0].getFitness()) #return Answer
[ "matplotlib" ]
e6075aefd576879dd36f907009922e0cfac9657a
Python
Tusharcoder18/Sea-Level-Predictor
/sea_level_predictor.py
UTF-8
1,236
3.390625
3
[]
no_license
import pandas as pd import matplotlib.pyplot as plt from scipy.stats import linregress def draw_plot(): # Read data from file df = pd.read_csv('epa-sea-level.csv') # Create scatter plot plt.scatter(x='Year', y='CSIRO Adjusted Sea Level', data=df) # Create first line of best fit lin_result = linregress(x=df['Year'], y=df['CSIRO Adjusted Sea Level']) slope = lin_result.slope intercept = lin_result.intercept year_extended = pd.Series([int(i) for i in range(1880, 2050)]) best_fit1 = slope * year_extended + intercept plt.plot(year_extended, best_fit1, 'r') # Create second line of best fit recent = df[df['Year'] >= 2000] lin_result = linregress(x=recent['Year'], y=recent['CSIRO Adjusted Sea Level']) slope = lin_result.slope intercept = lin_result.intercept year_extended = pd.Series([int(i) for i in range(2000, 2050)]) best_fit2 = intercept + slope * year_extended plt.plot(year_extended, best_fit2, 'g') # Add labels and title plt.xlabel('Year') plt.ylabel('Sea Level (inches)') plt.title('Rise in Sea Level') # Save plot and return data for testing (DO NOT MODIFY) plt.savefig('sea_level_plot.png') return plt.gca()
[ "matplotlib" ]
d20403de3a82124f0bc1b9c065774658c47e245a
Python
Karel-van-de-Plassche/petra-plot
/DSC.py
UTF-8
3,853
3.09375
3
[ "MIT" ]
permissive
import matplotlib as mpl from matplotlib import cycler import matplotlib.pyplot as plt plt.style.use('./paper.mplstyle') # Choose the settings file to use import numpy as np from IPython import embed import pandas as pd from itertools import chain import os def load_file(filename): with open(filename, 'r', encoding = "ISO-8859-1") as file_: lines = file_.readlines() # Read the complete file dfs = [] while len(lines) > 0: # Keep reading until all chunks are read name_ind = lines.index('Curve Name:\n') # Look for 'Curve Name:' del lines[name_ind] curve_name = lines[name_ind].strip() print(curve_name) start_ind = lines.index('Curve Values:\n') # Values start after 'Curve Values' column_names = lines[start_ind+1].split() # The line after that are the column names column_units = lines[start_ind+2].split() # And after that the units results_ind = lines.index('Results:\n') # The values stop when we find 'Results:' df = pd.DataFrame(np.loadtxt(lines[start_ind+3:results_ind]), columns=column_names) # Now put it in a table df.set_index('Tr', inplace=True) # The 'x-axis' is Tr dfs.append(df['Value']) # And we only need the Value column try: end_ind = lines.index('Curve Name:\n') # Try to find the next chunk except ValueError: end_ind = len(lines) # If we can't find it, we're done! del lines[:end_ind] #results = pd.concat(dfs, axis=1) # Now, merge all chuncks together heating = pd.concat(dfs[1::2], axis=1) # Merge all heating chunks cooling = pd.concat(dfs[0::2], axis=1) # And all cooling chunks for set in chain([heating, cooling]): # For both heating and cooling set.columns = reversed(range(1, len(set.columns) + 1)) # Number them N..1 set.index.name = 'Temperature [$\degree$C]' # And rename the x-axis heating.columns = ['Heating ' + str(col) for col in heating.columns] # Now prepend Heating to the column names cooling.columns = ['Cooling ' + str(col) for col in cooling.columns] # And Cooling #labels = [] #for ii in range(1, len(results.columns) // 2 + 1): # labels.append('Heating ' + str(ii)) # labels.append('Cooling ' + str(ii)) #labels = list(reversed(labels)) #results.columns = labels return heating, cooling def plot_heating_cooling(heating, cooling, shift=0.2, base_shift=0.0): fig = plt.figure() ax = fig.add_subplot(111) for ii in range(1, len(cooling.columns) + 1): cooling.iloc[:, ii:] = cooling.iloc[:, ii:] + shift # Shift all curves, the 2nd one the most cooling += base_shift # And shift all columns a set amount for ii in range(1, len(heating.columns) + 1): heating.iloc[:, ii:] = heating.iloc[:, ii:] - shift heating -= base_shift for ii in range(len(heating.columns)): for set in chain([heating, cooling]): # Now plot Heating ii and Cooling ii in pairs ax.plot(set.iloc[:, ii], label=set.iloc[:, ii].name) ax.legend() # Plot the legend #cooling.plot(ax=ax) #heating.plot(ax=ax) cmap = plt.get_cmap('tab20') # Choose the colors by name: https://matplotlib.org/examples/color/colormaps_reference.html plt.rc('axes', prop_cycle=(cycler('color', cmap.colors))) root = 'DSC' # This is the main folder to look for files for filename in os.listdir(root): # For every folder in the root folder if filename.endswith('.txt'): # If it ends with .txt path_to_file = os.path.join(root, filename) heating, cooling = load_file(path_to_file) # Read the file and put it in a table plot_heating_cooling(heating, cooling, shift=0.2, base_shift=0.0) # And plot the curves plt.show()
[ "matplotlib" ]
602036d1f09959ff9dbdad8a43cf2c26d17446d1
Python
marcinu456/Modelowanie-Komputerowe
/Nowy folder (2)/Nowy folder/WykresyPython/zad3.py
UTF-8
1,258
3.390625
3
[]
no_license
import sys import numpy as np from numpy.lib import median import matplotlib.pyplot as plt def gauss(data): mean = sum([ k*v for k, v in data.items()])/sum(data.values())#średnia mse = sum([v*(k - mean)**2 for k, v in data.items()])/sum(data.values())#wariacia rmse = np.sqrt(mse)#odchylenie mx = max([ v for k, v in data.items()]) med = np.median([ k*v for k, v in data.items()]) ret = [ (mx * np.exp( -(((x - med))**2)/(2*mse) )) for x in data.keys()]#rozklad normalny print("dzieci najprawdopodbniej są w odlgełośći ",3*rmse, "kroków") return ret def main(): x = np.loadtxt('spacery/odlegloscPo1000.txt', unpack=True) valCount = dict() for pos in x: if pos in valCount: valCount[pos] += 10 else: valCount[pos] = 0 valCount = {k: v for k, v in sorted(valCount.items(), key=lambda item: item[0])} plt.plot(valCount.keys(), gauss(valCount)) plt.xlabel("X") plt.ylabel("dzieci") if __name__ == "__main__": main() plt.legend() plt.show() # Bardziej prawdopodobne jest to, że dziecko będzię bliżej odległości 1 # Odległośc 3sigma można uznać, za wartość graniczną gdzię znajduję się # 99.7% procent wszystkich dzieci
[ "matplotlib" ]
69dc68b6961443954bc6396ec43c203db782a761
Python
edfong/npl
/experiments/LogReg_ARD/run_NPL_logreg.py
UTF-8
2,971
2.71875
3
[ "BSD-3-Clause" ]
permissive
""" main script for running NPL """ import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt import copy import time from npl import bootstrap_logreg as bbl import pickle def load_data(dataset,seed): #load polish if dataset == 'Polish': year = 3 with open('./data/pc_train_y{}_seed{}'.format(year,seed), 'rb') as handle: pc_train = pickle.load(handle) #Move into vectors y = pd.to_numeric(pc_train['y'].values[:,0]) x = pc_train['x'].values D_data = pc_train['D'] N_data = pc_train['N'] #prior and loss settings from paper alph_conc = 0 #prior strength gamma = 1/N_data #loss scaling relative to log-likelihood #load adult if dataset == 'Adult': with open('./data/ad_train_seed{}'.format(seed), 'rb') as handle: ad_train = pickle.load(handle) #Move into vectors y = np.uint8(ad_train['y'])[:,0] x = ad_train['x'].values D_data = ad_train['D'] N_data = ad_train['N'] #prior and loss settings from paper alph_conc = 0 gamma = 1/N_data #load arcene if dataset == 'Arcene': with open('./data/ar_train_seed{}'.format(seed), 'rb') as handle: ar_train = pickle.load(handle) N_data = ar_train['N'] D_data = ar_train['D'] y = np.int8(ar_train['y'].values.reshape(N_data,)) x = ar_train['x'].values #prior and loss settings from paper alph_conc = 1 gamma = 1/N_data return y,x,alph_conc,gamma,N_data,D_data def main(dataset, B_postsamples): #same parameters between datasets T_trunc = 100 a=1 b = 1 #rate of gamma hyperprior for i in range(30): seed = 100+i np.random.seed(seed) y,x,alph_conc,gamma,N_data,D_data = load_data(dataset,seed) start= time.time() #carry out posterior bootstrap beta_bb, ll_b = bbl.bootstrap_logreg(B_postsamples,alph_conc,T_trunc,y,x,N_data,D_data,a,b,gamma) end = time.time() print ('Time elapsed = {}'.format(end - start)) #convert to dataframe and save dict_bb = {'beta': beta_bb, 'll_b': ll_b, 'time': end-start} par_bb = pd.Series(data = dict_bb) #Polish if dataset == 'Polish': par_bb.to_pickle('./parameters/par_bb_logreg_c{}_a{}_b{}_gN_pol_B{}_seed{}'.format(alph_conc,a,b,B_postsamples,seed)) #Adult if dataset == 'Adult': par_bb.to_pickle('./parameters/par_bb_logreg_c{}_a{}_b{}_gN_ad_B{}_seed{}'.format(alph_conc,a,b,B_postsamples,seed)) #Arcene if dataset == 'Arcene': par_bb.to_pickle('./parameters/par_bb_logreg_c{}_a{}_b{}_gN_ar_B{}_seed{}'.format(alph_conc,a,b,B_postsamples,seed)) if __name__=='__main__': main('Polish',2000) main('Adult',2000) main('Arcene',2000)
[ "matplotlib" ]
fcf7e4efb410c260f3b0ae77d795ab050cb568dc
Python
shadimohagheghi/Generative-Models-for-Multigroup-Connectivity-Structures
/Liaison_model.py
UTF-8
5,124
2.578125
3
[]
no_license
import networkx as nx from allfunctions import draw_degdist import numpy as np import matplotlib import matplotlib.pyplot as plt from almost_clique import almost_clique from numpy import inf import matplotlib.pyplot as plt matplotlib.rc('xtick', labelsize=25) matplotlib.rc('ytick', labelsize=25) plt.close("all") ########################################################## ########################################################## def Liaison_model(): clique_size = [3,4,5,6,7,8,9,10]; # clique sizes clique_edges=np.asarray(clique_size) clique_edges = np.divide(np.multiply(clique_edges,clique_edges+1),2) ep = 0.1; clique_num = np.zeros(len(clique_size)); # number of cliques of given size for i in range(len(clique_size)): clique_num[i] = int(2.5321*(50.0/(clique_size[i])**3)); clique_num = map(int,clique_num) # comment this next line to generate a small sample graph easy to visualize #clique_num = [0,7,3,1,0,0,0,0] ########################################################### ########################################################### def li_num(size): # number of liaisons given clique size maxli = 2; p = float(size)**2/200; a = np.random.binomial(maxli, p, size=1) +1 return a ########################################################### ########################################################### # almost cliques are generated Gclique,li,li_cliquewise,clique_sizes,all_liaisons,clique_lead,nstart = almost_clique(clique_size,clique_num,li_num) print(len(clique_lead)), 'cliques formed' ################################################ #### liaison model ############################# m = 2; ext_li = int(float(sum(clique_num))/m); # deciding number of external liaisons Gli = nx.barabasi_albert_graph(ext_li,2); #only option for external liaison model print "Barabasi Albert Graph = ", Gli.edges() plt.figure(1) nx.draw(Gli, pos=nx.circular_layout(Gli)) limodel_deglist = np.zeros(len(Gli)); for i in range(len(Gli)): limodel_deglist[i] = len(Gli[i]) ord_limodel = sorted(range(len(limodel_deglist)),key=lambda x:limodel_deglist[x]) print "ord_limodel = ", ord_limodel clique_ext_list = np.zeros(sum(clique_num)) for i in range(sum(clique_num)): # randomly assign cliques to external liaisons clique_ext_list[i] = np.random.randint(ext_li); print "clique_ext_list = ", clique_ext_list cliquenodes = len(Gclique); for i in range(len(Gli)): for j in range(len(Gli)): if j in Gli[i]: Gclique.add_edge(cliquenodes+i,cliquenodes+j) for i in range(ext_li): dums = np.where(clique_ext_list==i); for j in range(len(dums[0])): for k in range(len(li_cliquewise[dums[0][j]])): Gclique.add_edge(cliquenodes+i,li_cliquewise[dums[0][j]][k]) degthis,a1,a2 = draw_degdist(Gclique,1,'b',0) figcolor = 'b' plt.figure(2) plt.scatter((a1),(a2),c=figcolor,marker='o',s=400,alpha=0.5) plt.plot((a1),(a2),linewidth=2,c=figcolor) plt.xlabel('node degree',fontsize=30) plt.ylabel('number of nodes',fontsize=30) plt.axis([-2, 45, -19, 670]) clique_list = []; for i in range(len(clique_size)): dum = np.linspace(clique_size[i],clique_size[i], clique_num[i]) clique_list = np.hstack((clique_list,dum )) colors = []; c = 0; for i in range(len(clique_list)): colors.extend(np.linspace(c,c,clique_list[i])) c = c + 1 for i in range(ext_li): colors.append(20); c = c + 1 #pos=nx.spring_layout(Gclique,iterations=200) posx = []; posy = []; for i in range(len(clique_list)): centerx = np.cos(2*np.pi*i/len(clique_list)) centery = np.sin(2*np.pi*i/len(clique_list)) x1 = []; y1 = []; for j in range(int(clique_list[i])): x1.append(centerx + 0.2*np.cos(2*np.pi*j/clique_list[i])) y1.append(centery + 0.2*np.sin(2*np.pi*j/clique_list[i])) posx.extend(x1); posy.extend(y1); print ext_li x1 = []; y1 = []; print "ext_li=",ext_li for j in range(ext_li): x1.append(0.5*np.cos(2*np.pi*j/ext_li)) y1.append(0.5*np.sin(2*np.pi*j/ext_li)) posx.extend(x1); posy.extend(y1); pos = np.transpose(np.vstack((posx,posy))) plt.figure(3) nx.draw(Gclique,pos,node_color=colors,node_size=800,cmap=plt.cm.Blues) plt.show() print 'diameter of liaison network is', nx.diameter(Gclique) print 'avg clustering coeff is', nx.average_clustering(Gclique) print 'avg shortest path length', nx.average_shortest_path_length(Gclique) plt.show() return Gclique Gclique = Liaison_model()
[ "matplotlib" ]
6c8f7a3a3b183b25e1439c26e1f4756cea5a3f94
Python
petercunning/notebook
/pcolor.py
UTF-8
1,441
2.875
3
[ "GFDL-1.1-only", "MIT" ]
permissive
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> import numpy as np from iris.cube import Cube from iris.coords import DimCoord # <codecell> def create_cube(): lon1d = np.arange(5) lat1d = np.arange(4) data = np.random.random((len(lat1d),len(lon1d))) cube = Cube(data) lon = DimCoord(lon1d, standard_name='longitude', units='degrees', circular=False) lat = DimCoord(lat1d, standard_name='latitude', units='degrees') cube.add_dim_coord(lon, 1) cube.add_dim_coord(lat, 0) return cube # <codecell> cube = create_cube() # <codecell> x = cube.coord(axis='X') x.guess_bounds() x # <codecell> y = cube.coord(axis='Y') y.guess_bounds() y # <codecell> %matplotlib inline import matplotlib.pyplot as plt plt.pcolormesh(x.points, y.points, cube.data) # <codecell> import iris.quickplot as qplt cs = qplt.pcolormesh(cube) # <codecell> import cartopy.crs as ccrs from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter fig, ax = plt.subplots(subplot_kw=dict(projection=ccrs.PlateCarree())) cs = qplt.pcolormesh(cube) ax.set_xticks(x.points, crs=ccrs.PlateCarree()) ax.set_yticks(y.points, crs=ccrs.PlateCarree()) lon_formatter = LongitudeFormatter(zero_direction_label=True) lat_formatter = LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) # <codecell> # <codecell>
[ "matplotlib" ]
7f1e595c478d60f368d15ac1a9695929608497b3
Python
a2liu/mosquitoSim
/run3.py
UTF-8
869
3.71875
4
[]
no_license
import time import matplotlib from sim import population #This script simulates the decay of a set of populations that have varying attributes def getPopAttributes(iteration): #Determine population attributes based on iteration number # Initial population size popSize = 10000 # percentage of initial pop. infected perInfect = .5 # % chance that offspring of an infected male is male ratio = .5 # Growth of population per generation. 0 means no growth, 1 means double every year, etc. growth = 6 return (popSize, perInfect, ratio, growth) start = time.process_time() # Amount of populations to simulate popNum = 1000 # Max iteration count maxIter = 10000 for x in range(1, popNum): pop = population(*getPopAttributes(x)) print(x,pop.decay(maxIter)) stop = time.process_time() print("Time Elapsed:", stop - start)
[ "matplotlib" ]
4d33c2137c8938cbaad4e1fc436f8e291d230790
Python
mmilunovic/bin-genetic-algorithm
/bin-gen-algorithm.py
UTF-8
7,422
2.96875
3
[]
no_license
# %matplotlib inline import random import numpy as np import matplotlib.pyplot as plt import math from mpl_toolkits import mplot3d pi = 3.1415 def levy_function(chromosome): x = chromosome[0] y = chromosome[1] tmp1 = math.pow(math.sin(3*pi*x), 2) tmp2 = math.pow((x - 1), 2) * (1 + math.pow(math.sin(3*pi*y), 2)) tmp3 = math.pow((y - 1), 2) * (1 + math.pow(math.sin(2*pi*y), 2)) return tmp1 + tmp2 + tmp3 def l_show(x, y): tmp1 = math.pow(math.sin(3*pi*x), 2) tmp2 = math.pow((x - 1), 2) * (1 + math.pow(math.sin(3*pi*y), 2)) tmp3 = math.pow((y - 1), 2) * (1 + math.pow(math.sin(2*pi*y), 2)) return tmp1 + tmp2 + tmp3 levy_vectorized = np.vectorize(l_show) x = np.linspace(-13, 13, 30) y = np.linspace(-13, 13, 30) X, Y = np.meshgrid(x, y) Z = levy_vectorized(X, Y) ax = plt.axes(projection='3d') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='plasma', edgecolor='none') ax.set_title('Levijeva funkcija br.13'); ax.view_init(50, 35) def bin_encode(chromosome, bin_val, min_val, precision): ret = "" for g in chromosome: val = round((g - min_val)/bin_val) ret += bin(val)[2:].rjust(precision,'0') return ret def bin_encode_chromosomes(chromosomes, precision, max_val, min_val): bin_val = (max_val - min_val) / (2**precision-1) bin_chromosomes = [ bin_encode(c, bin_val, min_val, precision) for c in chromosomes] return bin_chromosomes def bin_decode(chromosome, bin_val, min_val, precision): ret = [] for idx in range(0, len(chromosome), precision): g = int(chromosome[idx:idx + precision], 2) ret.append(g * bin_val + min_val) return ret def bin_decode_chromosomes(chromosomes, precision, max_val, min_val): bin_val = (max_val - min_val) / (2**precision-1) bin_chromosomes = [ bin_decode(c, bin_val, min_val, precision) for c in chromosomes] return bin_chromosomes def two_point_crossover(pairs): length = len(pairs[0]) children = [] for (a,b) in pairs: r1 = random.randrange(0, length) r2 = random.randrange(0, length) if r1 < r2: children.append(a[:r1] + b[r1:r2] + a[r2:]) children.append(b[:r1] + a[r1:r2] + b[r2:]) else: children.append(a[:r2] + b[r2:r1] + a[r1:]) children.append(b[:r2] + a[r2:r1] + b[r1:]) return children def inv_mutation(chromosomes, mutation_rate): mutated_chromosomes = [] for chromosome in chromosomes: if random.random() < mutation_rate: r1 = random.randrange(0, len(chromosome) - 1) r2 = random.randrange(0, len(chromosome) - 1) if r1 < r2: mutated_chromosomes.append(chromosome[:r1] + chromosome[r1:r2][::-1] + chromosome[r2:]) else: mutated_chromosomes.append(chromosome[:r2] + chromosome[r2:r1][::-1] + chromosome[r1:]) else: mutated_chromosomes.append(chromosome) return mutated_chromosomes def generate_inital_chromosomes(length, max, min, pop_size): return [ [random.uniform(min,max) for j in range(length)] for i in range(pop_size)] def population_stats(costs): return costs[0], sum(costs)/len(costs) def rank_chromosomes(cost, chromosomes): costs = list(map(cost, chromosomes)) ranked = sorted( list(zip(chromosomes,costs)), key = lambda c:c[1]) return list(zip(*ranked)) def natural_selection(chromosomes, n_keep): return chromosomes[:n_keep] def pairing(parents): pairs = [] i = 0 for i in range(0, len(parents), 2): pairs.append([parents[i], parents[i+1]]) return pairs def genetic(cost_func , extent, population_size, mutation_rate = 0.3, chromosome_length = 2, precision = 13, max_iter = 500): min_val = extent[0] max_val = extent[1] avg_list = [] best_list = [] curr_best = 10000 same_best_count = 0 chromosomes = generate_inital_chromosomes(chromosome_length, max_val, min_val, population_size) for iter in range(max_iter): ranked, costs = rank_chromosomes(cost_func, chromosomes) best, average = population_stats(costs) parents = natural_selection(ranked, population_size) parents = bin_encode_chromosomes(parents, precision, max_val, min_val) pairs = pairing(parents) children = two_point_crossover(pairs) chromosomes = parents + children chromosomes = inv_mutation(chromosomes, mutation_rate) chromosomes = bin_decode_chromosomes(chromosomes, precision, max_val, min_val) print("Generation: ",iter+1," Average: {:.3f}".format(average)," Curr best: {:.3f}".format(best), "[X, Y] = {:.3f} {:.3f}".format(chromosomes[0][0],chromosomes[0][1])) print("-------------------------") avg_list.append(average) if best < curr_best: best_list.append(best) curr_best = best same_best_count = 0 else: same_best_count += 1 best_list.append(best) if(cost_func(chromosomes[0]) < 0.05): avg_list = avg_list[:iter] best_list = best_list[:iter] all_avg_list.append(avg_list) all_best_list.append(best_list) generations_list.append(iter) print("\nSolution found ! Chromosome content: [X, Y] = {:.3f} {:.3f}\n".format(chromosomes[0][0],chromosomes[0][1])) return if same_best_count > 20: print("\nStopped due to convergance.Best chromosome [X, Y] = {:.3f} {:.3f}\n".format(chromosomes[0][0],chromosomes[0][1])) avg_list = avg_list[:iter] best_list = best_list[:iter] all_avg_list.append(avg_list) all_best_list.append(best_list) generations_list.append(iter) return if iter == 499: avg_list = avg_list[:iter] best_list = best_list[:iter] all_avg_list.append(avg_list) all_best_list.append(best_list) generations_list.append(iter) print("\nStopped due to max number of iterations, solution not found. Best chromosome [X, Y] = {:.3f} {:.3f}\n".format(chromosomes[0][0],chromosomes[0][1])) def display_stats(all_avg_list, all_best_list, generations_list): c = 0 colors = ['red', 'green', 'blue', 'yellow', 'orange'] for average_list in all_avg_list: x_axis = list(range(generations_list[c])) y_axis = average_list plt.plot(x_axis, y_axis, linewidth=3, color=colors[c], label=str(c + 1)) plt.title('Average cost function value', fontsize=19) plt.xlabel('Generation', fontsize=10) plt.ylabel('Cost function') c += 1 plt.legend(loc='upper right') plt.show() c = 0 for best_list in all_best_list: x_axis = list(range(generations_list[c])) y_axis = best_list plt.plot(x_axis, y_axis, color=colors[c], label=str(c + 1)) plt.title('Best cost function value', fontsize=19) plt.xlabel('Generation') plt.ylabel('Cost function') c += 1 plt.legend(loc='upper right') plt.show() number_of_chromosomes = [20, 100, 150] all_avg_list = [] generations_list = [] all_best_list = [] run_number = 5 for x in number_of_chromosomes: print("==========================") for k in range(0, run_number): print("\n", k + 1, ": run of genetic algorithm with ", x ," chromosomes.\n") genetic(levy_function, [10, -10], x) display_stats(all_avg_list, all_best_list, generations_list) all_best_list = [] all_avg_list = [] generations_list = []
[ "matplotlib" ]
ef36aa10ece1fcbff5c642451ddcb9595c80b44f
Python
judyliou/CS224W-Analysis-of-Networks
/hw0/hw0_2.py
UTF-8
1,224
2.65625
3
[]
no_license
import snap import numpy as np import matplotlib.pyplot as plt wiki = snap.LoadEdgeList(snap.PNGraph, "wiki-Vote.txt", 0, 1, '\t') degree = [] cnt = [] CntV = snap.TIntPr64V() snap.GetOutDegCnt(wiki, CntV) for i in CntV: if i.GetVal1() != 0 and i.GetVal2() != 0: degree.append(i.GetVal1()) cnt.append(i.GetVal2()) degree = np.array(degree) cnt = np.array(cnt) fig = plt.figure() plt.figure(figsize=(12,8)) ax = plt.gca() ax.scatter(degree, cnt, c='red', alpha=0.5, edgecolors='none', s=80) ax.set_yscale('log') ax.set_xscale('log') ax.set_xlim([degree.min(), degree.max()]) ax.set_title('Out-degree Distribution', fontsize=30) ax.set_xlabel('Degree (log)', fontsize=24) ax.set_ylabel('Count (log)', fontsize=24) plt.savefig('hw0_2.1.png') degree = np.log10(degree) cnt = np.log10(cnt) a, b = np.polyfit(degree, cnt, 1) print('a =', a) print('b =', b) # Make theoretical line to plot x = np.array([degree.min(), degree.max()]) y = a * x + b plt.figure(figsize=(12,8)) plt.plot(degree, cnt, 'ro') plt.plot(x, y, 'b', linewidth=3) plt.xlabel('Degree (log)', fontsize=20) plt.ylabel('Count (log)', fontsize=20) plt.title('Out-degree Distribution', fontsize=30) plt.savefig('hw0_2.2.png')
[ "matplotlib" ]
176b6444afaf6905ea4e304eacac8a6577e970d9
Python
hpqcp/Dryer-Project1
/base/data_preProcess.py
UTF-8
2,343
2.671875
3
[]
no_license
import numpy as np import pandas as pd from pandas import DataFrame import matplotlib.pyplot as plt from functools import reduce ''' 读取EXCEL _path,路径,_sheetNum第几个Sheet , _colName选择列 Return : DataFrame ''' def readExcel(_path,_sheetNum,_colNum=[]): if len(_colNum) <= 0 : dfData = pd.read_excel(_path, sheet_name=_sheetNum) else: dfData = pd.read_excel(_path,sheet_name=_sheetNum ,usecols=_colNum) return dfData ''' 计算统计指标 _path,路径,_sheetNum第几个Sheet , _colName选择列 Return : DataFrame ''' def computeIndex(_df): count = _df.count() max = _df.max() min = _df.min() mean = _df.mean() std = _df.std() dfRtn = DataFrame({'Count':count,'Max':max,'Min':min,'Mean':mean,'Std':std}) return dfRtn '''判断是否有空值,True 有空值 , False 无空值 ''' def isContainMissValue(_df): for i in _df.isnull().any(): if i : return True return False ''' 空值处理 ''' def FillMissValue(_df): return 0 ''' ''' def compute_ChangePoint(_series,_mode="first"): minList = computeIndex(_series).values[:,2] if _mode == "first" : minIndexList = [_series[_series[i] == minList[i]].index.values[0] for i in range(0, _series.shape[1], 1)][:] else: minIndexList = [_series[_series[i] == minList[i]].index.values[-1] for i in range(0, _series.shape[1], 1)][:] # minIndexList = _series[_series[0] == minList[0]].index.values[-1] return minIndexList # return _series # return [_series[_series[i]>minList[2]][i] for i in range(1, len(_series) - 1, 1)][:] # print(minList[0]) # return _series[_series[0]>minList[0] and _series[0].index ][0] ''' ''' def wave_peakTrough(_series): minList = computeIndex(_series).values[:, 2] min1 = [_series[_series[i] == minList[i]].index.values[1] for i in range(0, _series.shape[1], 1)][:] min2 = [_series[_series[i] == minList[i]].index.values[-1] for i in range(0, _series.shape[1], 1)][:] #从最小点往前 max1 = [_series[_series[i] ==max(_series[i])].index.values[-1] for i in range(0, _series.shape[1], 1)][:] max2 = [_series[_series[i] == max(_series[i])].index.values[0] for i in range(0, _series.shape[1], 1)][:] # _series[_series[i] == ] # print(max0,max1) return minIndex
[ "matplotlib" ]
34cf0ab5db0f312f1b57cc5462e535e0a9e87f69
Python
SabyasachiNITD/DIP-LAB
/DAY2/4.py
UTF-8
366
2.609375
3
[]
no_license
import cv2 import numpy as np import matplotlib.pyplot as plt img =cv2.imread("2nd.tif",0) img1 = img - (img & 240) img1 = cv2.equalizeHist(img1) fig=plt.figure() ax1= fig.add_subplot(1,2,1) ax3=fig.add_subplot(1,2,2) ax1.imshow(img,cmap="gray",interpolation=None) ax3.imshow(img1,cmap="gray",interpolation=None) ax1.axis("off") ax3.axis("off") plt.show()
[ "matplotlib" ]
71f6cc6134c49498124001208552b49107976581
Python
EParisot/ft_linear_regression
/train.py
UTF-8
7,182
2.71875
3
[]
no_license
import os import random import json import time import click import matplotlib.pyplot as plt import matplotlib.animation as animation import time from threading import Thread class Trainer(object): def __init__(self, data_file, sep, plot, model_file, epochs, learning_rate): self.data_file = data_file self.sep = sep self.plot = plot self.model_file = model_file self.epochs = epochs self.learning_rate = learning_rate self.learning_rate_hist = [] self.model = {"theta_0": 0.0, "theta_1": 0.0, "x_min": 0, "x_max": 0, "y_min": 0, "y_max": 0} self.x_data = [] self.y_data = [] self.labels = [] self.acc = [] self.loss = [] # Read data self.read_data() if len(self.x_data) != len(self.y_data) or len(self.x_data) == 0: print("Error : no valid data found in %s" % self.data_file) exit(0) # Read model if len(self.model_file): self.read_model() def read_data(self): if os.path.exists(self.data_file): with open(self.data_file) as f: for line in f: line = line.replace('\n', '') line_data = line.split(self.sep) if len(line_data) == 2 and all([value.isdigit() for value in line_data]): self.x_data.append(int(line_data[0])) self.y_data.append(int(line_data[1])) elif len(line_data) == 2: self.labels.append(line_data[0]) self.labels.append(line_data[1]) self.normalise() def normalise(self): x_min = min(self.x_data) x_max = max(self.x_data) y_min = min(self.y_data) y_max = max(self.y_data) self.model["x_min"] = x_min self.model["x_max"] = x_max self.model["y_min"] = y_min self.model["y_max"] = y_max for i, _ in enumerate(self.x_data): self.x_data[i] -= x_min self.x_data[i] /= (x_max - x_min) self.y_data[i] -= y_min self.y_data[i] /= (y_max - y_min) def read_model(self): if os.path.exists(self.model_file): with open(self.model_file, "r") as f: check = f.read(2) f.seek(0) if len(check) != 0 and check[0] != "\n" and check != "{}": data = json.load(f) self.model["theta_0"] = data["theta_0"] self.model["theta_1"] = data["theta_1"] self.model["x_min"] = data["x_min"] self.model["x_max"] = data["x_max"] self.model["y_min"] = data["y_min"] self.model["y_max"] = data["y_max"] def save_model(self): if not os.path.exists(self.model_file): mode = "w+" else: mode = "w" with open(self.model_file, mode) as f: json.dump(self.model, f) def animate(self): plt.clf() x_data, y_data = [list(t) for t in zip(*sorted(zip(self.x_data, self.y_data)))] plt.scatter(x_data, y_data) if len(self.labels): plt.xlabel(self.labels[0]) plt.ylabel(self.labels[1]) # result x1 = min(x_data) y1 = self.estimate(x1) x2 = max(x_data) y2 = self.estimate(x2) plt.plot([x1, x2], [y1, y2], c="r") plt.twinx().twiny() # plot learning rate history plt.plot(self.learning_rate_hist, label="Learning Rate") plt.legend() plt.draw() plt.pause(1/self.epochs) def train(self): theta_0 = 0.0 theta_1 = 0.0 # read model if self.model["theta_0"] != theta_0 or self.model["theta_1"] != theta_1: theta_0 = self.model["theta_0"] theta_1 = self.model["theta_1"] # process train self.train_loop() # write model file self.save_model() # plot result if self.plot: plt.figure("Train history") plt.plot(self.acc, label="acc") plt.plot(self.loss, label="loss") plt.legend() plt.show(block=True) def train_loop(self): # shuffle datas l = list(zip(self.x_data, self.y_data)) random.shuffle(l) x_data, y_data = zip(*l) # loop on epochs for epoch in range(self.epochs): print("Training... Epoch : %d" % (epoch + 1)) loss, acc = self.train_epoch(x_data, y_data) self.acc.append(acc) self.loss.append(loss) self.learning_rate_hist.append(self.learning_rate) # print print("loss : %f ; acc : %f" % (round(loss, 2), round(acc, 2))) if self.plot: self.animate() def train_epoch(self, X, Y): n = float(len(X)) # cost b_vect = [] a_vect = [] for i, _ in enumerate(X): error_b = self.estimate(X[i]) - Y[i] b_vect.append(error_b) error_a = error_b * X[i] a_vect.append(error_a) loss_b_prime = sum(b_vect) loss_a_prime = sum(a_vect) # gradient descent tmp_theta_0 = self.learning_rate * loss_b_prime / n tmp_theta_1 = self.learning_rate * loss_a_prime / n self.model["theta_0"] -= tmp_theta_0 self.model["theta_1"] -= tmp_theta_1 # metrics new_loss_tab = [] acc_tab = [] for i, _ in enumerate(X): error = self.estimate(X[i]) - Y[i] error_sq = error ** 2 new_loss_tab.append(error_sq) acc_tab.append(1) new_loss = sum(new_loss_tab) / n acc = float(sum(acc_tab) / n) # adjust LR if len(self.loss) > 0: if new_loss >= self.loss[-1]: self.model["theta_0"] += self.learning_rate * tmp_theta_0 / n self.model["theta_1"] += self.learning_rate * tmp_theta_1 / n self.learning_rate *= 0.5 else: self.learning_rate *= 1.05 return new_loss, acc def estimate(self, x): y = self.model["theta_0"] + self.model["theta_1"] * x return y @click.command() @click.argument("data_file", type=click.Path(exists=True)) @click.argument("model_file", default="model.json") @click.option("-sep", "sep", default=",", help="csv separator") @click.option("-p", "plot", is_flag=True, help="plot data") @click.option("-e", "epochs", default=1, help="epochs to train") @click.option("-l", "learning_rate", default=0.1, help="learning rate") def main(data_file, sep, plot, model_file, epochs, learning_rate): trainer = Trainer(data_file, sep, plot, model_file, epochs, learning_rate) if trainer.plot: plt.ion() trainer.train() if __name__ == "__main__": main()
[ "matplotlib" ]
2b371258ebe17251c416b9ebb80255cf1e6774df
Python
Lyuyangdaisy/DS_package
/chinese/output_in_3d_plot/app_3d_graph.py
UTF-8
5,021
2.78125
3
[ "MIT" ]
permissive
#coding = utf-8 # Author: Hu Baitao #Function : app on browser drawing 3d graph #Date : 2020-08-27 #zhuliang3000.xlsx为案例表 import xlrd import plotly.graph_objs as go import numpy as np import dash import dash_core_components as dcc import dash_html_components as html import dash_table from dash.dependencies import Input, Output, State import pandas as pd #输入函数 def para_input(): print('请输入数据文件路径,.xlsx文件') #D:\homework\Research 2020 S\10 cycle old alg\zhuliang3000.xlsx filename = input() return filename #读取表格,处理数据 def read_xlsx(filename): # file_object = xlrd.open_workbook(filename) # sheetnames = file_object.sheet_names() # sheetwork = file_object.sheet_by_name(sheetnames[0]) # nrows = sheetwork.nrows # ncols = sheetwork.ncols # data = [] # data_title = [] # # for i in range(ncols): # data_title.append(sheetwork.cell_value(0,i)) # data.append(data_title) # # for j in range(ncols): # new_row_data = [] # for k in range(1,nrows): # new_row_data.append(sheetwork.cell_value(k,j)) # data.append(new_row_data) data = pd.read_excel(filename) return data # 展示数据 def generate_table(dataframe, max_rows): return html.Table([ html.Thead( html.Tr([html.Th(col) for col in dataframe.columns]) ), html.Tbody([ html.Tr([ html.Td(dataframe.iloc[i][col]) for col in dataframe.columns ]) for i in range(min(len(dataframe), max_rows)) ]) ]) def generate_graph(dataframe, x_value, y_value, z_value): trace = go.Scatter3d( x=dataframe[x_value], y=dataframe[y_value], z=dataframe[z_value], mode='markers', marker=dict( size=5, color=dataframe[z_value], # set color to an array/list of desired values colorscale='Viridis' ) ) layout = go.Layout(title='主量元素分析', scene=dict( xaxis_title=x_value, yaxis_title=y_value, zaxis_title=z_value ), height= 800, width= 1000 ) fig = go.Figure(data=[trace], layout=layout) return fig def main(): filename = para_input() df = read_xlsx(filename) external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div(children=[ html.H1( children='3D Graph', style = { 'textAlign': 'center', # 'color': colors['text'] } ), html.H4(children='主量3000'), dcc.Dropdown( id='num_row', options=[{'label': 'show first 10 rows', 'value': 10}, {'label': 'show first 25 rows', 'value': 25}, {'label': 'show first 50 rows', 'value': 50}, {'label': 'show first 100 rows', 'value': 100}], value=10 ), dash_table.DataTable( id='table', columns=[{"name": i, "id": i} for i in df.columns], data=df.to_dict('records'), page_size =10, ), html.Label('选择三个主元素'), dcc.Checklist( id='box-section', options=[ {'label': 'TRUE VALUE', 'value': 'TRUE VALUE'}, {'label': 'SIO2(WT%)', 'value': 'SIO2(WT%)'}, {'label': 'TIO2(WT%)', 'value': 'TIO2(WT%)'}, {'label': 'AL2O3(WT%)', 'value': 'AL2O3(WT%)'}, {'label': 'CR2O3(WT%)', 'value': 'CR2O3(WT%)'}, {'label': 'FEOT(WT%)', 'value': 'FEOT(WT%)'}, {'label': 'CAO(WT%)', 'value': 'CAO(WT%)'}, {'label': 'MGO(WT%)', 'value': 'MGO(WT%)'}, {'label': 'MNO(WT%)', 'value': 'MNO(WT%)'}, {'label': 'K2O(WT%)', 'value': 'K2O(WT%)'}, {'label': 'NA2O(WT%)', 'value': 'NA2O(WT%)'} ], value=['TRUE VALUE', 'SIO2(WT%)','TIO2(WT%)'] ), html.Button(id='submit-button-state', n_clicks=0,children='Submit'), dcc.Graph( id='graph with main element', figure= generate_graph(df,'TRUE VALUE','SIO2(WT%)','TIO2(WT%)') ) ]) @app.callback( Output('table','page_size'), [Input('num_row', 'value')]) def update_row_num(row_num): return row_num @app.callback( Output('graph with main element', 'figure'), [Input('submit-button-state', 'n_clicks')], [State('box-section', 'value')]) def update_figure(n_clicks, box_value): fig = generate_graph(df, box_value[0], box_value[1], box_value[2]) return fig app.run_server(debug=True) if __name__=='__main__': main()
[ "plotly" ]
cdf95c826bd71984c2e88dd1a9974efb53573e7e
Python
nihaomiao/PRICAI18_MVF-CasCNN
/MVFCasCNN/SaveHeatmapToFig.py
UTF-8
1,743
2.796875
3
[ "MIT" ]
permissive
# Transforming heatmap Matrix to Figure and saving them # Author: Haomiao Ni import os import matplotlib.pyplot as plt from scipy.sparse import load_npz, lil_matrix from scipy.signal import medfilt2d import numpy as np def run(MatPath, FigPath, heatthre, medflag): dpi = 1000.0 FileList = os.listdir(MatPath) FileList.sort() plt.ioff() fig = plt.figure(frameon=False) for FileName in FileList: print FileName if os.path.splitext(FileName)[1] == '.npz': file = os.path.join(MatPath, FileName) heatmap = load_npz(file) heatmap = lil_matrix(heatmap) heatmap = np.array(heatmap.todense()) if heatthre: # threshold 0.5 heatmap[np.logical_and(heatmap<0.5, heatmap>0)] = 0.1 if medflag: # post processing heatmap = medfilt2d(heatmap, (3, 3)) heatmap[0, 0] = 1.0 fig.clf() fig.set_size_inches(heatmap.shape[1]/dpi, heatmap.shape[0]/dpi) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) cm = plt.cm.get_cmap('jet') ax.imshow(heatmap, cmap=cm, aspect='auto') postfix = FileName.split('_')[-1] FigName = FileName.replace(postfix,"FIG.jpg") fig.savefig(os.path.join(FigPath, FigName), dpi=int(dpi)) if __name__ == "__main__": heatthre = False # choose False to show those pixels whose predictions are less than 0.5 medflag = False # choose True to median filter heatmaps MatPath = '' FigPath = "" if not os.path.exists(FigPath): os.makedirs(FigPath) run(MatPath, FigPath, heatthre, medflag)
[ "matplotlib" ]
53d6cd6a98dbe37ab48d0d21207d35e5f618d751
Python
robertjankowski/social-media-influence-on-covid-pandemic
/scripts/visualization.py
UTF-8
7,338
2.6875
3
[ "MIT" ]
permissive
import sys import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns sys.path.append("../") from scripts.network import degree_node_size, degree_selected_nodes_size from scripts.virtual_layer import * DEFAULT_CONFIG = { 'font.size': 16, 'font.family': 'sans-serif', 'font.sans-serif': ['DejaVu Sans'] } def load_matplotlib(): plt.rcParams.update(DEFAULT_CONFIG) plt.rc('text', usetex=True) plt.rc('figure', figsize=(8, 6)) def save_figure(filename: str): """ Save matplotlib figure in correct extension :param filename: Name of output plot """ extension = filename.split('.')[-1] if extension == "png": plt.savefig(filename, bbox_inches='tight', dpi=300) elif extension == "pdf" or extension == "svg": plt.savefig(filename, bbox_inches='tight') else: print('Error. Cannot save figure, unsupported extension: [{}]'.format(extension)) def draw_network(g: nx.Graph, ax=None, pos=None, node_size_list=None, node_size_scale=10, edge_alpha=0.1, node_border_color='black', node_border_width=0.5): """ Draw nx.Graph on matplotlib axis :param g: nx.Graph :param ax: matplotlib canvas :param pos: position of nodes (e.g. from nx.spring_layout(g)) :param node_size_list: list of node sizes :param node_size_scale: float :param edge_alpha: float :param node_border_color: float :param node_border_width: float """ if pos is None: pos = nx.spring_layout(g) if node_size_list is None: node_size_list = degree_node_size(g, node_size_scale) nx.draw_networkx_edges(g, ax=ax, alpha=edge_alpha, pos=pos, connectionstyle='arc3, rad = 0.1') nx.draw_networkx_nodes(g, node_size=node_size_list, ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width) def draw_epidemic_layer(g: nx.Graph, ax=None, pos=None, node_size_scale=10, edge_alpha=0.1, node_border_color='black', node_border_width=0.5): if pos is None: pos = nx.spring_layout(g) susceptible_nodes = [] infected_nodes = [] quarantined_nodes = [] recovered_nodes = [] dead_nodes = [] for node in g.nodes: node_status = g.nodes[node]['l1_status'] if node_status is None: print('Node should have `l1_status` field. Exiting...') return if node_status == 'S': susceptible_nodes.append(node) elif node_status == 'I': infected_nodes.append(node) elif node_status == 'Q': quarantined_nodes.append(node) elif node_status == 'R': recovered_nodes.append(node) elif node_status == 'D': dead_nodes.append(node) susceptible_nodes_sizes = degree_selected_nodes_size(g, susceptible_nodes, node_size_scale) infected_nodes_sizes = degree_selected_nodes_size(g, infected_nodes, node_size_scale) quarantined_nodes_sizes = degree_selected_nodes_size(g, quarantined_nodes, node_size_scale) recovered_nodes_sizes = degree_selected_nodes_size(g, recovered_nodes, node_size_scale) dead_nodes_sizes = degree_selected_nodes_size(g, dead_nodes, node_size_scale) nx.draw_networkx_edges(g, ax=ax, alpha=edge_alpha, pos=pos, connectionstyle='arc3,rad=0.1', arrowstyle='<->') # Susceptible nodes nx.draw_networkx_nodes(g, nodelist=susceptible_nodes, node_size=susceptible_nodes_sizes, node_color='orange', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='susceptible') # Infected nodes nx.draw_networkx_nodes(g, nodelist=infected_nodes, node_size=infected_nodes_sizes, node_color='lightblue', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='infected') # Quarantined nodes nx.draw_networkx_nodes(g, nodelist=quarantined_nodes, node_size=quarantined_nodes_sizes, node_color='brown', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='quarantined') # Recovered nodes nx.draw_networkx_nodes(g, nodelist=recovered_nodes, node_size=recovered_nodes_sizes, node_color='green', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='recovered') # Dead nodes nx.draw_networkx_nodes(g, nodelist=dead_nodes, node_size=dead_nodes_sizes, node_color='black', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='dead') def draw_virtual_layer(g: nx.Graph, ax=None, pos=None, node_size_scale=10, edge_alpha=0.1, node_border_color='black', node_border_width=0.5): if pos is None: pos = nx.spring_layout(g) positive_nodes = [] negative_nodes = [] for node in g.nodes: node_opinion = get_opinion(g, node) if node_opinion == 1: positive_nodes.append(node) elif node_opinion == -1: negative_nodes.append(node) positive_node_sizes = degree_selected_nodes_size(g, positive_nodes, node_size_scale) negative_nodes_sizes = degree_selected_nodes_size(g, negative_nodes, node_size_scale) nx.draw_networkx_edges(g, ax=ax, alpha=edge_alpha, pos=pos, connectionstyle='arc3,rad=0.1', arrowstyle='<->', edgelist=g.edges) # Positive opinions nx.draw_networkx_nodes(g, nodelist=positive_nodes, node_size=positive_node_sizes, node_color='red', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='+1') # Negative opinions nx.draw_networkx_nodes(g, nodelist=negative_nodes, node_size=negative_nodes_sizes, node_color='blue', ax=ax, pos=pos, edgecolors=node_border_color, linewidths=node_border_width, label='-1') def plot_heatmap(array, xtickslabels: list, ytickslabels: list, colorscale_label: str, title_label: str): """ Plot heatmap from 2d array with x and y ticks labels :param array: 2d array :param xtickslabels: :param ytickstlabels: :param colorscale_label: :param title_label: """ xticks_labels = ['{:.2f}'.format(l) for l in xtickslabels] yticks_labels = ['{:.2f}'.format(b) for b in ytickslabels] sns.heatmap(array, annot=False, cmap="YlGnBu", yticklabels=yticks_labels, xticklabels=xticks_labels, vmin=0, vmax=1, cbar_kws={'label': colorscale_label}) plt.title(title_label) def plot_imshow(df, xlabel, ylabel, cmap=mpl.cm.Reds): plt.imshow(df, cmap=cmap) xticks = [float(x) for x in df.columns] plt.xticks(range(len(xticks)), xticks) yticks = [int(x) for x in df.index] plt.yticks(range(len(yticks)), yticks) plt.colorbar() plt.xlabel(xlabel, fontsize=20) plt.ylabel(ylabel, fontsize=20)
[ "matplotlib", "seaborn" ]
886b4d5566dfbeb3178536b193c41cf34a61c34d
Python
hectorgarbisu/TFRegresion-sine
/TFRegresion1.py
UTF-8
2,235
2.71875
3
[]
no_license
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import random dataLenght = 100 step = 10 alpha = 0.3 nW_hidden = 10 # t = np.arange(0,20.0, 0.1) # data = np.sin(t) t = range(dataLenght) data = [np.sin(2*np.pi*i/dataLenght)/2 for i in range(dataLenght)] x = tf.placeholder("float", [None, step]) y_ = tf.placeholder("float", [None, 1]) # W = tf.Variable(np.float32(np.random.rand(step, 1))*0.1) # b = tf.Variable(np.float32(np.random.rand(1))*0.1) # y = tf.sigmoid(tf.matmul(x, W) + b) W_hidden = tf.Variable(tf.truncated_normal([step, nW_hidden])) b_hidden = tf.Variable(tf.truncated_normal([nW_hidden])) W_output = tf.Variable(tf.truncated_normal([nW_hidden, 1])) b_output = tf.Variable(tf.truncated_normal([1])) y_hidden = tf.tanh(tf.matmul(x, W_hidden) + b_hidden) # y = tf.sigmoid(tf.matmul(y_hidden, W_output) + b_output) y = tf.tanh(tf.matmul(y_hidden, W_output) + b_output) error_measure = tf.reduce_sum(tf.square(y_ - y)) # cross_entropy = -tf.reduce_sum(y_*tf.log(y)) train = tf.train.GradientDescentOptimizer(alpha).minimize(error_measure) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) print "----------------------" print " Start training... " print "----------------------" for epoch in range(1000): for jj in range((len(data)-step)): xs = np.atleast_2d([data[(i+jj)%len(data)] for i in range(step)]) ys = np.atleast_2d(data[(step+jj)%len(data)]) # print xs, ys sess.run(train, feed_dict={x: xs, y_: ys}) print sess.run(error_measure, feed_dict={x: xs, y_: ys}) """if epoch % 50 == 0: print "Iteration #:", epoch, "Error: ", sess.run(error_measure, feed_dict={x: xs, y_: ys}) print sess.run(y, feed_dict={x: xs}) print ys print "----------------------------------------------------------------------------------" """ print "----------------------" print " Start testing... " print "----------------------" outs = data[:step] for i in range(len(data)): xs = np.atleast_2d(outs[i:]) #print xs out = sess.run(y, feed_dict={x: xs}) outs.append(out[0][0]) plt.plot(t, data) plt.plot(step-1, outs[step-1], 'ro') plt.plot(t, outs[:len(data)]) plt.show()
[ "matplotlib" ]
5c540d0f01bf2aca126d822e09a90d99907c1d71
Python
JNU-Room/ML
/ML_MH/study/minimizingCost.py
UTF-8
589
2.921875
3
[]
no_license
import tensorflow as ts X = [1.,2.,3.] Y = [1.,2.,3.] m = len(X) W = ts.placeholder(ts.float32) hypothesis = ts.mul(W,X) cost = ts.reduce_sum(ts.pow(hypothesis-Y,2))/m init = ts.initialize_all_variables() sess = ts.Session() sess.run(init) W_val, cost_val = [], [] for i in range(-30, 51): xPos = i*0.1 yPos = sess.run(cost, feed_dict={W: xPos}) print('{:3.1f}, {:3.1f}'.format(xPos, yPos)) W_val.append(xPos) cost_val.append(yPos) sess.close() import matplotlib.pyplot as plt plt.plot(W_val, cost_val, 'ro') plt.ylabel('cost') plt.xlabel('W') plt.show()
[ "matplotlib" ]
35947b84944284c29ab4309fa1556bc761266ee3
Python
nitant200/Analysis_of_Faculty_Participation_Data
/apps/syllabus.py
UTF-8
1,811
3.21875
3
[ "MIT" ]
permissive
import streamlit as st import pandas as pd import matplotlib.pyplot as plt import datetime def app(): st.title('Syllabus') st.write('This page will show the graphs and tables based on the Faculty Particpation in Syllabus') data = st.file_uploader("Upload your relevant excel file") df = pd.read_csv(data) u1 = df['NameofUniversity'].value_counts() st.write('**Graph of University-Wise Count of Teacher attending Syllabus**') st.bar_chart(u1) df['Date'] = df['Date'].astype('datetime64[ns]') df_1 = df['Date'].dt.year # df_1 col = [] for i in df_1: col.append(i) col=list(set(col)) df1=pd.DataFrame(data=None,columns=['Count']) for i in col: mask = (df['Date'] > str(i)+'0615') & (df['Date'] <= str(i)+'1215') mask1 = (df['Date'] > str(i)+'1215') & (df['Date'] <= str(i+1)+'0615') test5=df.loc[mask] test6=df.loc[mask1] c1=test5['Date'] c2=test6['Date'] t1=c1.shape[0] t2=c2.shape[0] t1=pd.DataFrame([t1],columns=['Count'],index=['ODD sem '+str(i)]) df1=df1.append(pd.DataFrame(t1)) t2=pd.DataFrame([t2],columns=['Count'],index=['EVEN sem '+str(i)]) df1=df1.append(pd.DataFrame(t2)) st.write('**Graph of Semester-Wise Count of Teacher attending Syllabus**') st.bar_chart(df1) df2=pd.DataFrame(data=None,columns=['Count']) for i in col: mask = (df['Date'] > str(i)+'0615') & (df['Date'] <= str(i+1)+'0615') test5=df.loc[mask] c1=test5['Date'] t1=c1.shape[0] t1=pd.DataFrame([t1],columns=['Count'],index=[str(i)+'-'+str(i+1)]) df2=df2.append(pd.DataFrame(t1)) st.write('**Graph of Year-Wise Count of Teacher attending Syllabus**') st.bar_chart(df2)
[ "matplotlib" ]
4a474398d1c436995b0449b02c9b111728aa1fc1
Python
yling01/analysis_template
/5clusterAnalysis/source/Cluster.py
UTF-8
16,102
3.140625
3
[]
no_license
''' Tim Ling Last update: 2020.07.03 ''' import numpy as np from scipy.spatial.distance import pdist import math import matplotlib.pyplot as plt import colorsys from scipy.spatial import distance ''' Parameters: projection: (np.array [n observations, m dimensions]) projection of data points radius: (float) cutoff for two data points to be neighbors min_sample_number: (int) the minimum number of data points that a cluster has to have Returns: n_cluster_: (np.array) the cluster information of all the data points n_noise_: (np.array) the noise information of all the data points Does: Using sklearn package to do cluster analysis Note: This function is currently not working, it needs to be tuned further for proper function. ''' def cluster(projection, radius=0.5, min_sample_number=100): db = DBSCAN(eps=radius, min_samples=min_sample_number).fit(projection) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) n_noise_ = list(labels).count(-1) return n_clusters_, n_noise_ ''' Parameters: num_colors: (int) the number of color to return Returns: colors: (np.array [n, 3]) the rgb values of colors Does: Randomly generate n color rgb's Note: This should be replaced with a more stable function where colors should be as distinct as 'possible'. ''' def get_colors(num_colors): colors=[] for i in np.arange(0., 360., 360. / num_colors): hue = i/360. lightness = (50 + np.random.rand() * 10)/100. saturation = (90 + np.random.rand() * 10)/100. colors.append(colorsys.hls_to_rgb(hue, lightness, saturation)) return colors ''' Parameters: i: (int) the ith index j: (int) the jth index n: (int) the number of data points Returns: index: (int) the index of the distance in the compact distance matrix Does: Finds the index of the distance between data i and j in the compact distance matrix ''' def square_to_condensed(i, j, n): assert i != j, "no diagonal elements in condensed matrix" if i < j: i, j = j, i return int(n*j - j*(j+1)/2 + i - 1 - j) ''' Parameters: distance_mtx: (np.array) the compact distance mtx of data points density: (np.array) the density of all cells distance_cutoff: (float) distance_cutoff to calculate rho Returns: rho: (np.array) the density of the data points rho_order: (np.array) the array to sort rho nearest_neighbor: (np.array) the nearest neighbor for all data points delta: (np.array) the shortest distance to the point with a higher rho value Does: Calculates rho, delta, rho_order and nearest_neighbor Notes: The point with the highest density has to be selected as the cluster center because it does not have a nearest neighbor. It is a known issue that the program will fail if this point is not selected as the cluster center. Reference: Rodriguez, A., and A. Laio. “Clustering by Fast Search and Find of Density Peaks.” Science, vol. 344, no. 6191, 2014, pp.1492–1496., doi:10.1126/science.1242072. ''' def calculate_rho_delta(distance_mtx, density, distance_cutoff): max_distance = np.amax(distance_mtx) rho = np.copy(density) num_datapoint = len(density) delta = np.full(num_datapoint,max_distance) nearest_neighbor = np.ones(num_datapoint, dtype=int) * -1 for i in range(num_datapoint-1): for j in range(i + 1, num_datapoint): index_distance_mtx = square_to_condensed(i, j, num_datapoint) ij_distance = distance_mtx[index_distance_mtx] exponent = ij_distance / distance_cutoff adder = density[j] * math.exp(-exponent**2) rho[i] = rho[i] + adder rho[j] = rho[j] + adder rho_order = np.flip(np.argsort(rho)) rho_sorted = rho[rho_order] delta[rho_order[0]] = -1.0 for i in range(1, num_datapoint): for j in range(0, i): rho_orderI = rho_order[i] rho_orderJ = rho_order[j] index_distance_mtx = square_to_condensed(rho_orderI, rho_orderJ, num_datapoint) ij_distance = distance_mtx[index_distance_mtx] if ij_distance < delta[rho_orderI]: delta[rho_orderI] = ij_distance nearest_neighbor[rho_orderI] = rho_orderJ nearest_neighbor[rho_order[0]] = 0 delta[rho_order[0]] = np.amax(delta) assert(not np.any(nearest_neighbor == -1)) return rho, rho_order, nearest_neighbor, delta ''' Parameters: event: a click event Returns: None Does: Enables the customer selection of cluster center. The cluster centers are labelled green. ''' def onpick3(event): ind = event.ind current_color = col.get_facecolors()[ind] if current_color[0][0]: #selecting a new point col._facecolors[ind,:] = (0, 1, 0, 1) #plots the point green else: #deselect a old point col._facecolors[ind,:] = (1, 0, 0, 1) #plots the point green fig.canvas.draw() ''' Parameters: density_clean: (np.array) the density mtx distance_cutoff_percent: (float) the percent of data points to drop delta_cutoff: (float) in automated cluster mode, the cutoff for delta interactive: (bool) True to select cluster center in the interactive mode Returns: rho: (np.array) the density of the data points delta: (np.array) the shortest distance to the point with a higher rho value cluster_center_index: (list) stores the cluster center index distance_mtx_condensed: (np.array) compact distance list distance_cutoff: (float) distance_cutoff to calculate rho Does: Implementation of the density peak based clustering algorithm Reference: Rodriguez, A., and A. Laio. “Clustering by Fast Search and Find of Density Peaks.” Science, vol. 344, no. 6191, 2014, pp.1492–1496., doi:10.1126/science.1242072. ''' def DB_cluster(density_clean, distance_cutoff_percent=0.02, delta_cutoff=0.5, interactive=False): distance_mtx_condensed = pdist(density_clean[:,0:-1]) density = density_clean[:,-1] cluster_center_index = [] num_datapoint = len(density) cluster = np.full(num_datapoint, -1) num_cluster = 0 distance_cutoff_index = math.ceil(distance_cutoff_percent * len(distance_mtx_condensed)) distance_cutoff = np.sort(distance_mtx_condensed)[distance_cutoff_index] rho, rho_order, nearest_neighbor, delta = calculate_rho_delta(distance_mtx_condensed, density, distance_cutoff) if interactive: global fig, axis, col fig, axis = plt.subplots(dpi=200) mask = delta > delta_cutoff color = np.array([1, 0, 0, 1] * num_datapoint).reshape(-1, 4) #original poitns: all red for index, decider in enumerate(mask): if decider: color[index] = [0, 1, 0, 1] #color those above threshold gree col = axis.scatter(rho, delta, c=color, marker='.', picker=True) axis.set_title("Decision Graph", fontsize='xx-large') axis.set_ylabel(r"$\delta$", fontsize='x-large') axis.set_xlabel(r"$\rho$", fontsize='x-large') fig.canvas.mpl_connect('pick_event', onpick3) plt.show() for index, point_color in enumerate(col.get_facecolors()): point_color = point_color.flatten() if not point_color[0]: #if green, meaning selected num_cluster += 1 cluster[index] = num_cluster cluster_center_index.append(index) plt.close('all') else: for i in range(num_datapoint): if delta[i] >= delta_cutoff: num_cluster += 1 cluster[i] = num_cluster cluster_center_index.append(i) for i in range(num_datapoint): index = rho_order[i] if cluster[index] == -1: cluster[index] = cluster[nearest_neighbor[index]] assert(not np.any(cluster == -1)) return rho, delta, cluster, cluster_center_index, distance_mtx_condensed, distance_cutoff ''' Parameters: cluster: (np.array) the cluster assignment of the data points distance_mtx_condensed: (np.array) compact distance list rho: (np.array) density of the data points on the decision graph distance_cutoff: (float) distance_cutoff to calculate rho Returns: halo: (np.array) the halo of the data points Does: Calculates the halo of the data points Reference: Rodriguez, A., and A. Laio. “Clustering by Fast Search and Find of Density Peaks.” Science, vol. 344, no. 6191, 2014, pp.1492–1496., doi:10.1126/science.1242072. ''' def calculate_halo(cluster, distance_mtx_condensed, distance_cutoff, rho): num_cluster = len(np.unique(cluster)) num_datapoint = len(cluster) halo = np.copy(cluster) if num_cluster > 1: bord_rho = np.zeros(num_cluster) for i in range(num_datapoint - 1): for j in range(i + 1, num_datapoint): index_distance_mtx = square_to_condensed(i, j, num_datapoint) if (cluster[i] != cluster[j]) and (distance_mtx_condensed[index_distance_mtx] < distance_cutoff): rho_ave = 0.5 * (rho[i] + rho[j]) if rho_ave > bord_rho[cluster[i] - 1]: bord_rho[cluster[i] - 1] = rho_ave if rho_ave > bord_rho[cluster[j] - 1]: bord_rho[cluster[j] - 1] = rho_ave for i in range(num_datapoint): if rho[i] < bord_rho[cluster[i] - 1]: halo[i] = 0 for i in range(num_cluster): nc = 0 nh = 0 for j in range(num_datapoint): if cluster[j] == i: nc += 1 if halo[j] == i: nh += 1 return halo ''' Parameters: rho: (np.array) the density of the data points delta: (np.array) the shortest distance to the point with a higher rho value cluster_center_index: (list) stores the cluster center index file_name: (str) the file name of the decision graph dir_name: (str) the directory name to store the file Returns: None Does: Draws the decision grpah ''' def draw_clustered_decision_graph(rho, delta, cluster_center_index, file_name, dir_name): file_name = dir_name + '/' + file_name assert (len(rho) == len(delta)) fig = plt.figure(figsize = (10, 10), dpi = 300) left, bot, right, top = (0.2, 0.2, 0.8, 0.8) axis = fig.add_axes([left, bot, right, top]) num_datapoint = len(rho) color = get_colors(len(cluster_center_index)) mask = np.isin(np.arange(num_datapoint), cluster_center_index) axis.scatter(rho[~mask], delta[~mask], c="black", marker='.') axis.scatter(rho[mask], delta[mask], c=color, marker='.') axis.set_title("Clustered Decision Graph", fontsize='xx-large') axis.set_ylabel(r"$\delta$", fontsize='x-large') axis.set_xlabel(r"$\rho$", fontsize='x-large') fig.savefig(file_name, bbox_inches='tight') ''' Parameters: cluster_assignment: (np.array) the cluster assignment for all data points Returns: The population for all clusters identified Does: Calculates the population for all clusters ''' def calculate_population(cluster_assignment): frame_length = len(cluster_assignment) population = [] for i in np.unique(cluster_assignment): if i == 0: continue population.append(len(np.where(cluster_assignment == i)[0]) / frame_length * 100) population.sort(reverse=True) return population ''' Parameters: projection: (np.array) projection of the data points cluster: (np.array) cluster assignment of the data points density_cube: (np.array) the density matrix along with the axis Returns: projection_cluster_assignment: (np.array) the assignment of cluster of each projection Does: Puts the data points into the clusters Reference: Rodriguez, A., and A. Laio. “Clustering by Fast Search and Find of Density Peaks.” Science, vol. 344, no. 6191, 2014, pp.1492–1496., doi:10.1126/science.1242072. ''' def assign_projection_cluster(projection, cluster, density_cube): assert len(cluster) == len(density_cube) cube_matrix = density_cube[:,0:-1] dimension = cube_matrix.shape[1] projection_cluster_assignment = np.zeros(len(projection), dtype=int) for projection_index, data in enumerate(projection): in_range = True min_dist_index = np.argmin(distance.cdist([data], cube_matrix, 'euclidean')[0]) for i in range(dimension): measurement = np.unique(cube_matrix[:,i]) if round(abs(data[i] - cube_matrix[min_dist_index][i]), 16) >= round(0.5 * (measurement[1] - measurement[0]), 16): in_range = False break if in_range: projection_cluster_assignment[projection_index] = cluster[min_dist_index] return projection_cluster_assignment ''' Parameters: n_clusters: (int) the number of clusters to get dihedral: (np.array) the dihedral angles of the residues cluster_assignment: (np.array) cluster assignment of all data points Returns: dihedral_clusters: (np.array) the original dihedral angles in the cluster zero_cluster_dihedral: (np.array) the dihedral angles that are not in any cluter Does: Obtain the clusters on the original dihedral angles ''' def get_top_clusters(n_clusters, dihedral, cluster_assignment): zero_cluster_indices = np.argwhere(cluster_assignment==0) zero_cluster_dihedral = dihedral[zero_cluster_indices] cluster_assignment = np.delete(cluster_assignment, zero_cluster_indices) dihedral = np.delete(dihedral, zero_cluster_indices, axis=0) clusters, cluster_point_count = np.unique(cluster_assignment, return_counts=True) assert n_clusters <= len(clusters) assert len(dihedral) == len(cluster_assignment) clusters_sorted = clusters[np.flip(np.argsort(cluster_point_count))] dihedral_clusters = [] for i in range(n_clusters): cluster = clusters_sorted[i] point_indices = np.argwhere(cluster_assignment == cluster) dihedral_cluster = dihedral[point_indices.flatten()] dihedral_clusters.append(dihedral_cluster) return dihedral_clusters, zero_cluster_dihedral ''' Parameters: density_clean: (np.array) the clean density mtx projection: (np.array) projection of the data points file_name: (str) the file name of the decision graph dir_name: (str) the directory name to store the file Returns: projection_cluster_assignment: (np.array) the assignment of cluster of each projection Does: A wrapper that calls multiple functions to get the clustering results ''' def get_cluster_assignment(density_clean, projection, file_name, interactive, dir_name): rho, delta, cluster, cluster_center_index, distance_mtx_condensed, distance_cutoff = DB_cluster(density_clean, interactive=interactive) halo = calculate_halo(cluster, distance_mtx_condensed, distance_cutoff, rho) draw_clustered_decision_graph(rho, delta, cluster_center_index, file_name, dir_name) return assign_projection_cluster(projection, cluster, density_clean), cluster def write_cluster_ndx(fileName, cluster_assignment): cluster, count = np.unique(cluster_assignment, return_counts=True) cluster = cluster[1:] count = count[1:] cluster = cluster[np.argsort(count)] with open(fileName, "wb+") as fo: fo.write(b"[ state 0 ]\n") cluster_to_write = np.where(cluster_assignment == 0)[0] + 1 np.savetxt(fo, cluster_to_write, fmt="%10d") with open(fileName, "ab") as fo: for i in range(len(cluster)): fo.write(b"[ state %d ]\n" % (i + 1)) cluster_to_write = np.where(cluster_assignment == cluster[i])[0] + 1 np.savetxt(fo, cluster_to_write, fmt="%10d")
[ "matplotlib" ]
6b6f0dc4ad2b4bdfc4ad36969ee632da1258b142
Python
yilunh98/DQN-OpenAI
/q3_dqn.py
UTF-8
8,383
2.9375
3
[]
no_license
# EECS545 HW6: DQN. import gym import math import random import numpy as np import matplotlib import matplotlib.pyplot as plt from collections import namedtuple from itertools import count from PIL import Image import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torchvision.transforms as T random.seed(403) np.random.seed(403) torch.manual_seed(403) env = gym.make('CartPole-v1') env.seed(403) env = env.unwrapped Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward')) class ReplayMemory(object): def __init__(self, capacity): self.capacity = capacity self.memory = [] self.position = 0 def push(self, *args): """Saves a transition.""" if len(self.memory) < self.capacity: self.memory.append(None) self.memory[self.position] = Transition(*args) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): return random.sample(self.memory, batch_size) def __len__(self): return len(self.memory) class DQN(nn.Module): def __init__(self): super(DQN, self).__init__() self.fc1 = nn.Linear(env.observation_space.shape[0], 50) self.fc1.weight.data.normal_(0, 0.1) self.fc2 = nn.Linear(50, env.action_space.n,) self.fc2.weight.data.normal_(0, 0.1) def forward(self, x): x = self.fc1(x) x = F.relu(x) x = self.fc2(x) out = F.softmax(x, dim=1) return out def select_action(state, policy_net, eps_end, eps_start, eps_decay, steps_done, device): sample = random.random() eps_threshold = eps_end + (eps_start - eps_end) * math.exp(-1. * steps_done / eps_decay) ########### TODO: Epsilon-greedy action selection ############## ### with probability eps_threshold, take random action ### ### with probability 1-eps_threshold, take the greedy action ### ################################################################ if sample > eps_threshold: actval = policy_net(state) action = torch.max(actval,1)[1].view(1,1) else: action = torch.tensor([[np.random.randint(0, env.action_space.n)]],device=device) return action def optimize(policy_net, target_net, optimizer, memory, batch_size, gamma, device): """Learning step of DQN.""" if len(memory) < batch_size: return # Converts batch-array of transitions to Transition of batch-arrays. # (see https://stackoverflow.com/a/19343/3343043 for detailed explanation) transitions = memory.sample(batch_size) batch = Transition(*zip(*transitions)) # Compute a mask of non-final states and concatenate the batch elements # (a final state would've been the one after which simulation ended) non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=device, dtype=torch.bool) non_final_next_states = torch.cat([s for s in batch.next_state if s is not None]) state_batch = torch.cat(batch.state) action_batch = torch.cat(batch.action) reward_batch = torch.cat(batch.reward) ########### TODO: Compute the current Q(s_t, a_t) ######### ### Q-value computed using the policy network ### ### (i.e., the current q-network) ### ### then we select the columns of actions taken. ### ### These are the actions which would've been taken ### ### for each batch state according to policy_net ### ########################################################### state_action_values = policy_net(state_batch).gather(1, action_batch) ########### TODO: Compute the target Q(s_t, a_t) for non-final state s_t ###### ### Q-value computed using the target network ### ### (i.e., the older q-network) using Bellman equation. ### ### Hint: Select the best q-value using max(1)[0]. ### ### Hint2: Use "non_final_mask" and "non_final_next_states" so that ### ### resulting target value is either target Q value or 0 (final state) ### ############################################################################### next_state_values = torch.zeros(batch_size, device=device) next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0] target_state_action_values = reward_batch + gamma*next_state_values ########### TODO: Compute loss using either l2 or smooth l1 ####### ### Note: you can use pytorch loss functions (e.g. F) ################################################################### loss = F.l1_loss(state_action_values, target_state_action_values) # Update parameters optimizer.zero_grad() loss.backward() for param in policy_net.parameters(): param.grad.data.clamp_(-1, 1) optimizer.step() def plot_durations(episode_durations, save_path): plt.figure(2) plt.clf() durations_t = torch.tensor(episode_durations, dtype=torch.float) plt.title('Training...') plt.xlabel('Episode') plt.ylabel('Duration') plt.plot(durations_t.numpy()) # Plot 100-episode running averages if len(durations_t) >= 100: means = durations_t.unfold(0, 100, 1).mean(1).view(-1) means = torch.cat((torch.zeros(99), means)) plt.plot(means.numpy()) plt.savefig(save_path) plt.show() plt.close() def main(): # env = gym.make('CartPole-v1') # env.seed(403) # Do not change the seed # Env info print("Action_space", env.action_space) print("Observation_space", env.observation_space) # Use GPU when available (optional) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyper-parameters BATCH_SIZE = 256 GAMMA = 0.99 EPS_START = 0.3 EPS_END = 0.01 EPS_DECAY = 10000 TARGET_UPDATE = 20 # The target network update frequency num_episodes = 1000 # Build the network and the optimizer policy_net = DQN().to(device) target_net = DQN().to(device) target_net.load_state_dict(policy_net.state_dict()) target_net.eval() optimizer = optim.Adam(policy_net.parameters(), lr=0.002) memory = ReplayMemory(10000) steps_done = 0 episode_durations = [] for i_episode in range(num_episodes): # Initialize the environment and state state = env.reset() state = torch.tensor([state], device=device, dtype=torch.float32) env.render(mode='rgb_array') for t in count(): # Select and perform an action action = select_action(state, policy_net, eps_end=EPS_END, eps_start=EPS_START, eps_decay=EPS_DECAY, steps_done=steps_done, device=device) next_state, reward, done, _ = env.step(action.item()) next_state = torch.tensor([next_state], device=device, dtype=torch.float32) reward = torch.tensor([reward], device=device) if done: next_state=None steps_done += 1 # env.render(mode='rgb_array') ########### TODO: Store the transition in memory ########### memory.push(state, action, next_state, reward) # ---------------------------------------------------------- # Move to the next state state = next_state # Perform one step of the optimization (on the target network) optimize(policy_net=policy_net, target_net=target_net, optimizer=optimizer, memory=memory, batch_size=BATCH_SIZE, gamma=GAMMA, device=device) if done: episode_durations.append(t + 1) print('episode', i_episode, 'duration', episode_durations[-1]) break # Update the target network, copying all weights and biases from the policy network if i_episode % TARGET_UPDATE == 0: target_net.load_state_dict(policy_net.state_dict()) print('Complete') env.close() plot_durations(episode_durations, 'dqn_reward.png') if __name__ == '__main__': main()
[ "matplotlib" ]
4dc2ffaa244621d325edfb594846d160c91c2a9f
Python
Bluestone47/multi-armed-bandits
/offline_evaluate.py
UTF-8
3,028
3.015625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt from epsilon_greedy import EpsGreedy from ucb import UCB from beta_thompson import BetaThompson from linucb import LinUCB from lin_thompson import LinThompson def offlineEvaluate(mab, arms, rewards, contexts, nrounds=None): """ Offline evaluation of a multi-armed bandit Arguments ========= mab : instance of MAB arms : 1D int array, shape (nevents,) integer arm id for each event rewards : 1D float array, shape (nevents,) reward received for each event contexts : 2D float array, shape (nevents, mab.narms*nfeatures) contexts presented to the arms (stacked horizontally) for each event. nrounds : int, optional number of matching events to evaluate `mab` on. Returns ======= out : 1D float array rewards for the matching events """ history = [] # history of arms out = [] # history of payoffs count = 0 # count of events for t in range(nrounds): while True: arm = mab.play(len(history) + 1, contexts[count]) if count >= len(arms): return out # reach the end of the logged dataset if count < len(arms) and arms[count] - 1 == arm: break count += 1 mab.update(arm, rewards[count], contexts[count]) # arm (0-9), arms (1-10) history.append(arm) out.append(rewards[count]) count += 1 # print(mab.total_rewards) print(mab.action_attempts) print(mab.estimate_value) cum_mean = np.cumsum(out) / np.arange(1, len(out) + 1) plt.plot(cum_mean, label=mab.__class__.__name__) return out if __name__ == '__main__': arms = [] rewards = [] contexts = [] dataset_file = open('dataset.txt', 'r') for line in dataset_file: event = line.split(' ')[:-1] event = list(map(int, event)) arms.append(event[0]) rewards.append(event[1]) contexts.append(event[2:]) dataset_file.close() # mab = EpsGreedy(10, 0.05) # results_EpsGreedy = offlineEvaluate(mab, arms, rewards, contexts, 800) # print('EpsGreedy average reward', np.mean(results_EpsGreedy)) # mab = UCB(10, 1.0) # results_UCB = offlineEvaluate(mab, arms, rewards, contexts, 800) # print('UCB average reward', np.mean(results_UCB)) # mab = BetaThompson(10, 1.0, 1.0) # results_BetaThompson = offlineEvaluate(mab, arms, rewards, contexts, 800) # print('BetaThompson average reward', np.mean(results_BetaThompson)) mab = LinUCB(10, 10, 1.0) results_LinUCB = offlineEvaluate(mab, arms, rewards, contexts, 800) print('LinUCB average reward', np.mean(results_LinUCB)) # mab = LinThompson(10, 10, 1.0) # results_LinThompson = offlineEvaluate(mab, arms, rewards, contexts, 800) # print('LinThompson average reward', np.mean(results_LinThompson)) plt.xlabel('Rounds') plt.ylabel('Mean Cumulative Reward') plt.legend() plt.show()
[ "matplotlib" ]
7b48fa788fef8ae04e801e9b961bef6f79fddc97
Python
suiup/pybullet
/self_learning/terrain/terrain_create_formula05.py
UTF-8
423
2.796875
3
[]
no_license
import numpy as np import plotly.graph_objs as go a = np.linspace(-1, 1, 50) b = np.linspace(-1, 1, 50) x, y = np.meshgrid(a, b) z = x ** 2 + y ** 2 + x * y + x + y - 3 list = [i for i in z] dataStr = "" for i in list: dataStr += ",\t".join(('%.5f' % j) for j in i) + "\n" print(dataStr) with open("test.txt", "w") as f: f.write(dataStr) fig = go.Figure(data=[ go.Surface(x=x, y=y, z=z), ]) fig.show()
[ "plotly" ]
12d0778cbf0df73ee2c19d52dbb0d1d0798c0c67
Python
arkadiusz-jagodzinski/Backend_SAPMAway
/spamchecker/spamcheck.py
UTF-8
1,671
3.03125
3
[]
no_license
import os import matplotlib.pyplot as plt from joblib import dump from joblib import load from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.neural_network import MLPClassifier from sklearn.pipeline import make_pipeline from wordcloud import WordCloud clf = load(os.getcwd() + "/res/mlp_clf") def isSpam(text): return clf.predict_proba([text])[0, 1] def retrain_and_save_model(spam_data): """ Trenuje model od zera na podstawie danych z bazy, następnie zapisuje wagi do folderu /res/. Nie wymaga przeładowania zapisanego modelu. :param spam_data: Tablica numpy, taka że w pierwszej kolumnie są teksty kolejnych smsów, a w drugiej wartość bool oznaczająca czy dany SMS jest spamem. :type spam_data: numpy array :return: """ clf = make_pipeline(TfidfVectorizer("english"), MLPClassifier(activation='logistic', hidden_layer_sizes=10, learning_rate='constant', solver='adam')) clf.fit(spam_data[0, :], spam_data[1, :]) dump(clf, os.getcwd() + os.path.sep + 'res' + os.path.sep + 'mlp_clf') def generate_word_cloud(): """ Funkcja generuje, zwraca i zapisuje do pliku /res/cloud.png chumrę głównych słów spamu. :return: obraz z chmurą słów spamu """ wc = WordCloud(background_color="white", width=1000, height=1000, normalize_plurals=True).generate_from_frequencies( clf[0].vocabulary_) fig = plt.imshow(wc) fig.axes.get_xaxis().set_visible(False) fig.axes.get_yaxis().set_visible(False) plt.savefig(os.path.sep + 'res' + os.path.sep + 'cloud.png', bbox_inches='tight') return fig
[ "matplotlib" ]
8558f4d93300f844d9b6049590b5ef328c3ea1d5
Python
MarianoDel/emacs_dexel_boost36v
/boost_ccm_digital_med_03.py
UTF-8
7,610
2.6875
3
[]
no_license
# -*- coding: utf-8 -*- #usar python3 import numpy as np import matplotlib.pyplot as plt from sympy import * from math import log, sqrt, exp from scipy.signal import lti, bode, lsim, TransferFunction, step, step2 from scipy.signal import cont2discrete, dbode from tc_udemm import sympy_to_lti, lti_to_sympy """ Boost Voltage-Mode, este es un modelo alternativo. Large Signal - derivado de una respuesta escalon del Boost. El modelo de baja senial, no representa bien el arranque del conversor. Esto es porque la ganancia alrededor del punto de trabajo es demasiado grande y no es representativa del arranque. Lo que ensayo es una respuesta escalon del boost en modo ccm y con el resultado deduzco una ecuacion de segundo orden. """ ########################################################## # Step response of the pulse by pulse converter model. # # Always on CCM. Step from 0.17 to 0.67 without feedback # ########################################################## # From the simulation results: fn = 136.4 Max_peak_value = 56 Final_value = 35.6 Input_step_value = 0.53 sense_probe_alpha = 1.8 / (1.8 + 22) # Auxiliary calcs wn = fn * 2 * np.pi Mp = Max_peak_value / Final_value - 1 log_mp_2 = (log(Mp))**2 psi = sqrt(log_mp_2/(np.pi**2+log_mp_2)) Mp2 = exp((-psi*np.pi)/sqrt(1-psi**2)) # print(f'Mp: {Mp}, psi vale: {psi}, Mp revisado: {Mp2}') #TF without constant s = Symbol('s') Plant_num = Final_value * wn**2 / Input_step_value Plant_den = s**2 + 2 * psi * wn * s + wn**2 Plant_out = Plant_num/Plant_den Plant_out_sim = Plant_out.simplify() # print ('Plant_out: ') # print (Plant_out_sim) ##################################################### # Desde aca utilizo ceros y polos que entrego sympy # ##################################################### # planta = sympy_to_lti(Plant_out_sim) sensado = sympy_to_lti(Plant_out_sim * sense_probe_alpha / 3.3) # print ("planta con sympy:") # print (planta) ########################################################## # Convierto Planta Digital - Sensado Digital en realidad # # por Tustin # ########################################################## Fsampling = 24000 Tsampling = 1 / Fsampling planta_dig_tustin_n, planta_dig_tustin_d, td = cont2discrete((sensado.num, sensado.den), Tsampling, method='tustin') #normalizo con TransferFunction print ("Planta Digital:") planta_dig_tustin = TransferFunction(planta_dig_tustin_n, planta_dig_tustin_d, dt=td) print (planta_dig_tustin) ################################################ # Respuesta escalon de la planta punto a punto # # entrando con Duty propuesto como escalon # ################################################ tiempo_de_simulacion = 0.2 print('td:') print (td) t = np.arange(0, tiempo_de_simulacion, td) # Planta Digital por Tustin b_planta = np.transpose(planta_dig_tustin_n) a_planta = np.transpose(planta_dig_tustin_d) Duty = Input_step_value vin_plant = np.ones(t.size) * Duty vout_plant = np.zeros(t.size) # for i in range(2, len(vin_plant)): # ######################################## # # aplico la transferencia de la planta # # ######################################## # vout_plant[i] = b_planta[0]*vin_plant[i] \ # + b_planta[1]*vin_plant[i-1] \ # + b_planta[2]*vin_plant[i-2] \ # - a_planta[1]*vout_plant[i-1] \ # - a_planta[2]*vout_plant[i-2] # fig, ax = plt.subplots() # ax.set_title('Respuesta de la Planta Open Loop') # ax.set_ylabel('Vout') # ax.set_xlabel('Tiempo en muestras') # ax.grid() # ax.plot(t, vin_plant, 'r') # ax.plot(t, vout_plant, 'c') # plt.tight_layout() # plt.show() ############################ # PID Digital # # ki_dig = ki / Fsampling # # kp_dig = kp - ki_dig / 2 # # kd_dig = kd * Fsampling # ############################ # con undersampling = 100 y 50 ki_dig = 6 / 128 kp_dig = 1 / 128 kd_dig = 2 # con undersampling = 100 y 50 # ki_dig = 6 / 128 # kp_dig = 1 # kd_dig = 0 # con undersampling = 10 # ki_dig = 1 / 128 # kp_dig = 42 / 128 # kd_dig = 3 k1 = kp_dig + ki_dig + kd_dig k2 = -kp_dig - 2*kd_dig k3 = kd_dig ## este es el pid digital b_pid = [k1, k2, k3] a_pid = [1, -1] print ("") print (f"kp_dig: {kp_dig} ki_dig: {ki_dig} kd_dig: {kd_dig}") print ("") pid_dig = TransferFunction(b_pid, a_pid, dt=td) print ("PID Digital:") print (pid_dig) ######################################### # Realimento punto a punto con setpoint # ######################################### # Respuesta escalon de la planta punto a punto tiempo_de_simulacion = 0.5 print('td:') print (td) t = np.arange(0, tiempo_de_simulacion, td) # Planta Digital por Tustin b_planta = np.transpose(planta_dig_tustin_n) a_planta = np.transpose(planta_dig_tustin_d) vout_plant = np.zeros(t.size) vin_plant = np.zeros(t.size) ############################################ # Armo la senial que quiero en el SETPOINT # ############################################ vin_setpoint = np.ones(t.size) * 36 * sense_probe_alpha * 1000 / 3.3 vin_setpoint.astype(int) vin_setpoint = vin_setpoint / 1000 d = np.zeros(t.size) error = np.zeros(t.size) max_d_pwm = 0.85 under_roof = 49 undersampling = 0 integral_term = np.zeros(t.size) for i in range(2, len(vout_plant)): ################################################### # primero calculo el error, siempre punto a punto # ################################################### dummy_adc_out = int(vout_plant[i-1] * 1000) dummy_adc_out = dummy_adc_out / 1000 # vout_plant[i - 1] = dummy_adc_out / 1000 # error[i] = vin_setpoint[i] - vout_plant[i-1] error[i] = vin_setpoint[i] - dummy_adc_out ############################################################# # aplico lazo PID y ajusto los maximo y minimos que permito # ############################################################# if undersampling < under_roof: #nada undersampling = undersampling + 1 d[i] = d[i-1] integral_term[i] = integral_term[i-1] else: undersampling = 0 # desarmo k1 y el termino integral para tener mejor definicion integral_term[i] = integral_term[i-1] + ki_dig * error[i] k1 = kp_dig * error[i] + integral_term[i] + kd_dig * error[i] if integral_term[i] > 0.001: integral_term[i] = 0 d[i] = k1 + b_pid[1] * error[i-1] + b_pid[2] * error[i-2] - a_pid[1] * d[i-1] # d[i] = b_pid[0] * error[i] + b_pid[1] * error[i-1] + b_pid[2] * error[i-2] - a_pid[1] * d[i-1] dummy_d = int(d[i] * 1000) d[i] = dummy_d / 1000 if d[i] > max_d_pwm: d[i] = max_d_pwm if d[i] < 0: d[i] = 0 ######################################## # aplico la transferencia de la planta # ######################################## vin_plant[i] = d[i] vout_plant[i] = b_planta[0]*vin_plant[i] \ + b_planta[1]*vin_plant[i-1] \ + b_planta[2]*vin_plant[i-2] \ - a_planta[1]*vout_plant[i-1] \ - a_planta[2]*vout_plant[i-2] fig, ax = plt.subplots() ax.set_title('Respuesta Realimentada punto a punto') ax.set_ylabel('Vout') ax.set_xlabel('Tiempo en muestras') ax.grid() ax.plot(t, d, 'r') ax.plot(t, error, 'g') ax.plot(t, vin_setpoint, 'y') ax.plot(t, integral_term, 'b') # ax.stem(t, vout_plant / sense_probe_alpha) # ax.plot(t, vout_plant / sense_probe_alpha, 'c') ax.plot(t, vout_plant, 'c') plt.tight_layout() plt.show()
[ "matplotlib" ]
9b4482f896befb42812cb1ee5423cce5e8812ba1
Python
llwyd/pink
/models/eq.py
UTF-8
1,527
3
3
[]
no_license
# cross over filter experiments import matplotlib.pyplot as plt import numpy as np from scipy import signal def fft(x,fs,fft_len): F = np.fft.fft(x,fft_len,norm='ortho') F = np.abs(F) F = norm(F) Ff = (fs/2)*np.linspace(0,1,int(fft_len/2)) Fdb = 20*np.log10(F[:int(len(F)/2)]); return F, Ff, Fdb def norm( n ): return n/np.max(np.abs(n)) fs = 44100 sig_len = 8192 * 8 bands = 5 step = (np.log(fs/2) - np.log(20)) / (bands-1) cutoff = np.zeros(bands-1) cutoff[0] = np.exp(step)*20 for i in range(1,bands-1): cutoff[i] = np.exp(step) * cutoff[i-1] total_bands = bands - 1 gains = [1, 0.5, 1.2,1] # input signal h = signal.unit_impulse(sig_len) sos = [] # first band lpf for i in range(0, bands-2): sos_coeff = signal.butter(1,cutoff[i],'lp',fs=fs,output='sos') sos.append(sos_coeff) sos_coeff = signal.butter(1,cutoff[i],'hp',fs=fs,output='sos') sos.append(sos_coeff) print(cutoff[i]) y = [] num_filters = len(sos) for i in range(num_filters): x = signal.sosfilt(sos[i],h) y.append(x) y_sum = 0 Ydb_bands = [] Yf_bands = [] for i in range(num_filters): y_sum += y[i] Y,Yf,Ydb = fft(y[i],fs,sig_len) Ydb_bands.append(Ydb) Yf_bands.append(Yf) Y,Yf,Ydb = fft(y_sum,fs,sig_len) #plt.figure(1) #plt.plot(y_sum) plt.figure(2) for i in range(num_filters): plt.semilogx(Yf_bands[i],Ydb_bands[i]) plt.semilogx(Yf,Ydb) plt.hlines(-3,0,max(Yf)) plt.ylim(-30,5) plt.xlabel('Frequency (Hz)') plt.ylabel('Magnitude (dB)') plt.show()
[ "matplotlib" ]
7d7a769a80ccabd6909a46a80bc97ea0fba6525a
Python
HosseinlGholami/ML-clustering
/hw5-2-1.py
UTF-8
1,373
2.59375
3
[]
no_license
import pandas as pd import numpy as np path='F:\Data\data2-x.csv' df=pd.read_csv(path) path='F:\Data\data2-y.csv' df1=pd.read_csv(path) from sklearn.cluster import KMeans score=list() for i in [10]: kmeans = KMeans( n_clusters=i, #tedad cluster init='k-means++', #doortarin noghgte, #ndarray ham baraye delkhah (n_clusters, n_features) n_init=10, #tedad bar hayi ke algoritm bayad ejra shavad max_iter=300, #maximom tekar algoritm tol=0.0001,#tolerance baraye converg shodan precompute_distances='auto', #if active (faster but takes more memory)copy_x=True, algorithm='full' ) Learned = kmeans.fit(df) labels = Learned.predict(df) unique, counts = np.unique(labels, return_counts=True) unique1, counts1 = np.unique(df1, return_counts=True) # import matplotlib.pyplot as plt # plt.plot(unique,counts,'ro') # plt.xlabel(i) # plt.show() print('____________clustering____________') for i in range(10): print( unique[i],':',counts[i],'\n') print('____________labaled data____________') for i in range(10): print( unique1[i],':',counts1[i],'\n') # Getting the cluster labels # Centroid values #centroids = kmeans.cluster_centers_
[ "matplotlib" ]
ff63bfcacc6d030c6c9842f9428b3361f89b369c
Python
lorransr/axyz-dashboard
/app/sdk.py
UTF-8
5,640
2.8125
3
[]
no_license
import pandas as pd import plotly.express as px import streamlit as st color_dict = { "correct": "green", "generic_position": "gray", "no_calibration": "goldenrod", "incorrect": "red", } def get_daily_overview_plot(data): # set datetime df_daily = pd.DataFrame(data["daily_overview"]) df_daily.ride_end = pd.to_datetime(df_daily.ride_end) # select columns without "pct" selected_columns = [] for column in df_daily.columns.to_list(): if "pct" in column: continue else: selected_columns.append(column) df_daily_filtered = df_daily[selected_columns] # resample in year_week df_daily_filtered = df_daily[selected_columns].copy() year_week = df_daily_filtered.ride_end.dt.strftime("%Y-%U") df_daily_filtered.insert(0,"year_week",year_week) df_daily_reindexed = (df_daily_filtered .groupby("year_week")[selected_columns[1:]] .sum() .reset_index()) # prepare df to plot df_daily_melted = df_daily_reindexed.melt(id_vars="year_week") df_daily_melted.columns = ["year_week","calibration_result","count"] #calculating percentage df_perct = df_daily_reindexed.iloc[:,1:] df_perct = df_perct.div(df_perct.sum(axis=1), axis=0) df_perct.loc[:,"year_week"] = df_daily_reindexed.year_week df_perct_melted = df_perct.melt(id_vars="year_week") df_daily_melted.loc[:,"percentage"] = df_perct_melted["value"] # generate figure fig = px.bar( df_daily_melted, x="year_week", y="count", color="calibration_result", color_discrete_map=color_dict, hover_data= { "percentage":":.1%"}, width=350, height=400 ) fig.update_xaxes(title = "Year - Week") fig.update_yaxes(title = "Number of Trips") fig.update_layout( title="Calibrations Results per Week of Year", xaxis = dict( tickmode = 'linear', fixedrange = True ), yaxis = dict( fixedrange = True ) ) for trace in fig.data: trace.name = trace.name.replace("_"," ") return fig def get_version_overview_plot(data): df_version = pd.DataFrame(data["version_overview"]) selected_columns = [] for column in df_version.columns.to_list(): if "pct" in column: continue else: selected_columns.append(column) selected_columns.remove("sdk_version") df_version_melted = df_version.melt( id_vars="sdk_version", value_vars=selected_columns, var_name="calibration_result", value_name="count", ) #calculating percentage df_perct = df_version[selected_columns] df_perct = df_perct.div(df_perct.sum(axis=1), axis=0) df_perct.loc[:,"sdk_version"] = df_version.sdk_version df_perct_melted = df_perct.melt(id_vars="sdk_version") df_version_melted.loc[:,"percentage"] = df_perct_melted["value"] #ordering data df_version_melted.loc[:,"lvl1"] = df_version_melted.sdk_version.apply(lambda x: int(x.split(".")[0])) df_version_melted.loc[:,"lvl2"] = df_version_melted.sdk_version.apply(lambda x: int(x.split(".")[1])) df_version_melted.loc[:,"lvl3"] = df_version_melted.sdk_version.apply(lambda x: int(x.split(".")[2])) df_version_melted.sort_values(by=["lvl1","lvl2","lvl3"],ascending=True,inplace=True) fig = px.bar( df_version_melted, x="sdk_version", y="percentage", color="calibration_result", color_discrete_map=color_dict, hover_data={"percentage":":.1%", "count":True}, width=350, height=400 ) fig.update_xaxes(title="SDK version") fig.update_yaxes(title="Number of Trips") fig.update_layout( title="Calibrations Results per SDK Versions", xaxis = dict( tickmode = 'linear', fixedrange = True ), yaxis = dict( fixedrange = True ), yaxis_tickformat = '%' ) for trace in fig.data: trace.name = trace.name.replace("_"," ") return fig def path_to_image(pose): path = "https://raw.githubusercontent.com/lorransr/axyz-dashboard/master/app/assets/images/positions/{}.png".format(pose) return '<img src="'+ path + '" width="60" >' def get_driver_summary(data): df_driver = pd.DataFrame(data["driver_summary"]) df_driver.loc[:,"user_response_pose"] = df_driver.user_response_pose.astype("int") df_driver.loc[:,"position_image"] = (df_driver .user_response_pose .apply(lambda x: path_to_image(x))) df_driver = df_driver[df_driver.user_response_pose != 0] new_columns = [] for column in df_driver.columns: new_columns.append(column.replace("_"," ")) df_driver.columns = new_columns float_frmt = lambda x: '{:,.0f}'.format(x) if x > 1e3 else '{:,.1f}'.format(x) frmt = {"accuracy":float_frmt} return df_driver.to_html(escape=False,formatters = frmt) def load_page(data): daily_overview = get_daily_overview_plot(data) version_overview = get_version_overview_plot(data) st.plotly_chart( daily_overview, config=dict(displayModeBar=False)) st.plotly_chart( version_overview, config=dict(displayModeBar=False)) st.markdown("### %Correct x User x Position") df_driver = get_driver_summary(data) # st_ms = st.multiselect("Columns", df_driver.columns.tolist(),df_driver.columns.tolist()) st.markdown(df_driver, unsafe_allow_html=True)
[ "plotly" ]
9cc3a5f2c2cf40a0792d6377d6697eb5fe0bb9f5
Python
q2806060/python-note
/numpydemo/05/day05/demo04_poly.py
UTF-8
363
3.1875
3
[]
no_license
""" demo04_poly.py 多项式函数 """ import numpy as np import matplotlib.pyplot as mp x = np.linspace(-20, 20, 1000) y = 4*x**3 + 3*x**2 -1000*x + 1 # 求驻点坐标 P = np.array([4, 3, -1000, 1]) Q = np.polyder(P) xs = np.roots(Q) ys = np.polyval(P, xs) mp.plot(x, y, color='dodgerblue') mp.scatter(xs, ys, s=60, marker='s', c='red', zorder=3) mp.show()
[ "matplotlib" ]
e31df015868d7eefd10d2ff6d1f50266f5e34d61
Python
silviu20/fzwork
/PythonWork/kaggle/iris/submission/predict_iris_type_v1d.py
UTF-8
5,190
2.9375
3
[]
no_license
#!/usr/bin/python # -*- coding: utf-8 -*- import numpy as np import pandas as pd import seaborn as sns from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn import linear_model from sklearn import svm import xgboost as xgb from sklearn.grid_search import GridSearchCV import matplotlib.pyplot as plt iris = pd.read_csv ('../input/Iris.csv') print iris.head() print iris.tail() print iris.isnull().sum() print iris.info() print iris.shape # Pair plot for two columns sns.pairplot(iris.drop('Id', axis=1), hue='Species') # Scatter plot for two columns (numeric feature) # iris.plot.scatter(x='SepalLengthCm', y='PetalLengthCm') # sns.boxplot(x='SepalLengthCm', y='Species', datat=iris) features=['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'] # print iris.corr(features) # sepalLengthCm= iris[['SepalLengthCm', 'SepalWidthCm']] # print sepalLengthCm # print sepalLengthCm.shape, type(sepalLengthCm) # The distributuon of one column # sns.distplot(iris['SepalLengthCm']) iris_features= iris[features] print iris_features print iris_features.shape, type(iris_features) print iris_features.corr() print '#'*80 plt.scatter(iris['SepalLengthCm'], iris['SepalWidthCm']) plt.show() print '#################################################' X=iris[features] y=iris['Species'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) knc_model =KNeighborsClassifier(n_neighbors=5) knc_model.fit(X_train,y_train) print 'KNN: Accuracy with a single train/test split', knc_model.score(X_test, y_test) # scores = cross_val_score(knc_model, X, y, cv=5) scores = cross_val_score(knc_model, X_train, y_train, cv=5) print 'KNN: the mean of Accuracy with a cross value train/test split is: ', scores.mean() print 'KNN:The std of Accuracy with a cross value train/test split is', scores.std() test_data=[[4.6, 3.1, 1.5,0.2]] test_data2=[[6.5,3.0,5.2,2.0 ]] res=knc_model.predict(test_data) print res res2=knc_model.predict(test_data2) print res2 print '#'*50 log_reg_model = linear_model.LogisticRegression() log_reg_model.fit(X_train, y_train) print 'Linear regression: Accuracy with a single train/test split', log_reg_model.score(X_test, y_test) scores_log_reg_model = cross_val_score(log_reg_model, X_train, y_train, cv=5) print 'Linear regression: the mean of Accuracy with a cross value train/test split is: ', scores_log_reg_model.mean() print 'Linear regression: The std of Accuracy with a cross value train/test split is', scores_log_reg_model.std() print '#'*50 clf_model = svm.SVC() clf_model.fit(X_train, y_train) print 'SVM: Accuracy with a single train/test split', clf_model.score(X_test, y_test) scores_clf_model = cross_val_score(clf_model, X_train, y_train, cv=5) print 'SVM: the mean of Accuracy with a cross value train/test split is: ', scores_clf_model.mean() print 'SVM: The std of Accuracy with a cross value train/test split is', scores_clf_model.std() print '#'*50 xgb_model = xgb.XGBClassifier() xgb_model.fit(X_train, y_train) print 'XGBoost: Accuracy with a single train/test split', xgb_model.score(X_test, y_test) scores_xgb_model = cross_val_score(xgb_model, X_train, y_train, cv=5) print 'XGBoost: the mean of Accuracy with a cross value train/test split is: ', scores_xgb_model.mean() print 'XGBoost: The std of Accuracy with a cross value train/test split is', scores_xgb_model.std() print '#'*50 parameter_candidates = [ {'C':[1, 10, 100], 'kernel':['linear']},{ 'C':[1, 10, 100],'gamma':[0.001, 0.0001], 'kernel':['rbf'] }] clf_model2 = GridSearchCV(estimator =svm.SVC(), param_grid = parameter_candidates, n_jobs=-1) clf_model2.fit(X_train, y_train) print 'Best score: ', clf_model2.best_score_ print 'Best C: ', clf_model2.best_estimator_.C print 'Best kernel: ', clf_model2.best_estimator_.kernel print 'Best gamma: ', clf_model2.best_estimator_.gamma print '#'*50 clf_model3 = svm.SVC(C=1, gamma='auto', kernel='linear') clf_model3.fit(X_train, y_train) print 'SVM: Accuracy with a single train/test split', clf_model3.score(X_test, y_test) scores_clf_model3 = cross_val_score(clf_model3, X_train, y_train, cv=5) print 'SVM: the mean of Accuracy with a cross value train/test split is: ', scores_clf_model3.mean() print 'SVM: The std of Accuracy with a cross value train/test split is', scores_clf_model3.std() print '#'*50 # plt.scatter(iris[:50]['SepalLengthCm'], iris[:50]['SepalWidthCm'], label='Iris-virginica') # plt.scatter(iris[51:101]['SepalLengthCm'], iris[51:101]['SepalWidthCm'], label='Iris-setosa') # plt.show() # f, ax = plt.subplots() sns.lmplot('SepalLengthCm', 'SepalWidthCm', data=iris, hue='Species') plt.show() # clf_model = svm.SVC() # clf_model.fit(X_train, y_train) # print 'SVM: Accuracy with a single train/test split', clf_model.score(X_test, y_test) # scores_clf_model = cross_val_score(clf_model, X_train, y_train, cv=5) # print 'SVM: the mean of Accuracy with a cross value train/test split is: ', scores_clf_model.mean() # print 'SVM: The std of Accuracy with a cross value train/test split is', scores_clf_model.std()
[ "matplotlib", "seaborn" ]
4c095c08f282d388fd64de00604354b620ec2649
Python
xepoo/vnpy
/vnpy_slim/strategies/MLP_data_analysis.py
UTF-8
19,239
2.828125
3
[ "MIT" ]
permissive
# encoding: UTF-8 import warnings warnings.filterwarnings("ignore") from pymongo import MongoClient, ASCENDING import pymysql import pandas as pd import numpy as np from datetime import datetime import talib import matplotlib.pyplot as plt import scipy.stats as st from sklearn.model_selection import train_test_split # LogisticRegression 逻辑回归 from sklearn.linear_model import LogisticRegression # DecisionTreeClassifier 决策树 from sklearn.tree import DecisionTreeClassifier # SVC 支持向量分类 from sklearn.svm import SVC # MLP 神经网络 from sklearn.neural_network import MLPClassifier from sklearn.model_selection import GridSearchCV class DataAnalyzerforSklearn(object): """ 这个类是为了SVM做归纳分析数据,以未来6个bar的斜率线性回归为判断分类是否正确。 不是直接分析HLOC,而且用下列分非线性参数(就是和具体点位无关) 1.Percentage 2.std 4.MACD 5.CCI 6.ATR 7. 该bar之前的均线斜率 8. RSI """ def __init__( self, exportpath="D:\\SynologyDrive\\future_data\\", datformat=['datetime', 'high', 'low', 'open', 'close', 'volume']): self.collection = None self.df = pd.DataFrame() self.exportpath = exportpath self.datformat = datformat self.startBar = 2 self.endBar = 12 self.step = 2 self.pValue = 0.05 #-----------------------------------------导入数据------------------------------------------------- def db2df(self, symbol, start, end, mysqlhost="localhost", mysqlport=3306, user="root", password="root", database="", export2csv=False): """读取MongoDB数据库行情记录,输出到Dataframe中""" self.collection = symbol conn = pymysql.connect(host=mysqlhost, port=mysqlport, user=user, password=password, database=database, charset='utf8', use_unicode=True) sql = "SELECT `datetime`, `high_price` as `high`, `low_price` as `low`, `open_price` as `open`, `close_price` as `close`, `volume` " \ "FROM dbbardata where symbol='%s' and `datetime`>str_to_date('%s','%%Y-%%m-%%d') and `datetime`<str_to_date('%s','%%Y-%%m-%%d')" % (symbol, start, end) self.df = pd.read_sql(sql=sql, con=conn) self.df = self.df[self.datformat] self.df = self.df.reset_index(drop=True) print(sql) print(self.df.shape) path = self.exportpath + self.collection + ".csv" if export2csv == True: self.df.to_csv(path, index=True, header=True) return self.df def csv2df(self, csvpath, dataname="csv_data", export2csv=False): """读取csv行情数据,输入到Dataframe中""" csv_df = pd.read_csv(csvpath) self.df = csv_df[self.datformat] self.df["datetime"] = pd.to_datetime(self.df['datetime']) self.df = self.df.reset_index(drop=True) path = self.exportpath + dataname + ".csv" if export2csv == True: self.df.to_csv(path, index=True, header=True) return self def df2Barmin(self, inputdf, barmins, crossmin=1, export2csv=False): """输入分钟k线dataframe数据,合并多多种数据,例如三分钟/5分钟等,如果开始时间是9点1分,crossmin = 0;如果是9点0分,crossmin为1""" dfbarmin = pd.DataFrame() highBarMin = 0 lowBarMin = 0 openBarMin = 0 volumeBarmin = 0 datetime = 0 for i in range(0, len(inputdf) - 1): bar = inputdf.iloc[i, :].to_dict() if openBarMin == 0: openBarmin = bar["open"] if highBarMin == 0: highBarMin = bar["high"] else: highBarMin = max(bar["high"], highBarMin) if lowBarMin == 0: lowBarMin = bar["low"] else: lowBarMin = min(bar["low"], lowBarMin) closeBarMin = bar["close"] datetime = bar["datetime"] volumeBarmin += int(bar["volume"]) # X分钟已经走完 if not (bar["datetime"].minute + crossmin) % barmins: # 可以用X整除 # 生成上一X分钟K线的时间戳 barMin = { 'datetime': datetime, 'high': highBarMin, 'low': lowBarMin, 'open': openBarmin, 'close': closeBarMin, 'volume': volumeBarmin } dfbarmin = dfbarmin.append(barMin, ignore_index=True) highBarMin = 0 lowBarMin = 0 openBarMin = 0 volumeBarmin = 0 if export2csv == True: dfbarmin.to_csv(self.exportpath + "bar" + str(barmins) + str(self.collection) + ".csv", index=True, header=True) return dfbarmin #-----------------------------------------开始计算指标------------------------------------------------- def dfcci(self, inputdf, n, export2csv=True): """调用talib方法计算CCI指标,写入到df并输出""" dfcci = inputdf dfcci["cci"] = None for i in range(n, len(inputdf)): df_ne = inputdf.loc[i - n + 1:i, :] cci = talib.CCI(np.array(df_ne["high"]), np.array(df_ne["low"]), np.array(df_ne["close"]), n) dfcci.loc[i, "cci"] = cci[-1] dfcci = dfcci.fillna(0) dfcci = dfcci.replace(np.inf, 0) if export2csv == True: dfcci.to_csv(self.exportpath + "dfcci" + str(self.collection) + ".csv", index=True, header=True) return dfcci def dfatr(self, inputdf, n, export2csv=True): """调用talib方法计算ATR指标,写入到df并输出""" dfatr = inputdf for i in range((n + 1), len(inputdf)): df_ne = inputdf.loc[i - n:i, :] atr = talib.ATR(np.array(df_ne["high"]), np.array(df_ne["low"]), np.array(df_ne["close"]), n) dfatr.loc[i, "atr"] = atr[-1] dfatr = dfatr.fillna(0) dfatr = dfatr.replace(np.inf, 0) if export2csv == True: dfatr.to_csv(self.exportpath + "dfatr" + str(self.collection) + ".csv", index=True, header=True) return dfatr def dfrsi(self, inputdf, n, export2csv=True): """调用talib方法计算ATR指标,写入到df并输出""" dfrsi = inputdf dfrsi["rsi"] = None for i in range(n + 1, len(inputdf)): df_ne = inputdf.loc[i - n:i, :] rsi = talib.RSI(np.array(df_ne["close"]), n) dfrsi.loc[i, "rsi"] = rsi[-1] dfrsi = dfrsi.fillna(0) dfrsi = dfrsi.replace(np.inf, 0) if export2csv == True: dfrsi.to_csv(self.exportpath + "dfrsi" + str(self.collection) + ".csv", index=True, header=True) return dfrsi def Percentage(self, inputdf, export2csv=True): """调用talib方法计算CCI指标,写入到df并输出""" dfPercentage = inputdf # dfPercentage["Percentage"] = None for i in range(1, len(inputdf)): # if dfPercentage.loc[i,"close"]>dfPercentage.loc[i,"open"]: # percentage = ((dfPercentage.loc[i,"high"] - dfPercentage.loc[i-1,"close"])/ dfPercentage.loc[i-1,"close"])*100 # else: # percentage = (( dfPercentage.loc[i,"low"] - dfPercentage.loc[i-1,"close"] )/ dfPercentage.loc[i-1,"close"])*100 if dfPercentage.loc[i - 1, "close"] == 0.0: percentage = 0 else: percentage = ((dfPercentage.loc[i, "close"] - dfPercentage.loc[i - 1, "close"]) / dfPercentage.loc[i - 1, "close"]) * 100.0 dfPercentage.loc[i, "Perentage"] = percentage dfPercentage = dfPercentage.fillna(0) dfPercentage = dfPercentage.replace(np.inf, 0) if export2csv == True: dfPercentage.to_csv(self.exportpath + "Percentage_" + str(self.collection) + ".csv", index=True, header=True) return dfPercentage def dfMACD(self, inputdf, n, export2csv=False): """调用talib方法计算MACD指标,写入到df并输出""" dfMACD = inputdf for i in range(n, len(inputdf)): df_ne = inputdf.loc[i - n + 1:i, :] macd, signal, hist = talib.MACD(np.array(df_ne["close"]), 12, 26, 9) #dfMACD.loc[i, "macd"] = macd[-1] #dfMACD.loc[i, "signal"] = signal[-1] dfMACD.loc[i, "hist"] = hist[-1] dfMACD = dfMACD.fillna(0) dfMACD = dfMACD.replace(np.inf, 0) if export2csv == True: dfMACD.to_csv(self.exportpath + "macd" + str(self.collection) + ".csv", index=True, header=True) return dfMACD def dfSTD(self, inputdf, n, export2csv=False): """调用talib方法计算MACD指标,写入到df并输出""" dfSTD = inputdf for i in range(n, len(inputdf)): df_ne = inputdf.loc[i - n + 1:i, :] std = talib.STDDEV(np.array(df_ne["close"]), n) dfSTD.loc[i, "std"] = std[-1] dfSTD = dfSTD.fillna(0) dfSTD = dfSTD.replace(np.inf, 0) if export2csv == True: dfSTD.to_csv(self.exportpath + "dfSTD" + str(self.collection) + ".csv", index=True, header=True) return dfSTD #-----------------------------------------加入趋势分类------------------------------------------------- def addTrend(self, inputdf, n=30, export2csv=False): """以未来6个bar的斜率线性回归为判断分类是否正确""" dfTrend = inputdf for i in range(1, len(dfTrend) - n - 1): histRe = np.array(dfTrend["close"])[i:i + n] xAixs = np.arange(n) + 1 res = st.linregress(y=histRe, x=xAixs) if res.pvalue < self.pValue + 0.02: if res.slope > 0.5: dfTrend.loc[i, "tradeindictor"] = 1 elif res.slope < -0.5: dfTrend.loc[i, "tradeindictor"] = -1 dfTrend = dfTrend.fillna(0) dfTrend = dfTrend.replace(np.inf, 0) if export2csv == True: dfTrend.to_csv(self.exportpath + "addTrend" + str(self.collection) + ".csv", index=True, header=True) return dfTrend def addTrend2(self, inputdf, n=30, export2csv=False): """以未来6个bar的斜率线性回归为判断分类是否正确""" dfTrend = inputdf for i in range(1, len(dfTrend) - n - 1): histRe = np.array(dfTrend["close"])[i:i + n] m = histRe.mean() if m > 1.001 * dfTrend.loc[i, "close"]: dfTrend.loc[i, "tradeindictor"] = 1 elif m < 0.999 * dfTrend.loc[i, "close"]: dfTrend.loc[i, "tradeindictor"] = -1 else: dfTrend.loc[i, "tradeindictor"] = 0 dfTrend = dfTrend.fillna(0) dfTrend = dfTrend.replace(np.inf, 0) if export2csv == True: dfTrend.to_csv(self.exportpath + "addTrend" + str(self.collection) + ".csv", index=True, header=True) return dfTrend def GirdValuate(X_train, y_train): """1)LogisticRegression 逻辑回归 2)DecisionTreeClassifier 决策树 3)SVC 支持向量分类 4)MLP 神经网络""" clf_DT = DecisionTreeClassifier() param_grid_DT = {'max_depth': [1, 2, 3, 4, 5, 6]} clf_Logit = LogisticRegression() param_grid_logit = {'solver': ['liblinear', 'lbfgs', 'newton-cg', 'sag']} clf_svc = SVC() param_grid_svc = { 'kernel': ('linear', 'poly', 'rbf', 'sigmoid'), 'C': [1, 2, 4], 'gamma': [0.125, 0.25, 0.5, 1, 2, 4] } clf_mlp = MLPClassifier() param_grid_mlp = { "hidden_layer_sizes": [(100, ), (100, 30)], "solver": ['adam', 'sgd', 'lbfgs'], "max_iter": [20], "verbose": [False] } #打包参数集合 clf = [clf_DT, clf_Logit, clf_mlp, clf_svc] param_grid = [ param_grid_DT, param_grid_logit, param_grid_mlp, param_grid_svc ] from sklearn.model_selection import StratifiedKFold # 交叉验证 kflod = StratifiedKFold(n_splits=10, shuffle=True, random_state=7) # 将训练/测试数据集划分10个互斥子集,这样方便多进程测试 #网格测试 print("begin GridSearchCV") for i in range(0, 4): grid = GridSearchCV(clf[i], param_grid[i], scoring='accuracy', n_jobs=-1, cv=kflod, verbose=1) grid.fit(X_train, y_train) print(grid.best_params_, ': ', grid.best_score_) if __name__ == '__main__': # 读取数据 # exportpath = "C:\\Users\shui0\OneDrive\Documents\Project\\" exportpath = "D:\\SynologyDrive\\future_data\\" DA = DataAnalyzerforSklearn(exportpath) #数据库导入 # start = datetime.strptime("20160501", '%Y%m%d') # end = datetime.strptime("20170501", '%Y%m%d') start = "2016-05-01" end = "2018-12-20" # df = DA.db2df(symbol="cmain", start=start, end=end, mysqlhost="walkright.synology.me", # mysqlport=3307, user="root", password="zaq1xsw2CDE",database="future_schema") df = DA.db2df(symbol="cmain", start=start, end=end, mysqlhost="localhost", mysqlport=3306, user="root", password="root", database="futures_schema") df5min = DA.df2Barmin(df, 5) df5minAdd = DA.addTrend2(df5min, export2csv=True) df5minAdd = DA.dfMACD(df5minAdd, n=34, export2csv=True) df5minAdd = DA.dfatr(df5minAdd, n=25, export2csv=True) df5minAdd = DA.dfrsi(df5minAdd, n=35, export2csv=True) df5minAdd = DA.dfcci(df5minAdd, n=30, export2csv=True) # no use df5minAdd = DA.dfSTD(df5minAdd, n=30, export2csv=True) df5minAdd = DA.Percentage(df5minAdd, export2csv=True) #划分测试验证。 df_test = df5minAdd.loc[60:, :] #只从第60个开始分析,因为之前很多是空值 y = np.array(df_test["tradeindictor"]) #只保留结果趋势结果,转化为数组 X = df_test.drop([ "tradeindictor", "close", "datetime", "high", "low", "open", "volume" ], axis=1).values #不是直接分析HLOC,只保留特征值,转化为数组 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) #三七 # X_train = X[:8689] # y_train = y[:8689] # X_test = X[-8690:] # y_test = y[-8690:] print("训练集长度: %s, 测试集长度: %s" % (len(X_train), len(X_test))) from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import SelectPercentile from sklearn.feature_selection import mutual_info_classif #特征工作,可以按照百分比选出最高分特征类,取最优70%,也可以用SelectKBest,指定要几个特征类。 selectPer = SelectPercentile(mutual_info_classif, percentile=70) #selectPer = SelectKBest(mutual_info_classif, k=7) print("x_train.shpae:", X_train.shape) print("y_train.shpae:", y_train.shape) X_train = selectPer.fit_transform(X_train, y_train) # pddf = pd.DataFrame(X_train) # pddf.to_csv(exportpath + "after_fit_transform" + ".csv", # index=True, # header=True) # pddf = pd.DataFrame(X_test) # pddf.to_csv(exportpath + "test_before_transform" + ".csv", # index=True, # header=True) X_test = selectPer.transform(X_test) # pddf = pd.DataFrame(X_test) # pddf.to_csv(exportpath + "after_before_transform" + ".csv", # index=True, # header=True) # 也可以用Fpr选择 # selectFea=SelectFpr(alpha=0.01) # X_train_new = selectFea.fit_transform(X_train, y_train) # X_test_new = selectFea.transform(X_test) # 这里使用下面模式进行分析,然后利用网格调参 #GirdValuate(X_train, y_train) # 使用选取最好的模型,进行测试看看拼接 # • 模型预测:model.predict() # • Accuracy:metrics.accuracy_score() # • Presicion:metrics.precision_score() # • Recall:metrics.recall_score() from sklearn import metrics clf_selected = MLPClassifier(hidden_layer_sizes=(100, 30), max_iter=20, solver='adam') #此处填入网格回测最优模型和参数, # {'hidden_layer_sizes': (100, 30), 'max_iter': 20, 'solver': 'adam', 'verbose': False} : 0.9897016507648039 clf_selected.fit(X_train, y_train) #print("X_test:", X_test[-1:]) print("X_test.shape:", X_test.shape) y_pred = clf_selected.predict(X_test) #accuracy accuracy = metrics.accuracy_score(y_true=y_test, y_pred=y_pred) print('accuracy:', accuracy) #precision precision = metrics.precision_score(y_true=y_test, y_pred=y_pred, average="micro") print('precision:', precision) #recall recall = metrics.recall_score(y_true=y_test, y_pred=y_pred, average="micro") print('recall:', recall) #实际值和预测值 print("y_test.shape:", y_test.shape) print("y_pred.shape:", y_pred.shape) dfresult = pd.DataFrame({'Actual': y_test, 'Predict': y_pred}) dfresult.to_csv(exportpath + "result" + ".csv", index=True, header=True) import joblib #模型保存到本地 joblib.dump(clf_selected, 'clf_selected.m') #模型的恢复 clf_tmp = joblib.load('clf_selected.m')
[ "matplotlib" ]
ad33a889bb9110345b125fb450edac787a1e4235
Python
kalekundert/ligrna
/notebook/20170329_test_multiple_spacers/n17_spacer_uniformity_test.py
UTF-8
3,884
2.71875
3
[]
no_license
#!/usr/bin/env python3 """ Create a plot showing the likelihood the distribution of nucleotides observed at each position in the spacer. """ import random import numpy as np import matplotlib.pyplot as plt from debugtools import p, pp, pv from pprint import pprint from color_me import ucsf positions = np.arange(18) j_from_nuc = dict(A=0, T=1, G=2, C=3) nuc_from_j = {v:k for k, v in j_from_nuc.items()} def calc_frequencies(spacers): frequencies = [np.zeros(4) for i in positions] for spacer in spacers: for i, nuc in enumerate(spacer): frequencies[i][j_from_nuc[nuc]] += 1 return frequencies def calc_pvals(frequencies): from scipy.stats import chisquare as chi2 pvals = np.array([chi2(f).pvalue for f in frequencies]) # Apply the Bonferroni multiple testing correction. This correction seems to # be generally frowned upon, but it's appropriate in this case because I'm # interesting in the global null hypothesis (e.g. are all the null hypothesis # rejected/accepted). It's also known to be conservative, which means that if # the null hypothesis is rejected, I can be pretty confident that something # else is going on. return pvals * len(pvals) if __name__ == '__main__': # Load the spacer sequences. with open('n17_spacers.tsv') as file: sequenced_spacers = [x.strip() for x in file.readlines()] with open('doench_spacers.tsv') as file: doench_spacers = [x.split()[1][7:25] for x in file.readlines()] random_spacers = [ ''.join(random.choice('ATCG') for _ in positions) for _ in sequenced_spacers ] # Calculate χ² p-values for both sets of spacers. sequenced_freqs = calc_frequencies(sequenced_spacers) sequenced_pvals = calc_pvals(sequenced_freqs) doench_freqs = calc_frequencies(doench_spacers) doench_pvals = calc_pvals(doench_freqs) random_freqs = calc_frequencies(random_spacers) random_pvals = calc_pvals(random_freqs) # Plot the p-values on the left axis. fig, ax1 = plt.subplots() fig.patch.set_color('white') ax1.plot(positions, -np.log10(sequenced_pvals), 'ko', mec='none', label='Sequenced spacers') ax1.plot(positions, -np.log10(doench_pvals), 'k^', mec='none', label='Doench spacers') ax1.plot(positions, -np.log10(random_pvals), 'ko', mfc='none', label='Uniform random spacers') ax1.axhline(-np.log10(0.01), color='k', linestyle='--', label='99% confidence level') ax1.set_xlabel('position') ax1.set_ylabel('χ² uniformity test\n-log(Bonferonni-corrected p)') ax1.set_xticks(positions) ticklabels = list(17 - positions) ticklabels[-1] = -1 ax1.set_xticklabels(ticklabels) ax1.set_xlim(min(positions) - 0.5, max(positions) + 0.5) ax1.legend(loc='best') # Plot the nucleotide frequencies on the right axis. ax2 = ax1.twinx() ax1.set_zorder(ax2.get_zorder()+1) ax1.patch.set_visible(False) color = ucsf.dark_grey[0] color_from_nuc = dict( A=ucsf.blue[2], T=ucsf.orange[2], G=ucsf.olive[2], C=ucsf.red[2], ) for i in positions: for j in range(4): nuc = nuc_from_j[j] freq = sequenced_freqs[i][j] / sum(sequenced_freqs[i]) ax2.text(i, freq, nuc, color=color_from_nuc[nuc], family='monospace', horizontalalignment='center', verticalalignment='center', zorder=10, ) ax2.tick_params('y', colors=color) ax2.set_ylim(0, 1) ax2.set_ylabel('nucleotide frequencies\n(sequenced spacers)', rotation=270, verticalalignment='baseline', color=color) fig.tight_layout() plt.savefig('n17_spacer_uniformity_test.svg') plt.show()
[ "matplotlib" ]
0d2862015fe0dade05662751ddedd2469b363200
Python
HoriaGiuvelca/Image-Search-Engine
/search.py
UTF-8
1,009
2.546875
3
[]
no_license
from colordescriptor import ColorDescriptor from searcher import Searcher import argparse import cv2 import matplotlib.pyplot as mpl ap = argparse.ArgumentParser() ap.add_argument("-i", "--index", required = True, help = "Path-ul catre fisierul 'baza_de_date'") ap.add_argument("-q", "--query", required = True, help = "Path-ul catre imaginea care se doreste a fi 'cautata'") ap.add_argument("-r", "--result-path", required = True, help = "Path-ul catre fisierul cu poze") args = vars(ap.parse_args()) cd = ColorDescriptor((8, 12, 3)) query = cv2.imread(args["query"]) features = cd.describe(query) searcher = Searcher(args["index"]) results = searcher.search(features) #afiseaza query-ul query = cv2.resize(query, (1366, 768)) cv2.imshow("Query", query) #afiseaza rezultatele for(score, resultID) in results: result = cv2.imread("./" + resultID) result = cv2.resize(result, (1366, 768)) mpl.figure() cv2.imshow("Result", result) cv2.waitKey(0)
[ "matplotlib" ]
b4fe0daba365c8bd98070f5211141d8f1705ea31
Python
mherkhachatryan/python-codes
/visaulization/Exponential Cut .py
UTF-8
4,922
2.875
3
[]
no_license
# coding: utf-8 # ## Importing Packages # In[19]: import matplotlib.pyplot as plt import numpy as np import matplotlib as mlp mlp.style.use("ggplot") # ## Constants # In[20]: n_0 = 10**11 k = 100 e = np.linspace(1,10**6,100) cutoff = 10**4 # ## Ploting the figure # In[38]: fig = plt.figure(figsize=(15,12)) #plot alpha = 2.2 ax1 = fig.add_subplot(331) ax1.plot(e, n_0 *(e/k)**(-2.2),ls = "--", color = "#2413dd",label = "n(e)" ) ax1.plot(e,n_0 *(e/k)**(-2.2)*np.exp(-e/(cutoff)), color = "r",label = "f(e)") ax1.set_xscale("log") ax1.set_yscale("log") ax1.set_title(r'$\alpha = 2.20 $', fontsize = 14) ax1.set_ylim(10**-45,10**18) plt.setp(ax1.get_xticklabels(), visible=False) #plot alpha = 2.92 ax2 = fig.add_subplot(332) ax2.plot(e, n_0 * (e/k)**(-2.92),ls = "--", color = "#2413dd",label = "n(e)" ) ax2.plot(e,n_0 *(e/k)**(-2.92)*np.exp(-e/(cutoff)), color = "r",label = "f(e)") ax2.set_xscale("log") ax2.set_yscale("log") ax2.set_title("Exponential Cut" +"\n"+r'$\alpha = 2.92 $', fontsize = 14) plt.setp(ax2.get_xticklabels(), visible=False) plt.setp(ax2.get_yticklabels(), visible=False) ax2.set_ylim(10**-45,10**18) #plot alpha = 3.65 ax3 = fig.add_subplot(333) ax3.plot(e, n_0 * (e/k)**(-3.65),ls = "--", color = "#2413dd",label = "n(e)" ) ax3.plot(e,n_0 *(e/k)**(-3.65)*np.exp(-e/(cutoff)), color = "r",label = "f(e)") ax3.set_xscale("log") ax3.set_yscale("log") ax3.set_title(r'$\alpha = 3.65 $', fontsize = 14) plt.setp(ax3.get_xticklabels(), visible=False) plt.setp(ax3.get_yticklabels(), visible=False) ax3.set_ylim(10**-45,10**18) #plot alpha = 4.38 ax4 = fig.add_subplot(334) ax4.plot(e, n_0 * (e/k)**(-4.38),ls = "--", color = "#2413dd",label = "n(e)" ) ax4.plot(e,n_0 *(e/k)**(-4.38)*np.exp(-e/(cutoff)), color = "r",label = "f(e)") ax4.set_ylabel(r'$ n(e) $'+","+ r'$ f(e) $', fontsize = 20) ax4.set_xscale("log") ax4.set_yscale("log") ax4.set_title(r'$\alpha = 4.38 $', fontsize = 14) plt.setp(ax4.get_xticklabels(), visible=False) ax4.set_ylim(10**-45,10**18) #adding text, constants of formulas constants = r'$n_0 = 10^{11} $' +"\n" + r'$ k=100 $' +"\n" + r'$ \alpha $' +" is the title" boxprop = dict(boxstyle = "round", facecolor = "#ceaf40", alpha = 0.56) ax4.text(1.432, 4*10**-22, constants, fontsize = 15, bbox = boxprop) # plot alpha = 5.1 ax5 = fig.add_subplot(335) ax5.plot(e, n_0 * (e/k)**(-5.1),ls = "--", color = "#2413dd",label = "n(e)" ) ax5.plot(e,n_0 *(e/k)**(-5.1)*np.exp(-e/(cutoff)), color = "r",label = "f(e)") ax5.set_xscale("log") ax5.set_yscale("log") ax5.set_title(r'$\alpha = 5.1 $', fontsize = 14) ax5.set_ylim(10**-34,10**14) plt.setp(ax5.get_xticklabels(), visible=False) plt.setp(ax5.get_yticklabels(), visible=False) ax5.set_ylim(10**-45,10**18) #plot alpha = 5.82 ax6 = fig.add_subplot(336) ax6.plot(e, n_0 * (e/k)**(-5.82),ls = "--", color = "#2413dd",label = "n(e)" ) ax6.plot(e,n_0 *(e/k)**(-5.82)*np.exp(-e/(cutoff)), color = "r",label = "f(e)") ax6.set_xscale("log") ax6.set_yscale("log") ax6.set_title(r'$\alpha = 5.82 $', fontsize = 14) plt.setp(ax6.get_xticklabels(), visible=False) plt.setp(ax6.get_yticklabels(), visible=False) ax6.set_ylim(10**-45,10**18) # plot alpha = 6.55 ax7 = fig.add_subplot(337) ax7.plot(e, n_0 * (e/k)**(-6.55),ls = "--", color = "#2413dd",label = "n(e)" ) ax7.plot(e,n_0 *(e/k)**(-6.55)*np.exp(-e/(cutoff)), color = "r",label = "f(e)") ax7.set_xscale("log") ax7.set_yscale("log") ax7.set_title(r'$\alpha = 6.55 $', fontsize = 14) ax7.set_ylim(10**-45,10**18) #adding text #find boxprops at ax4 , text section text = "\n" +"Formulas" + "\n" + r'$n \left( e \right) = n_0 * \left( \frac{e}{k} \right) ^ {-\alpha} $' + "\n" + r'$f \left( e \right) = n_0 * \left( \frac{e}{k} \right) ^ {-\alpha} *Exp \left( \frac{e}{cutoff} \right) $' ax7.text(1.432,1*10**-29,text, fontsize =16 , bbox = boxprop) #plot alpha = 7.28 ax8 = fig.add_subplot(338) ax8.plot(e, n_0 * (e/k)**(-7.28),ls = "--", color = "#2413dd",label = "n(e)" ) ax8.plot(e,n_0 *(e/k)**(-7.28)*np.exp(-e/(cutoff)), color = "r",label = "f(e)") ax8.set_xlabel("e", fontsize = 20) ax8.set_xscale("log") ax8.set_yscale("log") ax8.set_title(r'$\alpha = 7.28 $', fontsize = 14) plt.setp(ax8.get_yticklabels(), visible=False) ax8.set_ylim(10**-45,10**18) # plot alpha = 8.0 ax9 = fig.add_subplot(339) ax9.plot(e, n_0 * (e/k)**(-8),ls = "--", color = "#2413dd",label = "n(e)" ) ax9.plot(e,n_0 *(e/k)**(-8)*np.exp(-e/(cutoff)), color = "r",label = "f(e)") ax9.set_xscale("log") ax9.set_yscale("log") ax9.set_title(r'$\alpha = 8.00 $', fontsize = 14) plt.setp(ax9.get_yticklabels(), visible=False) ax9.set_ylim(10**-45,10**18) plt.legend() plt.tight_layout(pad = 0.1, h_pad = 0.8, w_pad = -0.2) plt.savefig("C:/Users/user/Desktop/Mher/Exponential Cut.pdf", dpi =350 ) plt.show() # #### this is the exponential cut for given formulas, find them in the plot, all axis have the same scale (logarithmical) and same range _alpha_ varies from 2.2 to 8
[ "matplotlib" ]
01503377c8038b44ea3d26551e08a1e379e51ffb
Python
anuragmakineni/bag_utils
/scripts/error_plot.py
UTF-8
2,133
2.6875
3
[]
no_license
#!/usr/bin/env python import rosbag import matplotlib matplotlib.use('Qt4Agg') import rospy import math import numpy as np import matplotlib.pyplot as plt #get bag data robots = ['/pico03/', '/pico04/', '/pico05/'] path = '/home/anuragmakineni/Desktop/cc_1.bag' start_index = 1433 end_index = 2604 fig = plt.figure() for robot in robots: odom_x = np.empty((0)) odom_y = np.empty((0)) odom_z = np.empty((0)) setpoint_x = np.empty((0)) setpoint_y = np.empty((0)) setpoint_z = np.empty((0)) error = np.empty((0)) time = np.empty((0)) time_pos = np.empty((0)) bag = rosbag.Bag(path) topic = robot + 'odom' for topic, msg, t in bag.read_messages(topics=[topic]): odom_x = np.append(odom_x, msg.pose.pose.position.x) odom_y = np.append(odom_y, msg.pose.pose.position.y) odom_z = np.append(odom_z, msg.pose.pose.position.z) time = np.append(time, msg.header.stamp.to_sec()) topic = robot + 'position_cmd' for topic, msg, t in bag.read_messages(topics=[topic]): setpoint_x = np.append(setpoint_x, msg.position.x) setpoint_y = np.append(setpoint_y, msg.position.y) setpoint_z = np.append(setpoint_z, msg.position.z) time_pos = np.append(time_pos, msg.header.stamp.to_sec()) i=0 for t in time_pos: delta_t = abs(time - t) o_i = np.argmin(delta_t) error_x = setpoint_x[i] - odom_x[o_i] error_y = setpoint_y[i] - odom_y[o_i] error_z = setpoint_z[i] - odom_z[o_i] total_error = np.sqrt(error_x * error_x + error_y * error_y + error_z * error_z) error = np.append(error, total_error) i = i+1 time_pos_cropped = time_pos[start_index:end_index] error_cropped = error[start_index:end_index] plt.plot(time_pos_cropped - time_pos_cropped[0], error_cropped) print('\n' + robot + " max Error: " + str(np.amax(error_cropped))) print(robot + " std dev: " + str(np.std(error_cropped))) plt.title('Total Error vs. Time') plt.grid(1) plt.legend(robots) plt.xlabel('Time (s)') plt.ylabel('Error (m)') plt.show() bag.close()
[ "matplotlib" ]
b550758222b3170d8469d2849d6b4cb6acdd14c6
Python
MoritzMoeller/reinforcement_learning
/tabular_q_learning.py
UTF-8
3,296
2.734375
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 16 10:44:00 2017 @author: mo """ import gym import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation SHOW_MOVIE = True SHOW_RETURN = False # pick grid_size = 8 for 'FrozenLake8x8-v0', grid_size = 4 for 'FrozenLake-v0' grid_size = 8 # functions that convert Q table to dislayed objects def Q_to_V(Q): V = np.amax(Q,1) return V.reshape((grid_size,grid_size)) def Q_to_greedy_quiver(Q): a_greedy = np.argmax(Q,1) vert = np.zeros(np.shape(a_greedy)) hori = np.zeros(np.shape(a_greedy)) for i in range(len(a_greedy)): a = a_greedy[i] #down: 0 left: 1 up: 2 right:3 if a == 0: vert[i] = -1 hori[i] = 0 if a == 1: vert[i] = 0 hori[i] = -1 if a == 2: vert[i] = 1 hori[i] = 0 if a == 3: vert[i] = 0 hori[i] = 1 return (hori.reshape(grid_size,grid_size), vert.reshape(grid_size,grid_size)) # set up visualisation fig, ax = plt.subplots() im_list = [] quiv_list = [] X, Y = np.meshgrid(np.arange(0, grid_size), np.arange(0, grid_size)) # initialise environment env = gym.make('FrozenLake8x8-v0') # parameters of the learning algorithm gamma = .99 alpha = .85 eps = .05 number_of_episodes = 20000 Q = np.zeros((env.observation_space.n, env.action_space.n)) rets = [] ret = 0 s = env.reset() i = 0 j = 0 FOUNDGOAL = False # loop over episodes while i < number_of_episodes: # eps-greedy strategy with decreasing eps a = np.argmax(Q[s,:] + np.random.randn(1,env.action_space.n)*(1./(i+1))) (s_new, rew, done, _) = env.step(a) # first encounter of goal state gets reported: if ((rew != 0) & (FOUNDGOAL == False)) : FOUNDGOAL = True print("found goal! in episode %i " %j) if done: Q[s,a] = Q[s,a] + alpha*(rew - Q[s,a]) # paint a picture if FOUNDGOAL: i = i + 1 quiv_list.append(Q_to_greedy_quiver(Q)) im_list.append(Q_to_V(Q)) if i%1000 == 0: print("Episode count: %i" %i) s = env.reset() rets.append(ret + rew) ret = 0 j = j + 1 else: Q[s,a] = Q[s,a] + alpha*(rew + gamma*np.amax(Q[s_new,:]) - Q[s,a]) s = s_new ret = ret + rew (U,V) = quiv_list[0] im = ax.imshow(im_list[0], cmap=plt.get_cmap('CMRmap'), vmin=0, vmax=1) quiv = ax.quiver(X,Y,U,V) # making it into an animation def updatefig(j): # set the data in the axesimage object (U,V) = quiv_list[j] quiv.set_UVC(U,V) im.set_array(im_list[j]) return im,quiv, # kick off the animation ani = animation.FuncAnimation(fig, updatefig, frames=range(1000), interval=50, blit=False) if SHOW_MOVIE: # Does not work in IPython console! plt.show() # calc ret avg over k epidodes: k = 50 avg_rets = np.zeros(len(rets) - k) for j in range(len(avg_rets)): avg_rets[j] = np.mean(rets[j:j+k]) if SHOW_RETURN: plt.plot(avg_rets)
[ "matplotlib" ]
f379de497711edd598fc7cbd51c4e53643d5f02d
Python
UselessOldQian/Airvis
/hourly_graph.py
UTF-8
3,271
2.953125
3
[]
no_license
# -*- coding:utf-8 -*- from collections import defaultdict import itertools import numpy as np import matplotlib.pyplot as plt import json class HourlyGraph(object): """Graph class.""" def __init__(self, gid): """Initialize Graph instance. Args: gid: id of this graph. is_undirected: whether this graph is directed or not. eid_auto_increment: whether to increment edge ids automatically. """ self.gid = gid self.vertices = dict() self.edge = defaultdict(list) self.vertices = defaultdict(list) self.counter = itertools.count() self.vid_dict = {} self.tid_dict = {} self.xy_dict = {} def get_vidandtid_dict(self,vid_dict,tid_dict,xy_dict): self.vid_dict = vid_dict self.tid_dict = tid_dict self.xy_dict = xy_dict def add_vertex(self, vid, ti): """Add a vertex to the graph.""" if vid in self.vertices[ti]: return self self.vertices[ti].append(vid) return self def add_edge(self, frm, to, ts, te): ''' :param frm: :param to: :param ts: start time :param te: end time :return: ''' if (frm in self.vertices[ts] and to in self.vertices[te] and (frm, to) in self.edge[(ts,te)]): return self self.edge[(ts,te)].append((frm, to)) return self def is_contain(self, name): for t in self.vertices.keys(): for v in self.vertices[t]: if v == name: return True return False def get_vertex_num(self): ret_len = 0 for var in self.vertices.keys(): ret_len += len(self.vertices[var]) return ret_len def set_gid(self, gid): self.gid = gid def merge(self, other): for tid in other.vertices.keys(): for vid in other.vertices[tid]: self.add_vertex(vid, tid) for estart_end in other.edge.keys(): for edge_list in other.edge[estart_end]: self.add_edge(edge_list[0], edge_list[1], estart_end[0], estart_end[1]) return self def getGraph(self): print('gid:', self.gid) print('edge:', self.edge) print('vertices:',self.vertices) print('-------------------') def plot(self): """Visualize the graph.""" try: import networkx as nx import matplotlib.pyplot as plt except Exception as e: print('Can not plot graph: {}'.format(e)) return gnx = nx.DiGraph() vlbs = {} for tid, vid_list in self.vertices.items(): for vid in vid_list: vlbs[vid] = tid for tid, vid in self.vertices.items(): gnx.add_nodes_from(vid, label=tid) for tid, edges in self.edge.items(): gnx.add_edges_from(edges, label=tid) plt.figure(self.gid) nx.draw(gnx, arrows=True, with_labels=True) for i in self.vid_dict.keys(): print(str(i)+':'+self.vid_dict[i]) #plt.show() plt.savefig('subgraph_result/'+ str(self.gid) +'.png')
[ "matplotlib" ]
530c260422756b4f20611fad322b5337024429c1
Python
kacperChwialkowski/mcmc
/2dimNormal/2dimNormal.py
UTF-8
1,154
2.546875
3
[]
no_license
from pandas import DataFrame import seaborn from sampplers.MetropolisHastings import metropolis_hastings from stat_test.quadratic_time import GaussianQuadraticTest, QuadraticMultiple, QuadraticMultiple2 __author__ = 'kcx' import numpy as np def logg(c): def log_normal(x): return -np.dot(x,x)/c return log_normal def grad_log_dens(x): return -x arr = np.empty((0,2)) arr2 = np.empty((0,2)) for c in [1.0,1.3,2.0,3.0]: print('c',c) log_normal = logg(c) for i in range(23): print(i) x= metropolis_hastings(log_normal, chain_size=500, thinning=15,x_prev=np.random.randn(2)) me = GaussianQuadraticTest(grad_log_dens) qm = QuadraticMultiple(me) qm2 = QuadraticMultiple2(me) accept_null,p_val = qm.is_from_null(0.05, x, 0.1) p_val2 = qm2.is_from_null(0.05, x, 0.1) print(p_val2) arr = np.vstack((arr, np.array([c,min(p_val)]))) arr2 = np.vstack((arr2, np.array([c,p_val2]))) df = DataFrame(arr) pr = seaborn.boxplot(x=0,y=1,data=df) seaborn.plt.show() df = DataFrame(arr2) pr = seaborn.boxplot(x=0,y=1,data=df) seaborn.plt.show()
[ "seaborn" ]
4a7f9b09022b0798e7d0a131c5661099b6ca1997
Python
SandeshJIT/TheSparkFoundationTask1
/task1.py
UTF-8
1,381
3.953125
4
[]
no_license
#--- Program to predict the Students score based on the numbers of hours the student studies --# #-- Spark Foundation Data Science and Business Analyst Internship Task 1 --# #importing necessary packages for Linear Regression import csv import numpy as np from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt #Creating an empty list to take read CSV file input x = list() #Reading and storing the values in CSV FILE with open('task1.csv','r') as fp: read = csv.reader(fp) for r in read: x.append(r) #Printing the list print(x) #Taking Hours in "a" and Score in "b" a = np.array(x[1][0],dtype="float64") b = np.array(x[1][1],dtype="float64") for i in x[1:]: a =np.insert(a , 0 ,float(i[0])) b =np.insert(b , 0 ,float(i[1])) #Making it 2 Dimenssional array a=a.reshape(-1,1) b=b.reshape(-1,1) #Creating a linearRegression model model = LinearRegression().fit(a,b) #Printing the Coef of the model r_sq = model.score(a, b) print(r_sq) #Ploting the data in a graph and seeing the coef visualy plt.scatter(a,b) y_pred = model.predict(a) print(y_pred) plt.plot(a,y_pred,color="red") plt.show() #Preficting the Score when student studies for 9.25hrs every day y_pred = model.predict([[9.25]]) print("\nIf the student studies for 9.25hrs/day this model predicts that he will score ",y_pred[0,0])
[ "matplotlib" ]
4eadd3e1fd81a6de31c13bfa9d6c47bd93d3e373
Python
zub1984/CIFAR-10-Multi-Class-Classification-using-Pytorch
/MLP.py
UTF-8
7,211
2.875
3
[]
no_license
""" Multilayer Perceptron approach to CIFAR-10 Multi-class classification Using Pytorch and Cross Entropy Loss """ import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt import torch.utils.data as td import random, time import torchvision class SevenFullyConnectedNet(nn.Module): def __init__(self): super(SevenFullyConnectedNet, self).__init__() self.fc1 = nn.Linear(3 * 32 * 32, 2634) # equal spacing between in/out variables self.fc2 = nn.Linear(2634, 2196) # equal spacing between in/out variables self.fc3 = nn.Linear(2196, 1758) # equal spacing between in/out variables self.fc4 = nn.Linear(1758, 1320) # equal spacing between in/out variables self.fc5 = nn.Linear(1320, 882) # equal spacing between in/out variables self.fc6 = nn.Linear(882, 444) # equal spacing between in/out variables self.fc7 = nn.Linear(444, 10) # equal spacing between in/out variables def forward(self, x): x = x.view(-1, 3 * 32 * 32) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = F.relu(self.fc4(x)) x = F.relu(self.fc5(x)) x = F.relu(self.fc6(x)) """ x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) x = self.fc4(x) x = self.fc5(x) x = self.fc6(x) """ x = self.fc7(x) return x def cifar_loaders(batch_size, shuffle_test=False): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.225, 0.225, 0.225]) train = datasets.CIFAR10('./', train=True, download=True, transform=transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, 4), transforms.ToTensor(), normalize, ])) test = datasets.CIFAR10('./', train=False, transform=transforms.Compose([transforms.ToTensor(), normalize])) train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=True, pin_memory=True) test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size, shuffle=shuffle_test, pin_memory=True) return train_loader, test_loader batch_size = 64 test_batch_size = 64 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") train_loader, _ = cifar_loaders(batch_size) _, test_loader = cifar_loaders(test_batch_size) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # ---------------------------------------------------------------------------------------------------------------------- # neural net initialization # ---------------------------------------------------------------------------------------------------------------------- learning_rate = 1e-2 num_epochs = 1 net = SevenFullyConnectedNet() net.to(device) # ---------------------------------------------------------------------------------------------------------------------- # Loss function and optimizer # ---------------------------------------------------------------------------------------------------------------------- criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=5e-4) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, factor=0.1, verbose=True, cooldown=10) # ---------------------------------------------------------------------------------------------------------------------- # Train the network # ---------------------------------------------------------------------------------------------------------------------- print('Run Start Time: ', time.ctime()) begin_time = time.time() filename = 'Results_' + str(learning_rate) + '_MLP_' + str(time.time()) + '.txt' f = open(filename, 'w') f.write('Run Start Time: ' + str(time.ctime())) print('Learning Rate: %f' % learning_rate) f.write('Learning Rate\t%f\n' % learning_rate) max_accuracy = 0 for epoch in range(num_epochs): # loop over the dataset multiple times start_time = time.time() running_loss = 0.0 for i, data in enumerate(train_loader, 0): # get the inputs inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) # zero the parameter gradients optimizer.zero_grad() # Forward pass outputs = net(inputs) loss = criterion(outputs, labels) # Backward pass + Optimize loss.backward() optimizer.step() # print statistics running_loss += loss.item() print('Epoch[% d/% d]: Loss: %.4f' % (epoch + 1, num_epochs, running_loss / (i + 1))) f.write("Epoch\t%d\tLoss\t%f\t" % (epoch + 1, running_loss / (i + 1))) end_time = time.time() print("Epoch[%d] total time taken: %f" % (epoch+1, end_time - start_time)) # ------------------------------------------------------------------------------------------------------------------ # Test the network # ------------------------------------------------------------------------------------------------------------------ class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) correct_matrix = (predicted == labels) print('===============================================') print('out ', outputs.data) print('pred ', predicted) print('labels ', labels) print('correct', correct_matrix) c = correct_matrix.squeeze() for i in range(len(labels)): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 total += labels.size(0) correct += correct_matrix.sum().item() max_accuracy = max(max_accuracy, int(100 * correct / total)) scheduler.step(max_accuracy) for i in range(10): print('Accuracy of %5s [%d/%d]: %2f %%' % (classes[i], class_correct[i], class_total[i], 100 * class_correct[i] / class_total[i])) # f.write('Accuracy of %5s [%d/%d]\t%2f %%\n' % (classes[i], class_correct[i], class_total[i], # 100 * class_correct[i] / class_total[i])) print('Accuracy of the network [%d/%d]: %f %%' % (correct, total, 100 * correct / total)) f.write('Accuracy of the network [%d/%d]\t%f %%\n' % (correct, total, 100 * correct / total)) print('Finished Training: ', time.ctime()) f.write('Finished Training: ' + str(time.ctime()) + '\n') run_time = time.time() - begin_time print('Total Runtime: %f' % run_time) f.write('Total Runtime\t%f\n' % run_time)
[ "matplotlib" ]
b3438f65063a25ae30f593d4e357a0fdc3e2bb91
Python
rodosara/dsp_nilm
/combined_ground_truth.py
UTF-8
6,185
2.546875
3
[]
no_license
#!/usr/bin/python import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as mtick from tqdm import tqdm from sklearn.metrics import confusion_matrix import datetime as dt import re, os import parameters pd.options.display.float_format = '{:f}'.format def channels_name(folder): names = np.empty((0,1), dtype='S20') files = np.array(os.listdir(folder)) for a in range(0, len(files), 1): if files[a][0] == '.': files = np.delete(files, a, axis=0) for a in range(0, len(files), 1): filename, file_extension = os.path.splitext(files[a]) names = np.append(names, filename) files = files.reshape(len(files),1) names = names.reshape(len(names),1) channels = np.column_stack((files, names)) return channels def calc_ground_truth(folder, power_1hz): channels = channels_name(folder) ground_truth = np.empty((0,6), dtype=float) #pbar1 = tqdm(total=len(channels)) for a in range(0, len(channels), 1): appliance_events = np.loadtxt(folder+channels[a,0], dtype=float, delimiter=' ') # Selezione intervallo start = np.abs((appliance_events[:,2]*1000).astype(int)-power_1hz[0,0]).argmin() if (appliance_events[start,2]*1000).astype(int) < power_1hz[0,0]: start += 1 #print "START:", start end = np.abs((appliance_events[:,2]*1000).astype(int)-power_1hz[-1,0]).argmin() if (appliance_events[end,2]*1000).astype(int) > power_1hz[-1,0]: end -= 1 #print "END:", end appliance_events = appliance_events[start:end+1,:] #pbar1.update(a) ground_truth = np.append(ground_truth, appliance_events, axis=0) #pbar1.close() ground_truth = ground_truth[np.argsort(ground_truth[:,0])] ground_truth[:,2] *= 1000 ground_truth = ground_truth.astype(int) return ground_truth def label_calc(gt): if gt[4] == 1: label_gt = str(parameters.appliance(gt[5])+'_ON') elif gt[4] == 0: label_gt = str(parameters.appliance(gt[5])+'_OFF') return label_gt def debug(ground_truth, combined, decision_nan, uncombined): print " " print "COMBINED GROUND_TRUTH DEBUG" print "COMBINED:" print combined print combined.shape, combined.dtype, "|", combined.nbytes, "bytes" print " " print "GROUND_TRUTH:" print ground_truth print ground_truth.shape, ground_truth.dtype, "|", ground_truth.nbytes, "bytes" print " " print "DECISION_NAN:" print decision_nan print decision_nan.shape, decision_nan.dtype, "|", decision_nan.nbytes, "bytes" print " " count = 0 for a in range(0, len(combined), 1): if combined[a,2][-1] != combined[a,4][-1]: count += 1 print int(combined[a,3].astype(float))/1000, combined[a,4], count print " " print "DIFFERENCE GROUND_TRUTH-COMBINED:", ground_truth.shape[0] - combined.shape[0] print "UNCOMBINED:" print uncombined print uncombined.shape, uncombined.dtype, "|", uncombined.nbytes, "bytes" def save_array(array, name, train_test): folder = str('./'+train_test+'/results_'+train_test+'/') if not os.path.exists(folder): os.makedirs(folder) filename = str(folder+name+'.dat') np.savetxt(filename, array, delimiter=' ', fmt='%s') # MAIN def main(power_1hz, decision, events, folder, train_test): print "COMBINED GOUND_TRUTH..." combined_buffer = np.empty((0,7), dtype=float) combined = np.empty((0,6), dtype=float) decision_nan = np.empty((0,6), dtype=float) graph, ax = plt.subplots() plt.title("OUTPUT PLOT") ground_truth = calc_ground_truth(folder, power_1hz) a = 0 while a < len(decision): pos = abs(decision[a,0].astype(float)-(ground_truth[:,2]).astype(int)).argmin() label_decision = str(decision[a,3]+"_"+decision[a,4]) label_gt = label_calc(ground_truth[pos,:]) if a+1 == len(decision) or pos != abs(decision[a+1,0].astype(float)-(ground_truth[:,2])).argmin(): combined_element = np.concatenate(([int(decision[a,0].astype(float))],[decision[a,1].astype(float)],[label_decision],[ground_truth[pos,2]],[label_gt],[decision[a,2].astype(float)])).reshape(1,6) combined = np.append(combined, combined_element, axis=0) else: # Rende la funzione iniettiva while a+1 != len(decision) and pos == abs(decision[a+1,0].astype(float)-(ground_truth[:,2])).argmin(): min_buffer = np.amin(abs(decision[a,0].astype(float)-(ground_truth[:,2]))) buffer_element = np.concatenate(([int(decision[a,0].astype(float))],[decision[a,1].astype(float)],[label_decision],[ground_truth[pos,2]],[label_gt],[decision[a,2].astype(float)],[min_buffer])).reshape(1,7) combined_buffer = np.append(combined_buffer, buffer_element, axis=0) a += 1 pos = abs(decision[a,0].astype(float)-(ground_truth[:,2])).argmin() label_decision = str(decision[a,3]+"_"+decision[a,4]) label_gt = label_calc(ground_truth[pos,:]) # Considera anche l'ultimo elemento del buffer if a+1 != len(decision) and pos != abs(decision[a+1,0].astype(float)-(ground_truth[:,2])).argmin() and pos == abs(decision[a-1,0].astype(float)-(ground_truth[:,2])).argmin(): min_buffer = np.amin(abs(decision[a,0].astype(float)-(ground_truth[:,2]))) buffer_element = np.concatenate(([int(decision[a,0].astype(float))],[decision[a,1].astype(float)],[label_decision],[ground_truth[pos,2]],[label_gt],[decision[a,2].astype(float)],[min_buffer])).reshape(1,7) combined_buffer = np.append(combined_buffer, buffer_element, axis=0) pos_buffer = (combined_buffer[:,6].astype(float)).argmin() combined_element = combined_buffer[pos_buffer,0:6].reshape(1,6) combined = np.append(combined, combined_element, axis=0) decision_nan = np.append(decision_nan, np.delete(combined_buffer[:,0:6], pos_buffer, axis=0), axis=0) decision_nan[:,4] = "NAN_NAN" combined_buffer = np.empty((0,7), dtype=float) a += 1 uncombined = ground_truth for a in range(0, len(combined), 1): pos = np.where(combined[a,3].astype(float) == uncombined[:,2]) uncombined = np.delete(uncombined, pos[0][0], axis=0) save_array(decision, "decision", train_test) save_array(ground_truth, "ground_truth", train_test) save_array(combined, "combined", train_test) save_array(decision_nan, "decision_nan", train_test) save_array(uncombined, "uncombined", train_test) #debug(ground_truth, combined, decision_nan, uncombined) print "... DONE"
[ "matplotlib" ]
7246a294ad01e8e442bf969607dc645335d488ff
Python
jyotijangid/people-counter-improved-algorithm
/noise_image.py
UTF-8
2,440
2.84375
3
[]
no_license
import numpy as np import os import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg '''def noisy(noise_typ,image): if noise_typ == "gauss": row,col,ch= image.shape mean = 0 var = 0.1 sigma = var**0.5 gauss = np.random.normal(mean,sigma,(row,col,ch)) gauss = gauss.reshape(row,col,ch) noisy = image + gauss return noisy elif noise_typ == "s&p": row,col,ch = image.shape s_vs_p = 0.5 amount = 0.004 out = np.copy(image) # Salt mode num_salt = np.ceil(amount * image.size * s_vs_p) coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape out[coords] = 1 # Pepper mode num_pepper = np.ceil(amount* image.size * (1. - s_vs_p)) coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape] out[coords] = 0 return out else noise_typ == "poisson": vals = len(np.unique(image)) vals = 2 ** np.ceil(np.log2(vals)) noisy = np.random.poisson(image * vals) / float(vals) return noisy else noise_typ =="speckle": row,col,ch = image.shape gauss = np.random.randn(row,col,ch) gauss = gauss.reshape(row,col,ch) noisy = image + image * gauss return noisy image=cv2.imread("flower.jpg") plt.imshow(image) plt.show()''' image = mpimg.imread('flower.jpg') plt.imshow(image) row,col,ch = image.shape gauss = np.random.randn(row,col,ch) gauss = gauss.reshape(row,col,ch) noisy = image + image * gauss out_image = noisy("gauss", image) plt.imshow(out_image) out_image = noisy("speckle", image) plt.imshow(out_image) out_image = noisy("poisson", image) plt.imshow(out_image) out_image = noisy("s&p", image) plt.imshow(out_image) gray = cv2.cvtColor(out_image, cv2.COLOR_BGR2GRAY) plt.imshow(gray) pixel = image[10,10] print(pixel) blue=image[:,:,0] print(blue) from PIL import Image pix_value = list(out_image.getdata()) import numpy as np import cv2 cap = cv2.VideoCapture(0) while(True): # Capture frame-by-frame ret, frame = cap.read() # Our operations on the frame come here gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Display the resulting frame cv2.imshow('frame',gray) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows()
[ "matplotlib" ]
b49aa2815a6dc2b9064d4e4c4e7c1e3eb3302b23
Python
nadeemqwerty/DL_assignments
/Assignment1/line_class.py
UTF-8
3,194
2.5625
3
[]
no_license
from __future__ import print_function import numpy as np np.random.seed(37) from neauron import * import cv2 import matplotlib.pyplot as plt import os def load_data(folder): images = [] clss = [] for filename in os.listdir(folder): if(filename.endswith(".jpg")): img = cv2.imread(os.path.join(folder,filename)) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = np.array(img) img = img.ravel() images.append(img) cl =1 filename = filename[:-4] for w in filename.split("_"): cl = cl*(int(w)+1) cl = cl - 1 clss.append(cl) return images,clss def split_data(): images, clss = load_data("Line") x_train = [] y_train = [] x_val = [] y_val = [] for i in range(96): x_train = x_train + images[i*1000:i*1000+800] y_train = y_train + clss[i*1000:i*1000+800] x_val = x_val + images[i*1000+801:i*1000+1000] y_val = y_val + images[i*1000+801:i*1000+1000] x_train = np.array(x_train,dtype = float32)/255. x_val = np.array(x_val,dtype = float32)/255. return x_train, y_train, x_val, y_val epochs = 32 X_train, y_train, X_val, y_val = split_data() model = [] model.append(Dense(X_train.shape[1],64,0.4)) model.append(sigmoid()) model.append(Dense(64,10,0.2)) def forward(model, X): activations = [] input = X for l in model: activations.append(l.forward(input)) input = activations[-1] return activations def predict(model,X): logits = forward(model,X)[-1] return logits.argmax(axis=-1) def train(model,X,y): layer_activations = forward(model,X) layer_inputs = [X]+layer_activations logits = layer_activations[-1] loss = softmax_crossentropy_with_logits(logits,y) loss_grad = grad_softmax_crossentropy_with_logits(logits,y) for layer_index in range(len(model))[::-1]: layer = model[layer_index] loss_grad = layer.backward(layer_inputs[layer_index],loss_grad) return np.mean(loss) from tqdm import trange def iterate_minibatches(inputs, targets, batchsize, shuffle=False): assert len(inputs) == len(targets) if shuffle: indices = np.random.permutation(len(inputs)) for start_idx in trange(0, len(inputs) - batchsize + 1, batchsize): if shuffle: excerpt = indices[start_idx:start_idx + batchsize] else: excerpt = slice(start_idx, start_idx + batchsize) yield inputs[excerpt], targets[excerpt] train_log = [] val_log = [] for epoch in range(epochs): for x_batch,y_batch in iterate_minibatches(X_train,y_train,batchsize=32,shuffle=True): train(model,x_batch,y_batch) train_log.append(np.mean(predict(model,X_train)==y_train)) val_log.append(np.mean(predict(model,X_val)==y_val)) print("Epoch",epoch) print("Train accuracy:",train_log[-1]) print("Val accuracy:",val_log[-1]) plt.plot(train_log,label='train accuracy') plt.plot(val_log,label='val accuracy') plt.legend(loc='best') plt.grid() plt.show()
[ "matplotlib" ]
d438b0d23cfcc6e462f1ab457abc4c98af772914
Python
lion-x/FinancialEngineering
/code/histogram.py
UTF-8
2,265
3.359375
3
[]
no_license
import pandas as pd import os import matplotlib.pyplot as plt def symbol_to_path(symbol, base_dir="../data"): return os.path.join(base_dir, "{}.csv".format(symbol)) def get_data(symbols, dates): df = pd.DataFrame(index=dates) if 'SPY' not in symbols: symbols.insert(0, 'SPY') for symbol in symbols: df_temp = pd.read_csv(symbol_to_path(symbol), index_col='Date', parse_dates=True, usecols=['Date', 'Adj Close'], na_values=['nan']) df_temp = df_temp.rename(columns={'Adj Close': symbol}) df = df.join(df_temp) if symbol == 'SPY': df = df.dropna(subset=["SPY"]) return df def plot_data(df, title="Stock Price", xlabel="Date", ylabel="Price"): ax = df.plot(title=title, fontsize=2) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) plt.show() def compute_daily_returns(df): daily_returns = df.copy() daily_returns.iloc[0, :] = 0 daily_returns[1:] = (df[1:] / df[:-1].values) - 1 return daily_returns def test_run(): start_date = '2010-01-01' end_date = '2020-12-31' dates = pd.date_range(start_date, end_date) print(dates) symbols = ['SPY', 'XOM'] df = get_data(symbols, dates) plot_data(df['SPY']) daily_returns = compute_daily_returns(df) plot_data(daily_returns['SPY'], title="Daily returns", ylabel='Daily return') print(daily_returns) daily_returns_SPY_mean = daily_returns['SPY'].mean() print("mean = ", daily_returns_SPY_mean) daily_returns_SPY_std = daily_returns['SPY'].std() print("std = ", daily_returns_SPY_std) daily_returns['SPY'].hist(bins=40) plt.axvline(daily_returns_SPY_mean, color='w', linestyle='dashed', linewidth=2) plt.axvline(daily_returns_SPY_mean + daily_returns_SPY_std, color='r', linestyle='dashed', linewidth=2) plt.axvline(daily_returns_SPY_mean - daily_returns_SPY_std, color='r', linestyle='dashed', linewidth=2) plt.show() daily_returns_SPY_kurtosis = daily_returns['SPY'].kurtosis() print("kurtosis = ", daily_returns_SPY_kurtosis) daily_returns['XOM'].hist(bins=40, label='XOM') daily_returns['SPY'].hist(bins=40, label='SPY') plt.show() if __name__ == "__main__": test_run()
[ "matplotlib" ]
76a59a1bbd044e4af1ae94dc8dec43fddcb44f63
Python
WANGPeisheng1997/HandwrittenTextRecognition
/selective_search+cnn/main.py
UTF-8
2,196
2.671875
3
[]
no_license
import torch from PIL import Image, ImageOps import numpy as np from skimage import io import matplotlib.pyplot as plt import matplotlib.patches as mpatches from model import LeNet from predict import predict, preprocessing, grayscale from detect import NMS, selective_search def load_network(network, save_path): network.load_state_dict(torch.load(save_path)) return network # model = LeNet() # model = load_network(model, "mnist_lenet.pt") # # for group_name in ['a','b','c','d']: # print("Group:" + group_name) # for i in range(10): # test(model, "test/%d%s.png" % (i, group_name), i) def detect_and_predict(image, model): # preprocess image = ImageOps.invert(image) image = grayscale(image) image.convert("RGB").save("test/crop.png") # detect skimage = io.imread("test/crop.png") candidates = selective_search(skimage) candidates_boxs = [] for x, y, w, h in candidates: candidates_boxs.append([x, y, x + w, y + h, w * h]) candidates_boxs = np.array(candidates_boxs) keep = NMS(candidates_boxs, 0.7) # predict fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(6, 6)) ax.imshow(skimage) predict_dict = {} for x1, y1, x2, y2, _ in candidates_boxs[keep]: cropped_image = image.crop((x1, y1, x2, y2)) cropped_image = ImageOps.invert(cropped_image) cropped_image = preprocessing(cropped_image) pred, confidence = predict(model, cropped_image) predict_dict[x1] = pred plt.text(x1, y1, "%d %.3f" % (pred, confidence), color='r') sorted_dict = sorted(predict_dict.items(), key=lambda x: x[0]) predict_string = "" for x1, char in sorted_dict: predict_string += str(char) plt.text(0, 0, predict_string, color='r') for x1, y1, x2, y2, area in candidates_boxs[keep]: print(x1, y1, x2, y2, area) rect = mpatches.Rectangle( (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='red', linewidth=1) ax.add_patch(rect) plt.show() model = LeNet() model = load_network(model, "mnist_lenet.pt") image = Image.open("test/string3.png").convert('L') detect_and_predict(image, model)
[ "matplotlib" ]
499b029283b7a96d1e7ce9b06c8259174465397d
Python
pschafran/Notes
/scripts/plotCovAlongContigs.py
UTF-8
5,626
2.609375
3
[]
no_license
#! /home/ps997/miniconda3/bin/python # Needs to run with python 3 on our server!!! # Usage: plotCovAlongContigs.py depth_output_from_samtools.txt SmoothingFactor (% of data to average across, must be between 1-100. Suggested setting from 1-15) import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import sys from matplotlib import colors from numpy import log import matplotlib.patches as patches from mpl_toolkits.mplot3d import Axes3D def running_mean(x, N): cumsum = np.cumsum(np.insert(x, 0, 0)) return (cumsum[N:] - cumsum[:-N]) / float(N) file = open(sys.argv[1],"r") smoothingFactor = float(sys.argv[2]) if smoothingFactor < 1: print("WARNING: Smoothing was set to less than 1. Now set to 1.") smoothingFactor = 1 if smoothingFactor > 100: print("WARNING: Smooting was set to greater than 100. Now set to 100.") smoothingFactor = 100 contigList = [] posList = [] depthList = [] contigDict = {} assemblySize = 0 contigLengthList = [] indexer = 0 print('Parsing depth file...') for line in file: splitline = line.strip("\n").split("\t") contig = splitline[0] pos = splitline[1] depth = splitline[2] try: contigDict[contig][0].append(int(pos)) contigDict[contig][1].append(float(depth)) except: contigDict[contig] = [[],[]] contigDict[contig][0].append(int(pos)) contigDict[contig][1].append(float(depth)) print('Finding high coverage outlier regions...') for key in contigDict.keys(): assemblySize += len(contigDict[key][1]) contigLengthList.append(len(contigDict[key][1])) contigDict[key].append(np.median(contigDict[key][1])) # contigDict[key][2] contigDict[key].append(np.std(contigDict[key][1])) # contigDict[key][3] contigDict[key].append(np.min(contigDict[key][1])) # contigDict[key][4] contigDict[key].append(np.max(contigDict[key][1])) # contigDict[key[5] if any(x > contigDict[key][2]+(3*contigDict[key][3]) for x in contigDict[key][1]): print(' %s' %(key)) outfile = open("%s_hiCovRegions.txt" %(key), "w") outfile.write("position\tcoverage\n") for i in range(1, len(contigDict[key][0])): if contigDict[key][1][i-1] > contigDict[key][2]+(3*contigDict[key][3]): outfile.write("%d\t%f\n" %(contigDict[key][0][i-1], contigDict[key][1][i-1])) outfile.close() n50size = 0 n50list = [] for length in sorted(contigLengthList, reverse=True): if n50size < assemblySize*0.5: n50list.append(length) n50size += length else: n50list.append(length) n50size += length n50 = np.min(n50list) n50 = 0 print("Assembly Size: %s" %(assemblySize)) movAvgDict = {} print('Smoothing data...') for key in contigDict.keys(): smoothingBases = int(len(contigDict[key][1]) * (smoothingFactor/100)) movAvgDict[key] = [np.array(running_mean(contigDict[key][0], smoothingBases)).tolist(), np.array(running_mean(contigDict[key][1], smoothingBases)).tolist()] print('Plotting charts...') for key in movAvgDict.keys(): fig, ax = plt.subplots(1,1) ax.plot(movAvgDict[key][0], movAvgDict[key][1]) ax.set_xlabel("Position") ax.set_ylabel("Read Depth") ax.set_title("%s" %(key)) plt.grid(which='major',axis='both',linestyle='dashed') #ax.set_ylim(ymin=(contigDict[key][4] - 100), ymax = (contigDict[key][5] + 100)) ax.set_ylim(ymin=0, ymax=10000) ax.set_axisbelow(True) ax.text(0.7, 1.1, "Median Depth: %d" %(contigDict[key][2]), horizontalalignment='left', verticalalignment='center', transform=ax.transAxes, bbox=dict(facecolor='white', edgecolor='white', alpha=0.5)) ax.text(0.7, 1.05, "Standard Deviation: %d" %(contigDict[key][3]), horizontalalignment='left', verticalalignment='center', transform=ax.transAxes, bbox=dict(facecolor='white', edgecolor='white', alpha=0.5)) plt.savefig("%s_%s.pdf" %(key,smoothingFactor),format = "pdf") plt.close() fig, ax = plt.subplots(len(n50list), 1, sharex=True, sharey=True, tight_layout=True, figsize = (8,len(n50list))) index = 0 for key in movAvgDict.keys(): if len(contigDict[key][0]) >= n50: ax[index].plot(movAvgDict[key][0], movAvgDict[key][1]) ax[index].text(1.01, 0.5, key, horizontalalignment='left', verticalalignment='center',transform=ax[index].transAxes, bbox=dict(facecolor='white', edgecolor='white', alpha=0.5)) ax[index].spines['right'].set_visible(False) ax[index].spines['top'].set_visible(False) ax[index].set_ylabel("Read Depth") index += 1 ax[index-1].set_xlabel("Position") plt.savefig("%s_n50contigs_%s.pdf" %((sys.argv[1].split(".txt")[0]), smoothingFactor),format = "pdf") plt.close() fig, ax = plt.subplots(len(n50list), 1, sharex=True, sharey=True, tight_layout=True, figsize = (8,len(n50list))) index = 0 for key in movAvgDict.keys(): halfway = int(len(n50list)/2) if len(contigDict[key][0]) >= n50: ax[index].plot(movAvgDict[key][0], movAvgDict[key][1]) ax[index].text(1.01, 0.5, key, horizontalalignment='left', verticalalignment='center',transform=ax[index].transAxes, bbox=dict(facecolor='white', edgecolor='white', alpha=0.5)) ax[index].spines['right'].set_visible(False) ax[index].spines['top'].set_visible(False) ax[index].set_yscale('log') if index == halfway: ax[index].set_ylabel("Read Depth") index += 1 ax[index-1].set_xlabel("Position") plt.savefig("%s_n50contigs_logCov_%s.pdf" %((sys.argv[1].split(".txt")[0]), smoothingFactor),format = "pdf") plt.close() fig = plt.figure() ax = fig.gca(projection='3d') index = 0 for key in movAvgDict.keys(): if len(contigDict[key][0]) >= n50: ax.plot(movAvgDict[key][0], movAvgDict[key][1], zs=index, zdir='y', label= "%s" %(key)) index -= 1 plt.savefig("%s_3Dn50contigs_%s.pdf" %(sys.argv[1].split(".txt")[0], smoothingFactor),format = "pdf") plt.close()
[ "matplotlib" ]
ad71e2debcf58de03ff1a695bd1a3d01346d8de5
Python
banacorn/Hakaru-FLOLAC16
/plot.py
UTF-8
570
3.046875
3
[]
no_license
#! /usr/bin/env python3 import argparse import numpy as np import matplotlib.pyplot as plt parser = argparse.ArgumentParser(description='plotting data') parser.add_argument('filename') def plot(filename): data = [] with open(filename) as f: next(f) for l in f: x, y = [float(d) for d in l.strip().split()] data.append((x, y)) data = np.array(data) plt.plot(data[:,0], data[:,1], drawstyle='steps', linewidth=2) plt.show() if __name__ == '__main__': args = parser.parse_args() plot(args.filename)
[ "matplotlib" ]
126fe8396cb0aa26e4202413fbb18444a2a61e6d
Python
AntoineDarveau/jwst-mtl
/AMI/NRM_pipeline_Xara/Python_tools.py
UTF-8
6,682
2.875
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """ Created on Mon Dec 7 14:49:19 2015 @author: asoulain """ import pickle, warnings import numpy as np import matplotlib.pyplot as plt from astropy.nddata import Cutout2D from scipy.signal import medfilt2d warnings.filterwarnings("ignore", module='astropy.io.votable.tree') warnings.filterwarnings("ignore", module='astropy.io.votable.xmlutil') def mastorad(mas): """ Short Summary ------------- Convert angle in milli arc-sec to radians Parameters ---------- mas: float angle in milli arc-sec Returns ------- rad: float angle in radians """ rad = mas * (10**(-3)) / (3600 * 180 / np.pi) return rad def radtomas(rad): """ Short Summary ------------- Convert input angle in radians to milli arc sec Parameters ---------- rad: float input angle in radians Returns ------- mas: float input angle in milli arc sec """ mas = rad * (3600. * 180 / np.pi) * 10.**3 return mas def crop_max(img, dim, filtmed = True, f = 3): """ Short Summary ------------- Resize an image on the brightest pixel. Parameters ---------- img : numpy.array input image. dim : int resized dimension. filtmed : boolean True if perform a median filter on the image (to blur bad pixels). f : float if filtmed == True, kernel size of the median filter.() Returns ------- cutout: numpy.array Resized image. """ if filtmed: im_med = medfilt2d(img, f) else: im_med = img.copy() pos_max = np.where(im_med == im_med.max()) X = pos_max[1][0]+1 Y = pos_max[0][0]+1 position = (X, Y) cutout = Cutout2D(img, position, dim) return cutout.data, position def norm_max(tab): """ Short Summary ------------- Normalize an array or a list by the maximum. Parameters ---------- tab : numpy.array, list input array or list. Returns ------- tab_norm : numpy.array, list Normalized array. """ tab_norm = tab/np.max(tab) return tab_norm def crop_center(img, dim): """ Short Summary ------------- Resize an image on the center. Parameters ---------- img : numpy.array input image. dim : int resized dimension. Returns ------- cutout: numpy.array Resized image. """ b = img.shape[0] position = (b//2, b//2) cutout = Cutout2D(img, position, dim) return cutout.data def crop_position(img, X, Y, dim): """ Short Summary ------------- Resize an image on a defined position. Parameters ---------- img : numpy.array input image. X, Y : int Position to resize (new center of the image). dim : int resized dimension. Returns ------- cutout: numpy.array Resized image. """ position = (X, Y) cutout = Cutout2D(img, position, dim) return cutout.data def plot_JWST_ins_limit(inst): """ Plot JWST instrument limits (sensitivity and saturation) for different filters. """ file = open('/Users/asoulain/Documents/Add_Python_PATH/save_limit_JWST.dpy', 'rb') dic_JWST = pickle.load(file) file.close() if inst == 'NIRCAM': color = 'royalblue' elif inst == 'NIRISS': color = 'orange' elif inst == 'MIRI': color = 'crimson' i = 1 l_filt = list(dic_JWST[inst].keys()) for filt in l_filt: wl1 = dic_JWST[inst][filt]['wl0'] - dic_JWST[inst][filt]['bw']/2. wl2 = dic_JWST[inst][filt]['wl0'] + dic_JWST[inst][filt]['bw']/2. fmax = dic_JWST[inst][filt]['fmax'] fmin = dic_JWST[inst][filt]['fmin'] if i == 1: plt.fill_between([wl1, wl2], fmin, fmax, color = color, alpha = .2, label = 'JWST/'+inst) else: plt.fill_between([wl1, wl2], fmin, fmax, color = color, alpha = .2) i += 1 return None def plot_JWST_limit(): plot_JWST_ins_limit('NIRCAM') plot_JWST_ins_limit('NIRISS') plot_JWST_ins_limit('MIRI') return None def gauss_2d_asym(X, param): """ Short Summary ------------- Creates 2D oriented gaussian with an asymmetrical grid. Parameters ---------- X : list. Input values : - X[0] : x coordinates [pixels] - X[1] : y coordinates [pixels] - X[2] : pixels scale [mas] param : dict. Input parameters, with the present keys = - A : amplitude. - x0 : x offset from the center [mas]. - y0 : y offset from the center [mas]. - fwhm_x : width in x direction [mas]. - fwhm_y : width in y direction [mas]. - theta : orientation [deg].() Returns ------- im: numpy.array image of a 2D gaussian function. """ x_1d = X[0] y_1d = X[1] pixel_scale = X[2] dim = len(x_1d) x, y = np.meshgrid(x_1d, y_1d) fwhmx = param['fwhm_x']/pixel_scale fwhmy = param['fwhm_y']/pixel_scale sigma_x = (fwhmx / np.sqrt(8 * np.log(2))) sigma_y = (fwhmy / np.sqrt(8 * np.log(2))) amplitude = param['A'] x0 = dim//2 + param['x0']/pixel_scale y0 = dim//2 + param['y0']/pixel_scale theta = np.deg2rad(param['theta']) size_x = len(x) size_y = len(y) im = np.zeros([size_y, size_x]) x0 = float(x0) y0 = float(y0) a = (np.cos(theta)**2)/(2*sigma_x**2) + (np.sin(theta)**2)/(2*sigma_y**2) b = -(np.sin(2*theta))/(4*sigma_x**2) + (np.sin(2*theta))/(4*sigma_y**2) c = (np.sin(theta)**2)/(2*sigma_x**2) + (np.cos(theta)**2)/(2*sigma_y**2) im = amplitude*np.exp( - (a*((x-x0)**2) + 2*b*(x-x0)*(y-y0) + c*((y-y0)**2))) return im def conv_fft(image, psf): """ Compute 2D convolution with the PSF, passing through Fourier space. """ fft_im = np.fft.fft2(image) fft_psf = np.fft.fft2(psf) fft_conv = fft_im*fft_psf conv = abs(np.fft.fftshift(np.fft.ifft2(fft_conv))) return conv class A(object): pass class AllMyFields: def __init__(self, dictionary): for k, v in dictionary.items(): if type(v) == dict: a = A() for key in v.keys(): a.__dict__[key] = v[key] setattr(self, k, a) else: setattr(self, k, v)
[ "matplotlib" ]
346986d590ad29b07746bb6cb1fec2d835681609
Python
GaiYu0/vertex-cut
/sbm.py
UTF-8
4,501
2.984375
3
[]
no_license
from __future__ import division import math import numpy as np import scipy.sparse as sp import networkx as nx import matplotlib.pyplot as plt class SSBM: def __init__(self, n, k, a=10.0, b=2.0, regime='constant', rng=None): """Symmetric Stochastic Block Model. n - number of nodes k - number of communities a - probability scale for intra-community edge b - probability scale for inter-community edge regime - If "logaritm", this generates SSBM(n, k, a*log(n)/n, b*log(n)/n) If "constant", this generates SSBM(n, k, a/n, b/n) If "mixed", this generates SSBM(n, k, a*log(n)/n, b/n) """ self.n = n self.k = k if regime == 'logarithm': if math.sqrt(a) - math.sqrt(b) >= math.sqrt(k): print('SSBM model with possible exact recovery.') else: print('SSBM model with impossible exact recovery.') self.a = a * math.log(n) / n self.b = b * math.log(n) / n elif regime == 'constant': snr = (a - b) ** 2 / (k * (a + (k - 1) * b)) if snr > 1: print('SSBM model with possible detection.') else: print('SSBM model that may not have detection (snr=%.5f).' % snr) self.a = a / n self.b = b / n elif regime == 'mixed': self.a = a * math.log(n) / n self.b = b / n else: raise ValueError('Unknown regime: %s' % regime) if rng is None: self.rng = np.random.RandomState() else: self.rng = rng self._graph = None def generate(self): self.generate_communities() print('Finished generating communities.') self.generate_edges() print('Finished generating edges.') def generate_communities(self): nodes = list(range(self.n)) size = self.n // self.k self.block_size = size self.comm2node = [nodes[i*size:(i+1)*size] for i in range(self.k)] self.node2comm = [nid // size for nid in range(self.n)] def generate_edges(self): # TODO: dedup edges us = [] vs = [] # generate intra-comm edges for i in range(self.k): sp_mat = sp.random(self.block_size, self.block_size, density=self.a, random_state=self.rng, data_rvs=lambda l: np.ones(l)) u = sp_mat.row + i * self.block_size v = sp_mat.col + i * self.block_size us.append(u) vs.append(v) # generate inter-comm edges for i in range(self.k): for j in range(self.k): if i == j: continue sp_mat = sp.random(self.block_size, self.block_size, density=self.b, random_state=self.rng, data_rvs=lambda l: np.ones(l)) u = sp_mat.row + i * self.block_size v = sp_mat.col + j * self.block_size us.append(u) vs.append(v) us = np.hstack(us) vs = np.hstack(vs) self.sp_mat = sp.coo_matrix((np.ones(us.shape[0]), (us, vs)), shape=(self.n, self.n)) @property def graph(self): if self._graph is None: self._graph = nx.from_scipy_sparse_matrix(self.sp_mat, create_using=nx.DiGraph()) return self._graph def plot(self): x = self.sp_mat.row y = self.sp_mat.col plt.scatter(x, y, s=0.5, marker='.', c='k') plt.savefig('ssbm-%d-%d.pdf' % (self.n, self.k)) plt.clf() # plot out degree distribution out_degree = [d for _, d in self.graph.out_degree().items()] plt.hist(out_degree, 100, normed=True) plt.savefig('ssbm-%d-%d_out_degree.pdf' % (self.n, self.k)) plt.clf() if __name__ == '__main__': n = 1000 k = 10 ssbm = SSBM(n, k, regime='mixed', a=4, b=1) ssbm.generate() g = ssbm.graph print('#nodes:', g.number_of_nodes()) print('#edges:', g.number_of_edges()) ssbm.plot() #lg = nx.line_graph(g) # plot degree distribution #degree = [d for _, d in lg.degree().items()] #plt.hist(degree, 100, normed=True) #plt.savefig('lg<ssbm-%d-%d>_degree.pdf' % (n, k)) #plt.clf()
[ "matplotlib" ]
abcc14b8e2781a7ffd8bdfded41340bf9f4cee05
Python
wangzizhao/VRNN
/transformation/lorenz.py
UTF-8
1,066
2.90625
3
[]
no_license
import numpy as np from scipy.integrate import odeint from transformation.base import transformation class lorenz_transformation(transformation): def transform(self, Z_prev): ''' Integrates the lorenz ODEs ''' sigma, rho, beta, dt = self.params def lorenz_equation(Z, t, sigma, rho, beta): x, y, z = Z xd = sigma * (y - x) yd = (rho - z) * x - y zd = x * y - beta * z return [xd, yd, zd] t = np.arange(0, 2 * dt, dt) Z = odeint(lorenz_equation, Z_prev, t, args=(sigma, rho, beta))[1, :] return Z # test code if __name__ == "__main__": import matplotlib.pyplot as plt lorenz_params = (10.0, 28.0, 8.0 / 3.0, 0.01) Dz = 3 T = 1500 batch_size = 10 lorenz = lorenz_transformation(lorenz_params) Z = np.zeros((T, Dz)) Z[0] = np.random.uniform(low=0, high=1, size=Dz) for t in range(1, T): Z[t] = lorenz.transform(Z[t - 1]) plt.figure() plt.plot(Z[:, 0], Z[:, 1]) plt.show()
[ "matplotlib" ]
3f580c447b70a90eabacd520118cf31267f9ef22
Python
diegopetrola/bar_chart_race
/utils/hist.py
UTF-8
627
3.421875
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np t = np.linspace(0.0, 2.0, 201) s = np.sin(2 * np.pi * t) # 1) RGB tuple: fig, ax = plt.subplots(facecolor=(.18, .31, .31)) # 2) hex string: # ax.set_facecolor('#eafff5') # 3) gray level string: ax.set_title('Voltage vs. time chart', color='0.7') # 4) single letter color string ax.set_xlabel('time (s)', color='c') # 5) a named color: ax.set_ylabel('voltage (mV)', color='peachpuff') # 6) a named xkcd color: ax.plot(t, s, 'xkcd:crimson') # 7) Cn notation: ax.plot(t, .7*s, color='C4', linestyle='--') # 8) tab notation: ax.tick_params(labelcolor='tab:orange') plt.show()
[ "matplotlib" ]
382161416c61bd1e46828d7bc80d85370a27ff84
Python
csaftoiu/deeplearning-udacity
/assignments/main-assignment1.py
UTF-8
2,084
2.578125
3
[ "Unlicense" ]
permissive
from __future__ import print_function import random import matplotlib.pyplot as plt import numpy as np from assignments import loading, dataset, classification def main(): # initialize np.random.seed(133) train_datasets, test_datasets = loading.load_datasets() train_sizes = ( # 50, # 100, 1000, # 5000, # 10000, 50000, 200000 ) for train_size in train_sizes: training_sets = dataset.get_training_sets( train_datasets, test_datasets, train_size=train_size, valid_size=train_size, test_size=10000, store_pickle=True) import pprint; pprint.pprint(dataset.measure_overlap(training_sets)) training_sets = dataset.sanitize_sets(training_sets) print(training_sets['train']['data'].shape) training_sets = dataset.mapsets(dataset.flatten, training_sets) print(training_sets['train']['data'].shape) lr = classification.fit_sklearn_logisic_regression(training_sets['train']) # lr = classification.fit_sklearn_sgd(training_data['train']) print("Accuracy trained from %d samples on %d 'valid' samples is %.2f%%" % ( train_size, train_size // 20, classification.get_accuracy(lr, training_sets['valid']) * 100, )) # # check some from test # test = training_data['test'] # for _ in xrange(100): # i = random.randint(0, len(test['data']) - 1) # guess = lr.predict(classification.flatten_image_arrays(np.array([test['data'][i]]))) # if guess == test['labels'][i]: # print("Correctly guessed %s!" % (letter_for(guess),)) # else: # print("Incorrectly guessed %s for %s" % ( # letter_for(guess), letter_for(test['labels'][i]))) # # plt.imshow(test['data'][i]) # plt.show() # sanitized_data = sanitize_training_data(training_data) if __name__ == "__main__": main() # predictions = lr.predict(flatten_image_arrays(data['data']))
[ "matplotlib" ]
ccf4d030816fc27cd66b76c262fc6218e8bb785a
Python
masih68kh/spark
/PageRank/myPageRank.py
UTF-8
1,798
2.859375
3
[]
no_license
from pyspark import SparkContext import time import os if os.path.exists("result.txt"): os.system('rm -rf result.txt') os.system('rm fig.png') import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt error_list = [] def add(x,y): return x+y def is_close(rdd1, rdd2, epsilon=1e-5): """ checks is two rdds are close enough rdds should be in the form of key-value pair and each elements (int, float) """ error = rdd1.join(rdd2).mapValues(lambda score_tuple: (score_tuple[0]-score_tuple[1])**2)\ .aggregate(0, lambda flt, pair: flt+pair[1], lambda flt1,flt2: flt1+flt2) error_list.append(error) return error < epsilon startTime = time.time() sc = SparkContext('local[20]',"myPageRank") originalRDD = sc.textFile('graph').map(eval).mapValues(lambda target: [target])\ .reduceByKey(lambda x,y: x+y, numPartitions=20).cache() # originalRDD contains (w, [outDegreeW' ...]) N = originalRDD.count() scoresRDD = originalRDD.keys().map(lambda w: (w,1./N)).partitionBy(20).cache() gamma = 0.15 for it in range(40): print("********") print("interation # %d"%it) joined = originalRDD.join(scoresRDD) old_scoresRDD = scoresRDD scoresRDD = joined.flatMap(lambda pair: [(w,pair[1][1]/len(pair[1][0])) for w in pair[1][0]])\ .reduceByKey(add, numPartitions=20).mapValues(lambda s: gamma/N + (1-gamma)*s).cache() if is_close(scoresRDD, old_scoresRDD, epsilon=-1e-8): break old_scoresRDD.unpersist() scoresRDD = scoresRDD.sortBy(lambda pair: -pair[1]) scoresRDD.saveAsTextFile('result.txt') endTime = time.time() print("************") print("time : ", endTime-startTime, " s") fig = plt.figure(figsize=(5,5)) ax = fig.add_axes((0.2,0.2,0.7,0.7)) ax.plot(error_list) fig.savefig("fig.png")
[ "matplotlib" ]
ead11471bc476f90025201353529d1d7f8ee1192
Python
jan-pfr/MachineLearning_python
/exercises/exercise3/exercise3_1.py
UTF-8
5,063
2.765625
3
[]
no_license
from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten,\ Conv2D, MaxPooling2D from keras.layers.normalization import BatchNormalization import numpy as np import glob import cv2 import os from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split #from keras.utils import to_categorical from sklearn.metrics import confusion_matrix import random import matplotlib.pyplot as plt filelist_A = 'saved_images/A/' filelist_B = 'saved_images/B/' IMG_HEIGHT = 500 IMG_WIDTH = 500 x_A_images = [x for x in sorted(os.listdir(filelist_A)) if x[-4:] == '.jpg'] x_A = np.empty((len(x_A_images), IMG_HEIGHT, IMG_WIDTH, 3), dtype='float32') #Leeres Array y_A = np.ones((x_A.shape[0],1)) # y mit Einsen for i, name in enumerate(x_A_images): im = cv2.imread(filelist_A + name, cv2.IMREAD_UNCHANGED) #im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY).astype('float32') im = (im - np.min(im)) / (np.max(im) - np.min(im)) x_A[i] = im # Array wird befüllt x_B_images = [x for x in sorted(os.listdir(filelist_B)) if x[-4:] == '.jpg'] x_B = np.empty((len(x_B_images), IMG_HEIGHT, IMG_WIDTH, 3), dtype='float32') # Leeres Array y_B = np.zeros((x_B.shape[0], 1)) # y mit Nullen for i, name in enumerate(x_B_images): im = cv2.imread(filelist_B + name, cv2.IMREAD_UNCHANGED) #im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY).astype('float32') im = (im - np.min(im)) / (np.max(im) - np.min(im)) x_B[i] = im # Array wird befüllt fig, ax = plt.subplots(1,2, figsize = (8,4)) ax[0].imshow(x_A[3], cmap='gray') ax[1].imshow(x_B[3], cmap='gray') ax[0].imshow(cv2.cvtColor(x_A[40], cv2.COLOR_BGR2GRAY), cmap='gray') ax[1].imshow(cv2.cvtColor(x_B[40], cv2.COLOR_BGR2GRAY), cmap='gray') plt.show() #concatenate the two classes for training and validation, x contains the image, y contains the labels (0 or 1) # Zusammenfügen der Daten aus A und B x = np.concatenate((x_B, x_A)) y = np.concatenate((y_B, y_A)) x.shape #Versuch, durch Data Augmentation mehr Daten zu erstellen imageDataGenerator = ImageDataGenerator(width_shift_range=0.1, rotation_range=40, shear_range= 0.2, zoom_range=0.2, fill_mode='nearest', horizontal_flip=True, vertical_flip=True) #divide the data into training and test data x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=1) #x_train1, x_train2, y_train1, y_train2 = train_test_split(x_train, y_train, test_size=0.1, random_state=40) print(x_train.shape) #print(x_train1.shape) #print(x_train2.shape) # Create a sequential model, Alexnet model = Sequential() # 1st Convolutional Layer model.add(Conv2D(filters=96, input_shape=(500, 500,3), kernel_size=(11,11),\ strides=(4,4), padding='valid')) model.add(Activation('relu')) # Pooling model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid')) # Batch Normalisation before passing it to the next layer model.add(BatchNormalization()) # 2nd Convolutional Layer model.add(Conv2D(filters=256, kernel_size=(11,11), strides=(1,1), padding='valid')) model.add(Activation('relu')) # Pooling model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid')) # Batch Normalisation model.add(BatchNormalization()) # 3rd Convolutional Layer model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='valid')) model.add(Activation('relu')) # Batch Normalisation model.add(BatchNormalization()) # 4th Convolutional Layer model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='valid')) model.add(Activation('relu')) # Batch Normalisation model.add(BatchNormalization()) # 5th Convolutional Layer model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding='valid')) model.add(Activation('relu')) # Pooling model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid')) # Batch Normalisation model.add(BatchNormalization()) # Passing it to a dense layer model.add(Flatten()) # 1st Dense Layer model.add(Dense(4096, input_shape=(500*500*3,))) model.add(Activation('relu')) # Add Dropout to prevent overfitting model.add(Dropout(0.5)) # Batch Normalisation model.add(BatchNormalization()) # 2nd Dense Layer model.add(Dense(4096)) model.add(Activation('relu')) # Add Dropout model.add(Dropout(0.5)) # Batch Normalisation model.add(BatchNormalization()) # 3rd Dense Layer model.add(Dense(1000)) model.add(Activation('relu')) # Add Dropout model.add(Dropout(0.5)) # Batch Normalisation model.add(BatchNormalization()) # Output Layer model.add(Dense(2)) model.add(Activation('softmax'))#davor: softmax model.summary() # Compile model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Train model.fit( imageDataGenerator.flow(x_train, y_train, batch_size=32), validation_data=imageDataGenerator.flow(x_test, y_test, batch_size=32), steps_per_epoch=len(x_train) // 32, epochs=10, shuffle=True) # Test y_pred = np.argmax(model.predict(x_test), axis=-1) cmat = confusion_matrix(y_test, y_pred) print(cmat) print(y_test.ravel()) print(y_pred.ravel())
[ "matplotlib" ]
b437b5f315a7274f95d31a8d91c8b4f5f940ba22
Python
yashwanthguguloth24/control
/ketan/codes/ee18btech11049.py
UTF-8
1,269
2.984375
3
[]
no_license
# License ''' Code by Laxman Reddy April 22,2020 Released under GNU GPL ''' #Bode plot using scipy in python from scipy import signal import matplotlib.pyplot as plt from pylab import* #if using termux import subprocess import shlex #end if #Defining the transfer function s1 = signal.lti([75,0.2*75], [1, 16 ,100,0]) #Transfer Function = 75(1+0.2s)/s(s^2+16s+100) #signal.bode takes transfer function as input and returns frequency,magnitude and phase arrays w,mag,phase = signal.bode(s1) subplot(2,1,1) #plt.xlabel('Frequency(rad/s)') plt.ylabel('Magnitude(deg)') # plt.title('Magnitude plot') plt.semilogx(w, mag,'b') # Bode Magnitude plot plt.axhline(y = 0,xmin=0,xmax= .35,color = 'r',linestyle='dashed') plt.axvline(x = .22,ymin=0,color='k',linestyle='dashed') plt.plot(.22,0,'o') plt.text(0.757,0, '({}, {})'.format(0.757,-220.15)) plt.grid() subplot(2,1,2) plt.xlabel('Frequency(rad/s)') plt.ylabel('Phase(deg)') # plt.title('Phase plot') plt.semilogx(w,phase) # Bode phase plot plt.axhline(y = -180,xmin=0,color = 'r',linestyle='dashed') plt.grid() #if using termux plt.savefig('./figs/ee18btech11049.pdf') plt.savefig('./figs/ee18btech11049.eps') subprocess.run(shlex.split("termux-open ./figs/ee18btech11049.pdf")) #else #plt.show()
[ "matplotlib" ]
b99ee4df6a8a9b06ef03e20d54e703afc2d66e71
Python
chaitanya0906/ANGinPython
/week1.py
UTF-8
1,181
3.34375
3
[]
no_license
import sys import json import numpy as np import pandas as pd import matplotlib.pyplot as plt def computeCost(X, y, theta): temp = np.dot(X, theta) - y return np.sum(np.power(temp, 2)) / (2*m) def gradientDescent(X,y,theta,alpha,iteration): for i in range(iteration): temp= np.dot(X,theta)-y temp=np.dot(X.T,temp) theta = theta -(alpha/m)*temp return theta data = pd.read_csv('ex1data1.txt', header = None) #reading from dataset X= data.iloc[:,0] # read first column y = data.iloc[:,1] # read second column m=len(y) data.head() plt.scatter(X, y) plt.xlabel('Population of City in 10,000s') plt.ylabel('Profit in $10,000s') plt.show() X=X[:,np.newaxis] #code to convert to 2 Ranked array y=y[:,np.newaxis] #code to convert to 2 Ranked array theta= np.zeros([2,1]) iteration=1500 alpha=0.01 ones=np.ones((m,1)) X = np.hstack((ones, X)) # adding the intercept term J = computeCost(X, y, theta) print(J) theta= gradientDescent(X,y,theta,alpha,iteration) print(theta) J = computeCost(X, y, theta) print(J) plt.scatter(X[:,1], y) plt.xlabel('Population of City in 10,000s') plt.ylabel('Profit in $10,000s') plt.plot(X[:,1], np.dot(X, theta)) plt.show()
[ "matplotlib" ]
768b6b57832f006b1bdc974f083740e5014be7e0
Python
BeiHuiFeng/PaperPic
/paper/drawSpectralChinesePaper.py
UTF-8
4,784
2.71875
3
[]
no_license
# 根据数据画出所需要的光谱图象 import matplotlib.pyplot as plt from matplotlib import gridspec from astropy.io import fits import os import copy import numpy as np import random #对单个光谱数据的处理 def readfits(path,fileName): dfu = fits.open(path + '/'+fileName) #初始波长 beginWave = dfu[0].header['COEFF0'] #步长 step = dfu[0].header['CD1_1'] #光谱中的流量 flux = dfu[0].data[0] #求出波长,求出与流量对应的波长 wave = np.array([10**(beginWave + step*j) for j in range(len(flux))]) data = [wave,flux] #------------------------------------------- # return data,poistion return data # 取其中一部分波长和流量 def chooseSpectralData(data): # 截取的范围 choose_wave = [] choose_flux = [] wave, flux = data[0], data[1] length = len(wave) for index in range(length): if 3900 < wave[index] < 6800: choose_wave.append(wave[index]) choose_flux.append(flux[index]) # print(choose_wave[:35]) return [choose_wave, choose_flux] #数据文件中的光谱数据 def exractData(fileName): listFile = os.listdir(fileName) dataSet = [] allPoistion = [] for file in listFile: dfu = fits.open(fileName + '/'+file) #读出数据并且保存 data,poistion = readfits(fileName,file) dataSet.append(data) allPoistion.append(poistion) #os.chdir(os.pardir) return dataSet,np.array(allPoistion) def drawPic(data, word): wave,flux = data[0],data[1] gap = (max(flux) - min(flux)) / 8 max_y = max(flux) + gap min_y = min(flux) - gap text_pos = max(flux) # print('wave:', wave) # print('flux:', flux) fig = plt.figure(figsize=(9,7)) plt.ylabel('flux (relative)', fontsize=15) # 画4105的标识线 plt.vlines(4101.734, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(4105, text_pos, r'$H\delta$') # Hbeta的标识线 plt.vlines(4861.325, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(4866, text_pos, r'$H\beta$') # OIII的标识线 # 适合A5 # plt.vlines(4958.911, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') # plt.text(4962, text_pos-1500, r'OIII') # 适合K5 plt.vlines(4958.911, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(4962, text_pos-4500, r'OIII') plt.vlines(5006.843, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(5010, text_pos, r'OIII') # 画5875.67的标识线 plt.vlines(5875.67, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(5780, text_pos, r'Hel') # 画OI的标识线 plt.vlines(6300.304, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(6305, text_pos, r'OI') # 下面是NII plt.vlines(6548.040, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(6453, text_pos, r'NII') # 画6564的标识线 # 适合A5 # plt.vlines(6562.800, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') # plt.text(6568, text_pos-1500, r'$H\alpha$') # 适合K5 plt.vlines(6562.800, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(6568, text_pos-4500, r'$H\alpha$') plt.vlines(6583.460, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(6590, text_pos, r'NII') # 下面是SII plt.vlines(6716.440, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(6721, text_pos, r'SII') # 下面是Ca plt.vlines(3933.66, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(3800, text_pos, r'CaK') plt.vlines(3968.45, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(3972, text_pos, r'CaH') # 下面是Na plt.vlines(5891.94, min_y, max_y, colors = 'gray', linewidth=1.0, linestyles = ':') plt.text(5897, text_pos, r'NaD') plt.xlabel('wavelength ('+word+')', fontsize=15) plt.plot(wave, flux, c='black', linewidth=0.8) plt.show() if __name__ == '__main__': # data = readfits('newSpectral/A5V','spec-55889-F8906_sp01-122.fits.gz') # data = readfits('newSpectral/A5V','spec-55903-B90304_sp03-132.fits.gz') # data = readfits('newSpectral/K5','spec-56199-EG000313N173308V_1_sp02-001.fits.gz') data = readfits('newSpectral/K5','spec-56200-EG004228N273834V_1_sp06-148.fits.gz') word = 'A' with open('word.txt', 'r', encoding='utf-8') as f: word = f.read() # print(word) choose_data = chooseSpectralData(data) drawPic(choose_data,word) print()
[ "matplotlib" ]
7593e80d98ea873cf2dc62c55c78d333be1d630b
Python
nlmarc98/Thesis
/AdaptiveEntropy/RiF.py
UTF-8
4,767
2.59375
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 1 14:24:57 2019 @author: Luc """ import numpy as np from scipy.stats import vonmises, norm import scipy.interpolate as interp import matplotlib.pyplot as plt from numpy.matlib import repmat def generativeModel(a_oto,b_oto,sigma_prior,kappa_ver, kappa_hor,tau,frames,rods): # this is actually also a stimulus input (so similar to frames and rods) theta_head = [0*np.pi/180, 30*np.pi/180] # you might want to run a loop over head-angles j=1 # Aocr is normally a free parameter (the uncompensated ocular counterroll) Aocr = 14.6*np.pi/180 # convert to radians and fixed across subjects # compute the number of stimuli frame_num = len(frames) rod_num = len(rods) # head_num = len(head) # the theta_rod I need at high density for the cumulative density function theta_rod=np.linspace(-np.pi,np.pi,10000) # allocate memory for the lookup table (P) and for the MAP estimate P = np.zeros([rod_num,frame_num]) MAP = np.zeros([frame_num]) mu = np.zeros([frame_num]) #P = np.zeros([rod_num,frame_num,head_num]) # move through the frame vector for i in range(0,frame_num): # the frame in retinal coordinates frame_retinal = -(frames[i]-theta_head[j])-Aocr*np.sin(theta_head[j]); # make sure we stay in the -45 to 45 deg range if frame_retinal > np.pi/4: frame_retinal = frame_retinal - np.pi/2; elif frame_retinal < -np.pi/4: frame_retinal = frame_retinal + np.pi/2; # compute how the kappa's changes with frame angle kappa1 = kappa_ver-(1-np.cos(np.abs(2*frame_retinal)))*tau*(kappa_ver-kappa_hor) kappa2 = kappa_hor+(1-np.cos(np.abs(2*frame_retinal)))*(1-tau)*(kappa_ver-kappa_hor) # probability distributions for the four von-mises P_frame1 = vonmises.pdf(-theta_rod+frame_retinal,kappa1) P_frame2 = vonmises.pdf(-theta_rod+np.pi/2+frame_retinal,kappa2) P_frame3 = vonmises.pdf(-theta_rod+np.pi+frame_retinal,kappa1) P_frame4 = vonmises.pdf(-theta_rod+3*np.pi/2+frame_retinal,kappa2) # add the probability distributions P_frame = (P_frame1+P_frame2+P_frame3+P_frame4) P_frame = P_frame/np.sum(P_frame) # normalize to one # the otoliths have head tilt dependent noise (note a and b switched from CLemens et a;. 2009) #print(a_oto+b_oto*theta_head[j]) P_oto = norm.pdf(theta_rod,theta_head[j],a_oto+b_oto*theta_head[j]) # the prior is always oriented with gravity P_prior = norm.pdf(theta_rod,0,sigma_prior) # compute the (cumulative) density of all distributions convolved # NOTE THIS IS THE HEAD ORIENTATION IN SPACE! M=np.multiply(np.multiply(P_oto, P_frame),P_prior) cdf=np.cumsum(M)/np.sum(M) # now shift the x-axis, to make it rod specific E_s_cumd = theta_rod-theta_head[j]+Aocr*np.sin(theta_head[j]); # now use a spline interpolation to get a continuous P(theta) spline_coefs=interp.splrep(E_s_cumd,cdf, s = 0) P[:,i] = interp.splev(rods,spline_coefs, der = 0) # find the MAP index = np.argmax(M) MAP[i]=-E_s_cumd[index] # negative sign to convert to 'on retina' index = np.argmax(cdf>0.5) mu[i] =-E_s_cumd[index] # construct the P(right) matrix #for k in range(0,rod_num): # index = np.argmax(E_s_cumd>rods[k]) # P[k][i]=cdf[index] return P, MAP, mu # stimuli and generative parameters nframes = 251 nrods = 11111 # stimuli should be all in radians rods= np.linspace(-15,15.0,nrods)*np.pi/180 frames = np.linspace(-45,45,nframes)*np.pi/180.0 # parameters (in radians, but not for b_oto) a_oto = 3.2*np.pi/180 b_oto = 0.12 sigma_prior = 10.0*np.pi/180 kappa_ver = 45.0 kappa_hor = 1.45 tau =0.9 P, MAP, mu =generativeModel(a_oto,b_oto,sigma_prior,kappa_ver,kappa_hor,tau,frames,rods) plt.plot(rods*180/np.pi,P) plt.xlabel('rod [deg]') plt.ylabel('P(right)') plt.figure() frames_new=frames[:,np.newaxis] rods_new=rods[:,np.newaxis] plt.contourf(repmat(rods_new*180/np.pi,1,nframes),repmat(frames_new.transpose()*180/np.pi,nrods,1),P) plt.xlabel('rod [deg]') plt.ylabel('frame [deg]') PSE = np.zeros(len(frames)) for k in range(0,len(frames)): index = np.argmax(P[:,k]>0.5) print(index) PSE[k]=-rods[index] plt.figure() plt.plot(frames*180/np.pi,MAP*180/np.pi,frames*180/np.pi,mu*180/np.pi)
[ "matplotlib" ]
d4495324c3e00840884d5b08146f1793ad93bb6e
Python
ubombar/CVPR-MultiPoseEstimation
/CVPR-MultiPoseEstimation/datasetdemo.py
UTF-8
3,276
2.625
3
[]
no_license
import torch import matplotlib.pyplot as plt import numpy as np from PIL import Image import json import cv2 def load_pair(image_path, anno_path): with open(anno_path, 'r')as f: annotation = json.loads(f.read()) image = np.array(Image.open(image_path)) name = image_path.split('/')[-1] return image, annotation[name] def plot_image(image_original, image_boxed, image_pose, i, dataset, add_title=True, height=3): plt.subplot(height, 3, 3 * i + 1) plt.imshow(image_original) plt.axis('off') if add_title: plt.title(dataset + ' original') plt.subplot(height, 3, 3 * i + 2) plt.imshow(image_boxed) plt.axis('off') if add_title: plt.title(dataset + ' bounding boxes') plt.subplot(height, 3, 3 * i + 3) plt.imshow(image_pose) plt.axis('off') if add_title: plt.title(dataset + ' pose') def draw_bbox(image, annotation, dxy=(0, 0)): size = (image.shape[0] + image.shape[1]) // 250 image_boxed = np.copy(image) for box in annotation['boxes']: x1, y1, x2, y2 = box image_boxed = cv2.rectangle(image_boxed, (int(x1 + dxy[0]), int(y1 + dxy[1])), (int(x2 + dxy[0]), int(y2 + dxy[1])), (0,255,0), size) return image_boxed def draw_pose(image, annotation, dxy=(0, 0)): size = (image.shape[0] + image.shape[1]) // 200 result = np.copy(image) for kps in annotation['keypoints']: for i in range(0, len(kps), 2): x, y = int(kps[i] + dxy[0]), int(kps[i + 1] + dxy[1]) result = cv2.circle(result, (x,y), size, (255,0,0), -1) return result coco_image, coco_anno = load_pair('./demods/COCO_val2014_000000001700.jpg', './datasets/annotations/coco_processed_val2014.json') crowd_image, crowd_anno = load_pair('./demods/100481.jpg', './datasets/annotations/crowdpose_processed_set.json') lsp_image, lsp_anno = load_pair('./demods/im0116.jpg', './datasets/annotations/lsp_processed_set.json') coco_boxed = draw_bbox(coco_image, coco_anno) crowd_boxed = draw_bbox(crowd_image, crowd_anno) lsp_boxed = draw_bbox(lsp_image, lsp_anno) coco_pose = draw_pose(coco_image, coco_anno) crowd_pose = draw_pose(crowd_image, crowd_anno) lsp_pose = draw_pose(lsp_image, lsp_anno) # crop coco_image = coco_image[:450, 150:450, :] crowd_image = crowd_image lsp_image = lsp_image[180:, 160:650, :] coco_boxed = coco_boxed[:450, 150:450, :] crowd_boxed = crowd_boxed lsp_boxed = lsp_boxed[180:, 160:650, :] coco_pose = coco_pose[:450, 150:450, :] crowd_pose = crowd_pose lsp_pose = lsp_pose[180:, 160:650, :] plot_image(coco_image, coco_boxed, coco_pose, 0, 'Coco14') plot_image(crowd_image, crowd_boxed, crowd_pose, 1, 'Crowdpose') plot_image(lsp_image, lsp_boxed, lsp_pose, 2, 'LSP') plt.show() ''' print(coco_image.shape) with plt.style.context("seaborn-white"): plt.figure(figsize=(15, 15)) plt.subplot(3, 3, 1) plt.imshow(coco_image[:450, 150:450, :]); plt.title('COCO 2014'); plt.axis('off') plt.subplot(3, 2, 3) plt.imshow(lsp_image[180:, 160:650, :]); plt.title('LSP'); plt.axis('off') plt.subplot(3, 2, 5) plt.imshow(crowd_image); plt.title('Crowdpose'); plt.axis('off') plt.show() '''
[ "matplotlib" ]
d432943aae7eee533663b754341480423b07e000
Python
Vegctrp/lang100knock
/Ch08/079.py
UTF-8
7,853
2.75
3
[]
no_license
import re import codecs from stemming.porter2 import stem import numpy as np import pickle import matplotlib.pyplot as plt negfile="../data/rt-polaritydata/rt-polarity.neg" posfile="../data/rt-polaritydata/rt-polarity.pos" sentiment_file="./sentiment.txt" outfile="./073result.txt" use_stopword=["./stopword1.txt","stopword2.txt"] pattern=re.compile(r"[a-zA-Z']+") def make_StopWordList(swlist): stopword_list=[] for file in use_stopword: with open(file) as s: swlist=pattern.findall(s.read()) swlist_lower=[stopword.lower() for stopword in swlist] stopword_list.extend(swlist_lower) stopword_list=list(set(stopword_list)) return stopword_list stopword_list=make_StopWordList(use_stopword) def isStop(word,stopwordlist=stopword_list): return word.lower() in stopword_list def make_reviewWordList(): with codecs.open(negfile,"r",encoding="utf-8",errors='ignore') as negtxt,codecs.open(posfile,"r",encoding="utf-8",errors='ignore') as postxt: neg=negtxt.read() pos=postxt.read() sentences=neg+" "+pos match=pattern.findall(sentences) return match def make_featureWordList(reviewWordList): wordlist_ws=[] for word in reviewWordList: if not (isStop(word) or word==""): wordlist_ws.append(stem(word)) featureWordList=list(set(wordlist_ws)) return featureWordList def make_matrix(featureWordList,i): feature_vecs=[] point_vec=[] test_feature_vec=[] test_point_vec=[] with open(sentiment_file,"r") as sent: length=len(sent.readlines()) with open(sentiment_file,"r") as sent: for k,line in enumerate(sent.readlines()): #if length/5*i<=k and length/5*(i+1)>k: # test_sent.append(line) #else: point=line[0] word_list=pattern.findall(line) stem_list=[stem(word) if not isStop(word) else "." for word in word_list] stem_set=set(stem_list) line_vector=[1 if feature in stem_set else 0 for feature in featureWordList] if length/5*i<=k and length/5*(i+1)>k: test_feature_vec.append(line_vector) if point=="+": test_point_vec.append("1") else: test_point_vec.append("0") else: feature_vecs.append(line_vector) if point=="+": point_vec.append("1") else: point_vec.append("0") feature_mat=np.array(feature_vecs,dtype=float) point_mat=np.array(point_vec,dtype=float) test_feature_mat=np.array(test_feature_vec,dtype=float) test_point_mat=np.array(test_point_vec,dtype=float) print(np.shape(feature_mat)) print(np.shape(test_feature_mat)) return feature_mat,point_mat,test_feature_mat,test_point_mat class LogisticRegression(): def __init__(self,matx,maty,learning_rate,epoch): self.trainx=matx self.trainy=maty #self.theta=np.random.rand(self.trainx.shape[1]+1) self.theta=np.zeros(self.trainx.shape[1]+1) self.learning_rate=learning_rate self.epoch=epoch def set_testdata(self,matx,maty): self.testx=matx self.testy=maty def standardize(self): mu=self.trainx.mean() sigma=self.trainx.std() self.trainx=(self.trainx-mu)/sigma def add_x0(self): x0=np.ones([self.trainx.shape[0],1]) self.trainx=np.hstack([x0,self.trainx]) xx0=np.ones([self.testx.shape[0],1]) self.testx=np.hstack([xx0,self.testx]) def shapingx(self): self.standardize() self.add_x0() def sigmoid(self,x): return 1.0/(1.0+np.exp(-np.dot(x,self.theta))) def update_theta(self): grad=np.dot(self.trainy-self.sigmoid(self.trainx),self.trainx)/int(np.shape(self.trainy)[0]) new_theta=self.theta+self.learning_rate*grad self.theta=new_theta def cost(self): m=self.trainx.shape[0] h=self.sigmoid(self.trainx) j=1/m*np.sum(-self.trainy*np.log(h)-(np.ones(m)-self.trainy)*np.log(np.ones(m)-h)) return j def test_cost(self): m=self.testx.shape[0] h=self.sigmoid(self.testx) j=1/m*np.sum(-self.testy*np.log(h)-(np.ones(m)-self.testy)*np.log(np.ones(m)-h)) return j def learning(self,num): outx=[] outy_test=[] outy_train=[] for i in range(self.epoch): self.update_theta() traincost=self.cost() testcost=self.test_cost() outx.append(i+1) outy_train.append(traincost) outy_test.append(testcost) print(str(i)+" train :"+str(traincost)+", test : "+str(testcost)) #plt.plot(outx,outy_train,color="r",label="train") #plt.plot(outx,outy_test,color="b",label="test") #plt.legend() #plt.savefig("./figure"+str(num)+".png") ######################################################################################### featureWordList=make_featureWordList(make_reviewWordList()) prec_N=[] prec_num=[] rec_N=[] rec_num=[] qrat_N=[] qrat_num=[] rat=[x for x in range(1,10,1)] rat2=[x*0.1 for x in range(1,10,1)] for i in range(5): feature_mat,point_mat,test_feature_mat,test_point_mat=make_matrix(featureWordList,i) lll=LogisticRegression(feature_mat,point_mat,10,300) #lll.shapingx() lll.set_testdata(test_feature_mat,test_point_mat) lll.add_x0() lll.learning(i) theta=lll.theta for ratio in rat: precision_N=0 precision_num=0 recall_N=0 recall_num=0 qrate_N=0 qrate_num=0 for x,y in zip(test_feature_mat,test_point_mat): x=np.insert(x,0,1) ans_label="1" if y==1.0 else "-1" fv=np.array(x).reshape(1,12088) predict=lll.sigmoid(fv) if predict>ratio/10: predict_label="1" else: predict_label="-1" p=predict[0] if predict_label=="1": precision_N+=1 if ans_label=="1": precision_num+=1 if ans_label=="1": recall_N+=1 if predict_label=="1": recall_num+=1 if ans_label==predict_label: qrate_num+=1 qrate_N+=1 if i==0: prec_N.append(precision_N) prec_num.append(precision_num) rec_N.append(recall_N) rec_num.append(recall_num) qrat_N.append(qrate_N) qrat_num.append(qrate_num) else: prec_N[ratio-1]+=precision_N prec_num[ratio-1]+=precision_num rec_N[ratio-1]+=recall_N rec_num[ratio-1]+=recall_num qrat_N[ratio-1]+=qrate_N qrat_num[ratio-1]+=qrate_num prec=[] rec=[] qrat=[] f1rat=[] for i in range(9): answer_rate=qrat_num[i]/qrat_N[i] precision=prec_num[i]/prec_N[i] recall=rec_num[i]/rec_N[i] F1score=2*(precision*recall)/(precision+recall) print("precision : "+str(precision)+", recall : "+str(recall)+", F1score : "+str(F1score)) prec.append(precision) rec.append(recall) qrat.append(answer_rate) f1rat.append(F1score) plt.plot(rat2,prec,color="green",label="precision") plt.plot(rat2,rec,color="blue",label="recall") plt.plot(rat2,qrat,color="red",label="正解率") plt.plot(rat2,f1rat,color="black",label="F1score") plt.legend() plt.grid(axis='both') plt.show()
[ "matplotlib" ]
196c990237ec8392614f9235aa2110e139995b10
Python
treverhines/HinesHetland2016-ElMayor
/JGRSubmission/Supplementary/effective_viscosity.py
UTF-8
2,537
3.4375
3
[]
no_license
#!/usr/bin/env python import numpy as np import sympy as sp import matplotlib.pyplot as plt def ivt(uhat,s,n): ''' Extension of the initial value theorem which computes the n'th derivative of u(t) evaluated at t=0 from the Laplace transform of u(t), uhat(s). This is eq. (A.5) in Appendix A PARAMETERS ---------- uhat: Laplace transform of u. This is a symbolic expression containing s s: Laplace domain variable n: the derivative order RETURNS ------- u_n: symbolic expression for the nth derivative of u evaluated at t=0 ''' if n == 0: expr = s*uhat u_0 = expr.limit(s,np.inf) return u_0 elif n > 0: expr = s**(n+1)*uhat - sum(s**m*ivt(uhat,s,n-m) for m in range(1,n+1)) u_n = expr.limit(s,np.inf) return u_n def ilt(uhat,s,t,N): ''' Evaluates the inverse Laplace transform of uhat(s) through a Taylor series expansion This is a combination of eqs. (A.7) and (A.5) in Appendix A PARAMETERS ---------- uhat: Laplace transform of u. This is a symbolic expression containing s s: Laplace domain variable t: time domain variable N: order of the Taylor series expansion RETURNS ------- series: symbolic expression for the series expansion of the u(x) about x=0 ''' series = sum((ivt(uhat,s,n)*t**n)/sp.factorial(n) for n in range(N+1)) return series s = sp.symbols('s') t = sp.symbols('t') mu = sp.symbols('mu') muk = sp.symbols('mu_K') muk1 = sp.symbols('mu_K1') muk2 = sp.symbols('mu_K2') etam = sp.symbols('eta_M') etak = sp.symbols('eta_K') etak1 = sp.symbols('eta_K1') etak2 = sp.symbols('eta_K2') sigma = sp.symbols('sigma_0') # COMPUTE CREEP COMPLIANCE FOR MAXWELL MATERIAL eps_hat = sigma*(1/mu + 1/(etam*s))/s # COMPUTE CREEP COMPLIANCE FOR KELVIN MATERIAL eps_hat = sigma/((etak*s + muk)*s) # COMPUTE CREEP COMPLIANCE FOR ZENER MATERIAL eps_hat = sigma/(mu*s) + sigma/((etak*s + muk)*s) # COMPUTE CREEP COMPLIANCE FOR BURGERS MATERIAL eps_hat = sigma*(1/mu + 1/(etam*s))/s + sigma/((etak*s + muk)*s) # COMPUTE CREEP COMPLIANCE FOR GENERAL KELVIN MATERIAL eps_hat = sigma*(1/mu + 1/(etam*s))/s + sigma/((etak1*s + muk1)*s) + sigma/((etak2*s + muk2)*s) eps_t = ilt(eps_hat,s,t,5) #numeps = eps_t.subs(muk,1) #numeps = numeps.subs(etak,1) #numeps = numeps.subs(sigma,1) #numeps = sp.lambdify(t,numeps) #times = np.linspace(0,10,100) #u = numeps(times) #plt.plot(times,u) #plt.show() eta_eff = (sigma/eps_t.diff(t)).subs(t,0).simplify().expand() sp.pprint(eta_eff) sp.pprint(eps_t)
[ "matplotlib" ]
271e320d2674f494db1d1219f3d055a38bd3d4ed
Python
Danlowe95/projects
/rectdrawer.py
UTF-8
4,013
2.734375
3
[]
no_license
#dan lowe/ jonathan wrona from xml.dom import minidom from scipy import misc import xml.etree.ElementTree as et import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import math import cv2 ############################################################## # # ClickTracker2.py is a snippet of code for tracking the # clicks that a user has made on an image and writing that # data to an xml file. To test that xml file is named # test.xml in the same folder as ClickTracker.py. # # This version of ClickTracker can update the file after # each event or live. # # Author: Dan Lowe/Jonathan Wrona # ############################################################## class ClickTracker(object): file_ = 'test.xml' previous_pos_x = -1.0 previous_pos_y = -1.0 button_pressed = False root = et.Element('data') curr_event = et.Element('event') brush_size = 10 def __init__(self, ax, file_): self.showverts = True self.figure = plt.figure(1) self.file_ = file_ canvas = self.figure.canvas canvas.mpl_connect('button_press_event', self.button_press_callback) canvas.mpl_connect('button_release_event', self.button_release_callback) #canvas.mpl_connect('motion_notify_event', self.on_move) def button_press_callback(self, event): if(event.button == 1 or event.button == 3): self.button_pressed = True self.curr_event = et.SubElement(self.root, 'event') self.curr_event.set('button', get_mouse_button(event.button)) self.curr_event.set('size', str(self.brush_size)) current_pos_x = int(math.floor(event.xdata)) current_pos_y = int(math.floor(event.ydata)) coord = et.SubElement(self.curr_event, 'coord') coord.set('x', str(current_pos_x)) coord.set('y', str(current_pos_y)) #UNCOMMENT IF UPDATING LIVE# tree = et.ElementTree(self.root) tree.write(self.file_) has_two_points() def button_release_callback(self, event): self.button_pressed = False previous_pos_x = -1.0 previous_pos_y = -1.0 if(len(self.curr_event.findall('coord')) <= 0): self.root.remove(self.root[-1]) #UNCOMMENT IF UPDATING AFTER EACH EVENT$ #tree = et.ElementTree(self.root) #tree.write(self.file_) # def on_move(self, event): # if(self.button_pressed): # current_pos_x = int(math.floor(event.xdata)) # current_pos_y = int(math.floor(event.ydata)) # if(not(current_pos_x == self.previous_pos_x and current_pos_y == self.previous_pos_y)): # print 'updating path' # self.previous_pos_x = current_pos_x # self.previous_pos_y = current_pos_y # coord = et.SubElement(self.curr_event, 'coord') # coord.set('x', str(current_pos_x)) # coord.set('y', str(current_pos_y)) # #UNCOMMENT IF UPDATING LIVE# # tree = et.ElementTree(self.root) # tree.write(self.file_) # has_two_points() def get_mouse_button(button): if(button == 1): return "left" elif(button == 3): return "right" def has_two_points(): # xmldoc = minidom.parse('test.xml') # itemlist = xmldoc.getElementsByTagName('event') # if(itemlist.length > 1): tree = et.parse('test.xml') root = tree.getroot() print len(list(root)) if(len(list(root)) %2 == 0): pts = [] for neighbor in root.iter('coord'): x = int(neighbor.get('x')) y = int(neighbor.get('y')) pts.append((x,y)) print 'img draw' cv2.rectangle(img, pts[len(pts)-2], pts[len(pts)-1], (255), 8) ax.images.pop() ax.imshow(img) plt.draw() def click_demo(): f = open('test.xml', 'w') f.close() print 'img assign' global img #img = misc.lena() origin = '' img = mpimg.imread('zebra.jpg') #img = np.random.uniform(255, 0, size=(100, 100)) global ax ax = plt.subplot(111) ax.imshow(img) ct = ClickTracker(ax, 'test.xml') plt.title('Choose two points for your rectange by left clicking') plt.show() # itemlist = xmldoc.getElementsByTagName('event') # print len(itemList) # print itemlist[0].attributes['left'].value # for s in itemlist : # print s.attributes['name'].value ####create rectangle if __name__ == '__main__': click_demo()
[ "matplotlib" ]
bd81830252cd318cbfe51e3d709867dad15e051a
Python
jgliss/pydoas
/pydoas/helpers.py
UTF-8
3,775
3.09375
3
[ "BSD-3-Clause", "LicenseRef-scancode-philippe-de-muyter" ]
permissive
# -*- coding: utf-8 -*- # # Pydoas is a Python library for the post-analysis of DOAS result data # Copyright (C) 2017 Jonas Gliß ([email protected]) # # This program is free software: you can redistribute it and/or # modify it under the terms of the BSD 3-Clause License # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See BSD 3-Clause License for more details # (https://opensource.org/licenses/BSD-3-Clause) """ Module containing all sorts of helper methods """ import matplotlib.cm as colormaps import matplotlib.colors as colors from datetime import datetime, time, date from matplotlib.pyplot import draw from numpy import linspace, hstack, vectorize, int, floor, log10, isnan exponent = lambda num: int(floor(log10(abs(num)))) time_delta_to_seconds = vectorize(lambda x: x.total_seconds()) def to_datetime(value): """Method to evaluate time and / or date input and convert to datetime""" if isinstance(value, datetime): return value elif isinstance(value, date): return datetime.combine(value, time()) elif isinstance(value, time): return datetime.combine(date(1900,1,1), value) else: raise ValueError("Conversion into datetime object failed for input: " "%s (type: %s)" %(value, type(value))) def isnum(val): """Checks if input is number (int or float) and not nan :returns: bool, True or False """ if isinstance(val, (int, float)) and not isnan(val): return True return False def shifted_color_map(vmin, vmax, cmap = None): """Shift center of a diverging colormap to value 0 .. note:: This method was found `here <http://stackoverflow.com/questions/ 7404116/defining-the-midpoint-of-a-colormap-in-matplotlib>`_ (last access: 17/01/2017). Thanks to `Paul H <http://stackoverflow.com/ users/1552748/paul-h>`_ who provided it. Function to offset the "center" of a colormap. Useful for data with a negative min and positive max and if you want the middle of the colormap's dynamic range to be at zero level :param vmin: lower end of data value range :param vmax: upper end of data value range :param cmap: colormap (if None, use default cmap: seismic) :return: - shifted colormap """ if cmap is None: cmap = colormaps.seismic midpoint = 1 - abs(vmax)/(abs(vmax) + abs(vmin)) cdict = { 'red': [], 'green': [], 'blue': [], 'alpha': [] } # regular index to compute the colors reg_index = linspace(0, 1, 257) # shifted index to match the data shift_index = hstack([ linspace(0.0, midpoint, 128, endpoint=False), linspace(midpoint, 1.0, 129, endpoint=True) ]) for ri, si in zip(reg_index, shift_index): r, g, b, a = cmap(ri) cdict['red'].append((si, r, r)) cdict['green'].append((si, g, g)) cdict['blue'].append((si, b, b)) cdict['alpha'].append((si, a, a)) return colors.LinearSegmentedColormap('shiftedcmap', cdict) def _print_list(lst): """Print a list rowwise""" for item in lst: print(item) def rotate_xtick_labels(ax, deg=30, ha="right"): """Rotate xtick labels in matplotlib axes object""" draw() lbls = ax.get_xticklabels() lbls = [lbl.get_text() for lbl in lbls] ax.set_xticklabels(lbls, rotation = 30, ha = "right") draw() return ax def find_fitted_species_doasis_header(file_name): """Search all fitted species in header of DOASIS resultfile""" raise NotImplementedError
[ "matplotlib" ]
8c7f320b43a73c0bea505cb3e65c7c6634d7f1b7
Python
shravanc/tensorflow_certification
/timeseries/week2/exp/prepare_data.py
UTF-8
969
2.578125
3
[]
no_license
import pandas as pd import tensorflow as tf from lib.utils import plot_series import numpy as np import matplotlib.pyplot as plt path = "/home/shravan/python_programs/time_series/test_time_series.csv" new_file = "/home/shravan/python_programs/time_series/f1.csv" new_file = "/home/shravan/python_programs/time_series/f2.csv" df = pd.read_csv(path, names=["series"]) series = df['series'].values time = list(range(0, len(series))) values = df['series'].values dataset = tf.data.Dataset.range(1000) #dataset = tf.data.Dataset.from_tensor_slices(values) dataset = dataset.window(25, shift=1, drop_remainder=True) dataset = dataset.flat_map(lambda window: window.batch(25)) dataset = dataset.map(lambda window: (window[:-1], window[-1: ])) fp = open(new_file, 'w+') for x, y in dataset: a = x.numpy().tolist() a = ','.join([str(i) for i in a]) a += f",{str(y.numpy()[0])}" print(a) print(x.numpy(), y.numpy()) fp.write(a + '\r\n') #break fp.close()
[ "matplotlib" ]
18e12e469e49b56deb7f4e35bd044467ffd464b0
Python
CooperCao/megabot
/settings.py
UTF-8
2,124
2.578125
3
[]
no_license
## ================================================================================= ## Packages ## ================================================================================= import os# to use mail in sh import time import random import numpy as np import matplotlib.pyplot as plt #from scipy import signal# using correlation for pattern matching from PIL import Image import pyautogui# keyboard, mouse control using python also takes screenshots import cv2# template matching to find a pattern in an image import pytesseract# text recognition import pyperclip# to get clipboard content ## ================================================================================= ## Variables definition ## ================================================================================= dofusRoot = "/home/aurelien/git/megabot.git/trunk/" picRoot = dofusRoot + "pictures/" player = "[email protected]" ## ================================================================================= ## Fetching Dofus window and screen size ## ================================================================================= ## For now I only got the up/left and down/right corners postitions using ## pyautogui.position() mapBbox = (241, 76), (1169, 615) screenBbox = (), () inventoryFirstCellBbox = (976, 268), (999, 285)#(968, 250), (1015, 300) bankInventoryFirstCellBbox = (933, 277), (966, 308) ## ================================================================================= ## Sending mail to user ## ================================================================================= def mail(subject, text = "", adress = player, attachments = []): command = 'mail -s "%s" %s < %smail.txt' % (subject, adress, dofusRoot) os.system(command) return command ## ================================================================================= ## Middle of a bounding box ## ================================================================================= def bBoxMiddle(bBox): """return the point in the middle of a bounding box""" x0, y0 = bBox[0] x1, y1 = bBox[1] return (x0 + x1) / 2 , (y0 + y1) /2
[ "matplotlib" ]
3bed5341de83583fe11458fad41ad561c29673c5
Python
jackhamel16/MSU-EMresearch-Misc
/sz_plotter.py
UTF-8
1,370
3.515625
4
[]
no_license
import matplotlib.pyplot as plt import numpy as np def get_bloch_data(file_name): """ Opens a bloch.dat file and extracts the time data and s data from it file_name is the name of the path to the file / file name returns list of the time at each step and a list of s data """ time_list = [] s_list = [] bloch_file = open(file_name) for line in bloch_file: line_list = line.split() time_list.append(line_list[0]) s_list.append(line_list[1:]) bloch_file.close() return time_list, s_list def plot_sz(s_list): """ Plots sz comp of pseduospin of each dot at each timestep Also prints the dot count """ figure = plt.figure() axes = figure.add_subplot(111) axes.set_title("Pseudospin-Z of all system dots") axes.set_xlabel("Timestep") axes.set_ylabel("Pseudospin-Z") count = 0 for dot in range(len(s_list[0])//3): dot1 = [float(time[2+dot*3]) for time in s_list] axes.plot(dot1) count += 1 print("Dot count: "+str(count)) def main(): """ Runs two functions above and produces a plot of the sz component of each\ dot throughout all simulation time """ bloch_file_name = "../sim_results/run8/bloch.dat" time_list, s_list = get_bloch_data(bloch_file_name) plot_sz(s_list)
[ "matplotlib" ]
4563678e2105d375191e055563498bbbde94ecfe
Python
caramaria2/masterExperiments
/ID63.py
UTF-8
2,400
2.640625
3
[]
no_license
import pandas as pd import time import re import string import nltk import seaborn as sns import matplotlib.pyplot as plt import neattext.functions as nfx from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import multilabel_confusion_matrix, classification_report from skmultilearn.problem_transform import BinaryRelevance, ClassifierChain, LabelPowerset def build_model(model, mlb_estimator, xtrain, ytrain, xtest, ytest): clf = mlb_estimator(model) clf.fit(xtrain, ytrain) clf_predict = clf.predict(xtest) r = classification_report(ytest, clf_predict) print(r) writeLog(r) def lowerCase(text): text_low = text.str.lower() return text_low def removePunctuation(text): text = "".join([c for c in text if c not in string.punctuation]) return text def tokenizeText(text): tokenized_text = re.split('\W+', text) return tokenized_text def removeStopwords(tokenized_text): text = [word for word in tokenized_text if word not in stopwords] return text def writeLog(log): f = open(filename, "a") logN = str(log) f.write(logN + '\n') # Ensures linebreak for automated analysis f.close() #---------- End of functions-------- #Create Log File path = "./logfiles/" timestamp = int(round(time.time() * 1000)) filename = path+str(timestamp)+'.csv'; f = open(filename, "x") #Read Data data = pd.read_csv('../SentimentData63.csv' , index_col=0) stopwords = nltk.corpus.stopwords.words('english') #Prerocessing corpus = data['comment'].apply(nfx.remove_stopwords) corpus = corpus.apply(nfx.remove_punctuations) corpus = corpus.apply(nfx.remove_urls) corpus = corpus.apply(nfx.remove_hashtags) corpus = corpus.apply(nfx.remove_emails) #feature extraction tfidf = TfidfVectorizer().fit_transform(corpus) all_features = tfidf plot = data[['NA','BUG', 'FUNC', 'NON_FUNC']] #Multilabel all_lablesML = data[['NA','BUG', 'FUNC', 'NON_FUNC']] X_train, X_test, y_train, y_test = train_test_split(all_features, all_lablesML, test_size=0.2, random_state=42) writeLog("DT") clf_chain_model =build_model(DecisionTreeClassifier(), LabelPowerset, X_train, y_train, X_test, y_test) writeLog("SVC") clf_chain_model =build_model(SVC(), LabelPowerset, X_train, y_train, X_test, y_test)
[ "matplotlib", "seaborn" ]
91275254e8ffd81763f7a27885f850e8acb39e9c
Python
DavidPits/BookBuster
/plotAnalyzer.py
UTF-8
8,775
2.515625
3
[]
no_license
import os import pickle import random import numpy as np import goodreads as gr from goodreads import client import re from string import punctuation import nltk import wikipedia as wk import re import os from gensim import corpora, models, similarities from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import PorterStemmer import json import plotly.express as px EUCLIDEAN = 2 COSINE = 1 nltk.download('punkt') def text_to_tokens(text): book_punctuation = set(punctuation).union({'‘', '’', '“', '”'}).union('0-9') if "<br />" in text: text = text.replace("<br />", ' ') for char in book_punctuation: text = text.replace(char, '') tokens = word_tokenize(text.lower()) stop_words = stopwords.words('english') list_of_words = [word for word in tokens if word not in stop_words] # stemmer = PorterStemmer() # list_of_words = [stemmer.stem(word) for word in list_of_words] return list_of_words def load_word2vec(): """ Load Word2Vec Vectors Return: wv_from_bin: All 3 million embeddings, each lengh 300 """ import gensim.downloader as api wv_from_bin = api.load("word2vec-google-news-300") vocab = list(wv_from_bin.vocab.keys()) print(wv_from_bin.vocab[vocab[0]]) print("Loaded vocab size %i" % len(vocab)) return wv_from_bin def create_or_load_slim_w2v(words_list, cache_w2v=False): """ returns word2vec dict only for words which appear in the dataset. :param words_list: list of words to use for the w2v dict :param cache_w2v: whether to save locally the small w2v dictionary :return: dictionary which maps the known words to their vectors """ w2v_path = "w2v_dict.pkl" if not os.path.exists(w2v_path): full_w2v = load_word2vec() w2v_emb_dict = {k: full_w2v[k] for k in words_list if k in full_w2v} if cache_w2v: save_pickle(full_w2v, w2v_path) else: w2v_emb_dict = load_pickle(w2v_path) return w2v_emb_dict def get_w2v_average(sent, word_to_vec: dict, embedding_dim): """ This method gets a sentence and returns the average word embedding of the words consisting the sentence. :param sent: the sentence object :param word_to_vec: a dictionary mapping words to their vector embeddings :param embedding_dim: the dimension of the word embedding vectors :return The average embedding vector as numpy ndarray. """ words_in_dict = 0 avg_vec = np.zeros(embedding_dim) normalizing_factor = 1 bottom_of_harominc_seris = 1 words_in_sent_counter = 0 for word in sent: words_in_sent_counter += 1 if type(word_to_vec.get(word, 0)) == int: continue else: words_in_dict += 1 avg_vec += word_to_vec[word] * normalizing_factor if words_in_dict == 0: return np.zeros(embedding_dim) else: return avg_vec / words_in_sent_counter def save_pickle(obj, path): with open(path, "wb") as f: pickle.dump(obj, f) def load_pickle(path): with open(path, "rb") as f: return pickle.load(f) def LDA(plots): num_words = 50 num_topics = 1 dictionary = corpora.Dictionary(plots) # dictionary.filter_extremes(no_below=1, no_above=0.8) corpus = [dictionary.doc2bow(text) for text in plots] lda = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, update_every=5, chunksize=100, passes=1) # topics = lda.print_topics(num_topics, num_words=num_words) # lda = models.LdaModel(corpus, num_topics=1, id2word=dictionary, update_every=5, # chunksize=10000, passes=100) # topics = lda.print_topics(1, num_words=20) topics_matrix = lda.show_topics(num_topics=num_topics, formatted=False, num_words=num_words) topics_matrix = np.array([topic[1] for topic in topics_matrix]) topic_words = topics_matrix[:, :, 0] return [str(word) for word in topic_words[0]] def book_embedding(book_disc, word2vec_dict): most_promenent_words = LDA(([text_to_tokens(book_disc)])) embedding = get_w2v_average(most_promenent_words, word2vec_dict, 300) return embedding import pandas as pd def find_sim(book1_title, book2_title, book2emd): """ Finding the euclidean similitry between 2 books(books objects are from good reads api) based on their summary. :param book1: gr book object :param book2: gr book object :param word2vec_dict: trained word2vec embeddings. :return: euclidean distance """ return np.linalg.norm(book2emd[book1_title] - book2emd[book2_title]) def calcaulte_cosine(bk1_features_emb, bk2_features_emb): norm1 = np.linalg.norm(bk1_features_emb) norm2 = np.linalg.norm(bk2_features_emb) point_wise_mult = bk1_features_emb * bk2_features_emb return point_wise_mult / (norm1 * norm2) # Usefull dont delete import pandas as pd def create_word_voc(despcretion_list): set_words = set() i = 0 for desc in despcretion_list: book_words = LDA([text_to_tokens(str(desc))]) set_words = set_words.union(book_words) i += 1 print(i) return set_words def get_org_score(books, chosen_book, word2vec_dict): scores = np.zeros(30000) # TODO maybe theere should be a range and not the highest since books could be too much (man) sometimes. for book, i in zip(books, range(30000)): scores[i] = find_sim(chosen_book, book, word2vec_dict, COSINE) originality_score = scores.sort()[-10:].mean() # TODO TRY LESHLEL return originality_score from requests import get from bs4 import BeautifulSoup def find_all(string, substring): """ Function: Returning all the index of substring in a string Arguments: String and the search string Return:Returning a list """ length = len(substring) c = 0 indexes = [] while c < len(string): if string[c:c + length] == substring: indexes.append(c) c = c + 1 return indexes def find_total_amount_of_generes(urls): genres_set = {} for url in urls: get_book_genres(genres_set, url) save_pickle(genres_set, "genres_dict.pickle") import matplotlib.pyplot as plt def get_book_genres(genres_set, url): page = get(url) content = BeautifulSoup(page.content, "html.parser") keys = '<a class="actionLinkLite bookPageGenreLink" href="/genres/' str_cont = str(content) genre_index = (find_all(str_cont, keys)) curr_book_vector = [] for ind in genre_index: ind = ind + len(keys) string_that_contain_genre = str_cont[ind:ind + 50] current_genr = string_that_contain_genre.split("\"")[0] if current_genr in genres_set.keys(): curr_book_vector.append(genres_set[current_genr]) return curr_book_vector def get_books_genres_by_ff(books_url): genres = load_pickle("genre2num.pickle") all_books_vec = [] for url in books_url: all_books_vec.append(get_book_genres(genres, url)) return all_books_vec def dist_from_book(book_title, title2emb, all, Graphs=False): dist = [] for book in (all): dist.append(find_sim(book_title, str(book), title2emb)) dist.sort() if Graphs == True: x = np.arange(1000) y = dist[:1000] lst = [] names = [] for k in y: lst.append(k[0]) names.append(k[1]) print(len(x), len(y)) print(y) print(x) print(lst) fig, ax = plt.subplots() lst = np.log(lst) / np.log(50) ax.scatter(x, lst) for i in range(len(names)): names[i] = names[i].split('(')[0] print(names[i]) for i, txt in enumerate(names): ax.annotate(txt, (x[i], lst[i])) ax.annotate("Harry Potter", (0, 0)) plt.show() return np.array(dist[:15]).mean() def get_all_books_embeddings(): all = exctract_data_csv("book-description", True) all2 = exctract_data_csv("title", True) w2v = load_pickle("word2vecDict.pickle") all_books_emb = {} i = 0 for book_disc, title in zip(all, all2): i += 1 print(i) all_books_emb[title] = book_embedding(str(book_disc), w2v) save_pickle(all_books_emb, "all_books_emb.pickle") def get_average_orig(): orig_scores = [] w2v = load_pickle("/cs/usr/deven14423/Desktop/CoursesExcerises/BookBuster11/pickles/all_books_emb.pickle") all = exctract_data_csv("title", True) i = 0 for title in all: plt = str(title) orig_scores.append(dist_from_book(plt, w2v, all)) i += 1 print(i) return (np.array(orig_scores).mean())
[ "matplotlib", "plotly" ]
89c99a4da48a70ae9f525c1547935d37defed4c0
Python
Anxidote/Anxidote.github.io
/final.py
UTF-8
1,279
3.015625
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 21 23:22:35 2020 @author: aditisaxena """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Dec 19 00:01:15 2020 @author: aditisaxena """ # Random Forest Regression # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd import pickle # Importing the dataset dataset = pd.read_csv('DASS.csv') X = dataset.iloc[:,0:21].values y = dataset.iloc[:, 22:25].values # Taking care of missing data from sklearn.preprocessing import Imputer imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) imputer = imputer.fit(X[:, 0:21]) X[:, 0:21] = imputer.transform(X[:, 0:21]) # Splitting the dataset into the Training set and Test seT from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Fitting Random Forest Regression to the dataset from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = 10, random_state = 0) regressor.fit(X, y) # Predicting a new result y_pred = regressor.predict(X_test) pickle.dump(regressor,open('Predictor1.pkl','wb')) model = pickle.load(open('Predictor1.pkl','rb'))
[ "matplotlib" ]
1d65e8ab68d9c005d23856993373f9e8f2cc3e5a
Python
Romulus83/python
/iq_size_Backward_elimination_OLS.py
UTF-8
3,240
3.921875
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Mar 19 16:52:20 2020 @author: user """ """ Q. (Create a program that fulfills the following specification.) iq_size.csv Are a person's brain size and body size (Height and weight) predictive of his or her intelligence? Import the iq_size.csv file It Contains the details of 38 students, where Column 1: The intelligence (PIQ) of students Column 2: The brain size (MRI) of students (given as count/10,000). Column 3: The height (Height) of students (inches) Column 4: The weight (Weight) of student (pounds) What is the IQ of an individual with a given brain size of 90, height of 70 inches, and weight 150 pounds ? Build an optimal model and conclude which is more useful in predicting intelligence Height, Weight or brain size. """ # Importing the libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt # Importing the dataset dataset = pd.read_csv('iq_size.csv') dataset.ndim dataset.shape # Check for categorical data dataset.dtypes # Check for missing data dataset.isnull().any(axis=0) # Seperate features and labels features = dataset.iloc[:, 1:].values print(features) labels = dataset.iloc[:, [0]].values print(labels) #it is to remove they columns which are not effect on our model. import statsmodels.api as sm import numpy as np features_obj = features[:, [0,1,2]] features_obj = sm.add_constant(features_obj) while (True): regressor_OLS = sm.OLS(endog = labels,exog =features_obj).fit() p_values = regressor_OLS.pvalues if p_values.max() > 0.05 : features_obj = np.delete(features_obj, p_values.argmax(),1) else: break #In Features_obj we get only one column(Brain) which is most important for our dataset. # NOTE: - Using Polynomial algorithm. #so now we will take Polinomial algorithm and we do solve now. features = dataset.iloc[:,[1]].values #In Features_obj we get only one column(Brain) which is most important for our dataset. print(features) labels = dataset.iloc[:, [0]].values print(labels) from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures poly_object = PolynomialFeatures(degree = 5) print(features.shape) features_poly = poly_object.fit_transform(features) print(features_poly) print(features_poly.shape) # x0 x1 x2 x3 x4 x5 # Algo is same for Polynomial Regression, its only the data format is changed lin_reg_2 = LinearRegression() lin_reg_2.fit(features_poly, labels) # This will give error dim1 != dim 6 # We need to convert the data into polynomial format #print (lin_reg_2.predict([[1981]])) print ("Predicting result with Polynomial Regression") print (lin_reg_2.predict(poly_object.transform([[90]]))) #if our Brain Size =90 #Output:- [[100.32445269]] # This value has huge difference from the Linear Regression # But if we visualize it, we will come to know that Poly is better predictions # Visualising the Polynomial Regression results plt.scatter(features, labels, color = 'red') plt.plot(features, lin_reg_2.predict(poly_object.fit_transform(features)), color = 'blue') plt.title('Polynomial Regression') plt.xlabel('Year') plt.ylabel('Claims Paid') plt.show()
[ "matplotlib" ]
fac1049547c08f3f993b67a9422de90094d8fa8d
Python
Afrophysics/p133lab
/impedance_lb.py
UTF-8
2,668
3.53125
4
[]
no_license
'''This code is dedicated to the DC circuit observations for a battery with an uknown internal resistance. The goal of this code is to calculate the potential within the battery and the resistance of the internal resistor using a linear fit model for the IV diagram of this''' import numpy as np import matplotlib.pyplot as plt #Set up recorded parameters for applied external resistance from variable resistor box and #the observed potential for the given resistance R = np.array([10.2, 40.1, 200, 990, 40000]) err_r = np.repeat(0.3, len(R)) V = np.array([0.111, 0.420, 1.760, 4.91, 8.72]) err_v = np.array([0.001, 0.001, 0.001, 0.01, 0.01]) I = V/R err_cur = ((err_v**2 + (I * err_r)**2)**0.5)/R print("Part (a) is meant to build the algorithm") #Expectation value of the nth-power of the x-array weighted by the inverse of the y-variance def u(x, sig, n): tp = x**n bt = sig**2 ary = tp/bt return np.sum(ary) #Expectation value of the inner product between the the nth-power of the x-array and the y-array weighted by the inverse of the y-variance def w(x, y, sig, n): tp = y*(x**n) bt = sig**2 ary = tp/bt return np.sum(ary) #Linear-fit algorithm using least-squares method def linfit(x_data, y_data, y_error): u_0 = u(x_data, y_error, 0) u_1 = u(x_data, y_error, 1) u_2 = u(x_data, y_error, 2) w_0 = w(x_data, y_data, y_error, 0) w_1 = w(x_data, y_data, y_error, 1) w_2 = w(x_data, y_data, y_error, 2) D = (u_0 * u_2) - (u_1 ** 2) stnd_1 = (u_0 * w_1) - (w_0 * u_1) stnd_2 = (u_2 * w_0) - (w_1 * u_1) slope = stnd_1/D var_sl = u_0/D y_intr = stnd_2/D var_yt = u_2/D return np.array([slope, y_intr, var_sl, var_yt]) print("Part (a) complete") print("Part (b) is shall test the algorithm using the sample data below:") x = I y = V yerr = err_v print('x data points: %s'%x) print('y data points: %s'%y) print('y-error data points: %s'%yerr) rs = linfit(x, y, yerr) print("results") print("slope = %.3f +/- %.3f"%(rs[0], rs[2]**0.5)) print("intercept = %.3f +/- %.3f"%(rs[1], rs[3]**0.5)) print("Part (b) complete") print('') print("Part (c) we shall plot our results") import matplotlib.pyplot as plt fig = plt.figure() plt.errorbar(x, y, yerr = yerr, fmt='.', label='measured volts') smpl_x = np.linspace(0, 0.0109, 31) #plot the linear approximation f_x = rs[1] + (rs[0] * smpl_x) plt.plot(smpl_x, f_x, '--', label='%.2f + %.2f I'%(rs[1], rs[0])) plt.grid(True) plt.title('DC Lab') plt.legend() plt.xlabel('Current') plt.ylabel('Potential') plt.show() #fig.savefig('Linear_fit_ex.png') print("Problem 2 complete")
[ "matplotlib" ]
33305447a16ef79d6b8a87507bd7e2e507616372
Python
WenHui-Zhou/Django-Example
/MartM/Login/views.py
UTF-8
11,529
2.671875
3
[]
no_license
#coding utf-8 #!/usr/bin/env python3 # -*- coding: utf-8 -*- # encoding=utf-8 from django.shortcuts import render from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt from Login.models import Users,SaleD,ShopList import os import xlrd import numpy as np import matplotlib as mpl mpl.use('Agg') import pandas as pd import matplotlib.pyplot as plt import time from time import strftime,gmtime from pylab import * from pandas.core.frame import DataFrame mpl.rcParams['font.sans-serif'] = ['SimHei'] def FirstPage(request): # return HttpResponse('111111') return render(request,'LoginPage.html') def HomePage(request): # return HttpResponse('111111') return render(request,'index.html') @csrf_exempt #保证表单可以使用 def loginCheck(request): Uname = request.POST['username'] Upassword = request.POST['password'] a = list(Users.objects.values_list().filter(name = Uname)) if a.__len__() != 0: #找到记录 a = [(1,'name','password')] print('找到记录') if a[0][2] == Upassword: print('登入成功') return render(request, 'index.html') else: print('登入失败') err = '密码错误!' return render(request, 'LoginPage.html',{'err':err}) else: print('登入失败') err = '账号错误!' return render(request, 'LoginPage.html', {'err':err}) def aSum(SaleDStruct): a = SaleDStruct.Gapple+SaleDStruct.Gorange+SaleDStruct.Gbowl+\ SaleDStruct.Gchopstick+SaleDStruct.Grag+SaleDStruct.Gtissue+SaleDStruct.Gnoddle+SaleDStruct.Gham return a def DrawHisgram(request): print('柱状图') # os.chdir('C:\\Users\\ZHOU\\Desktop\\Django') # salesdata = pd.DataFrame(pd.read_excel('1.xlsx', sheet_name=1)) LineData = list(SaleD.objects.all().order_by('Gdate')) apple = list() orange = list() bowl = list() chopstick = list() rag = list() tissue = list() noddle = list() ham = list() date = list() count = list() for i in range(0,12): apple.append(LineData[i].Gapple) orange.append(LineData[i].Gorange) bowl.append(LineData[i].Gbowl) chopstick.append(LineData[i].Gchopstick) rag.append(LineData[i].Grag) tissue.append(LineData[i].Gtissue) noddle.append(LineData[i].Gnoddle) ham.append(LineData[i].Gham) date.append(LineData[i].Gdate) count.append(aSum(LineData[i])) GdateSet = {"日期": date, "苹果": apple, "橘子": orange, "碗": bowl, "筷子": chopstick, "抹布": rag, "纸巾": tissue, '方便面': noddle, '火腿肠': ham,'count':count} salesdata = DataFrame(GdateSet) salesdata = salesdata.groupby('日期')['count'].agg(sum) a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) plt.xticks(a, ('1月', '2月', '3月', '4月', '5月', '6月', '7月', '8月', '9月', '10月', '11月', '12月')) plt.bar(a, salesdata, color='#99CC01') plt.xlabel(u'月份') plt.ylabel(u'金额/元') plt.title(u'2016年各月销售额统计') plt.legend([u'销售额'], loc='upper right') plt.grid(color='#95a5a6', linestyle='--', linewidth=1, axis='y', alpha=0.4) plt.plot() picName = time.strftime("%Y_%m_%d_%H_%M_%S") path = 'C:/Users/ZHOU/Desktop/Django/MartM/Login/static/img/' + picName + 'His.png' plt.savefig(path) path = '../static/img/' + picName + 'His.png' plt.close('all') return render(request,'Hisgram.html',{'path':path}) def DrawLine(request): print('折线图') # os.chdir('C:\\Users\\ZHOU\\Desktop\\Django') # salesdata = pd.DataFrame(pd.read_excel('1.xlsx')) LineData = list(SaleD.objects.all().order_by('Gdate')) apple = list() orange = list() bowl = list() chopstick = list() rag = list() tissue = list() noddle = list() ham = list() date = list() for i in range(0,12): apple.append(LineData[i].Gapple) orange.append(LineData[i].Gorange) bowl.append(LineData[i].Gbowl) chopstick.append(LineData[i].Gchopstick) rag.append(LineData[i].Grag) tissue.append(LineData[i].Gtissue) noddle.append(LineData[i].Gnoddle) ham.append(LineData[i].Gham) date.append(LineData[i].Gdate) GdateSet = {"日期":date,"苹果":apple,"橘子":orange,"碗":bowl,"筷子":chopstick,"抹布":rag,"纸巾":tissue,'方便面':noddle,'火腿肠':ham} salesdata = DataFrame(GdateSet) # 绘图 salesdata = salesdata.set_index('日期') names = ['1月', '2月', '3月', '4月', '5月', '6月', '7月', '8月', '9月', '10月', '11月', '12月'] x = range(len(names)) y1 = salesdata['苹果'] y2 = salesdata['橘子'] y3 = salesdata['碗'] y4 = salesdata['筷子'] y5 = salesdata['抹布'] y6 = salesdata['纸巾'] y7 = salesdata['方便面'] y8 = salesdata['火腿肠'] plt.xticks(x, names) plt.plot(x, y1, marker='*', ms=5, mec='r', label=u'苹果') plt.plot(x, y2, marker='*', ms=5, label=u'橘子') plt.plot(x, y3, marker='*', ms=5, label=u'碗') plt.plot(x, y4, marker='*', ms=5, label=u'筷子') plt.plot(x, y5, marker='*', ms=5, label=u'抹布') plt.plot(x, y6, marker='*', ms=5, label=u'纸巾') plt.plot(x, y7, marker='*', ms=5, label=u'方便面') plt.plot(x, y8, marker='*', ms=5, label=u'火腿肠') plt.legend() plt.xlabel(u"月份") plt.ylabel(u"销售额") plt.title("超市2016年度销售走势图") plt.plot() picName = time.strftime("%Y_%m_%d_%H_%M_%S") path = 'C:/Users/ZHOU/Desktop/Django/MartM/Login/static/img/' + picName + 'Line.png' plt.savefig(path) path = '../static/img/' + picName + 'Line.png' plt.close('all') return render(request, 'LineGraph.html', {'path': path}) def DrawPai(request): print('饼图') # data = xlrd.open_workbook('C:\\Users\\ZHOU\\Desktop\\Django\\1.xlsx') # sheet1 = data.sheet_by_name(u'Sheet3') X = [] Gtitle = ['Gapple','Gorange','Gbowl','Gchopstick','Grag','Gtissue','Gnoddle','Gham'] for i in range(0, 8): temp = Gtitle[i] X.append(sum(list(SaleD.objects.values_list(temp,flat=True)))) print(X) Y = ['苹果', '橘子', '碗', '筷子', '抹布', '纸巾', '方便面', '火腿肠'] print(Y) fig = plt.figure() plt.pie(X, labels=Y, autopct='%1.2f%%') plt.title("2016年超市销售额饼图") plt.plot() picName = time.strftime("%Y_%m_%d_%H_%M_%S") path = 'C:/Users/ZHOU/Desktop/Django/MartM/Login/static/img/' + picName + 'Pai.png' plt.savefig(path) path = '../static/img/' + picName + 'Pai.png' plt.close('all') return render(request, 'PaiGraph.html', {'path': path}) def load_data_set(): # 读入数据库。 # F1 = open(r"C:\Users\Administrator\Desktop\1.txt", "r") # List_row = F1.readlines() Glist = list(ShopList.objects.all()) list_source = [] for i in range(Glist.__len__()): column_list = Glist[i].ListContent.strip().split("|") list_source.append(column_list) return list_source # 生成1项集C1 def create_C1(data_set): C1 = set() for t in data_set: for item in t: item_set = frozenset([item]) C1.add(item_set) return C1 # 判断是否满足先验性质 def is_apriori(Ck_item, Lksub1): for item in Ck_item: sub_Ck = Ck_item - frozenset([item]) if sub_Ck not in Lksub1: return False return True # 连接Lk-1,生成Ck,剪枝 def create_Ck(Lksub1, k): Ck = set() len_Lksub1 = len(Lksub1) list_Lksub1 = list(Lksub1) for i in range(len_Lksub1): for j in range(1, len_Lksub1): l1 = list(list_Lksub1[i]) l2 = list(list_Lksub1[j]) l1.sort() l2.sort() if l1[0:k - 2] == l2[0:k - 2]: Ck_item = list_Lksub1[i] | list_Lksub1[j] # pruning if is_apriori(Ck_item, Lksub1): Ck.add(Ck_item) return Ck # 筛选,扫描数据库,生成频繁k项集Lk def generate_Lk_by_Ck(data_set, Ck, min_support, support_data): Lk = set() item_count = {} for t in data_set: for item in Ck: if item.issubset(t): if item not in item_count: item_count[item] = 1 else: item_count[item] += 1 t_num = float(len(data_set)) for item in item_count: if (item_count[item] / t_num) >= min_support: Lk.add(item) support_data[item] = item_count[item] / t_num return Lk # 所有频繁项集L def generate_L(data_set, k, min_support): support_data = {} C1 = create_C1(data_set) L1 = generate_Lk_by_Ck(data_set, C1, min_support, support_data) Lksub1 = L1.copy() L = [] L.append(Lksub1) for i in range(2, k + 1): Ci = create_Ck(Lksub1, i) Li = generate_Lk_by_Ck(data_set, Ci, min_support, support_data) Lksub1 = Li.copy() L.append(Lksub1) return L, support_data # 生成强关联项 def generate_big_rules(L, support_data, min_conf): big_rule_list = [] sub_set_list = [] for i in range(0, len(L)): for freq_set in L[i]: for sub_set in sub_set_list: if sub_set.issubset(freq_set): conf = support_data[freq_set] / support_data[freq_set - sub_set] big_rule = (freq_set - sub_set, sub_set, conf) if conf >= min_conf and big_rule not in big_rule_list: big_rule_list.append(big_rule) sub_set_list.append(freq_set) return big_rule_list def Apriori(request): data_set = load_data_set() L, support_data = generate_L(data_set, k=3, min_support=0.2) big_rules_list = generate_big_rules(L, support_data, min_conf=0.7) print("=" * 50) print("频繁项集") print('**' * 30) freqList = [] for Lk in list(L): for freq_set in Lk: print(list(freq_set), "支持度:", support_data[freq_set]) if support_data[freq_set]>=0.4: freqList.append(' 和 '.join(list(freq_set)) + " 支持度: " + repr(support_data[freq_set])+' 建议加大进货力度') else: freqList.append(' 和 '.join(list(freq_set)) + " 支持度: " + repr(support_data[freq_set])) freqList.append('*************************************') print("=" * 50) ContactList = [] print("强关联项") for item in big_rules_list: print(list(item[0]), "=>", list(item[1]), "置信度: ", item[2]) ContactList.append(' 和 '.join(list(item[0])) + " => "+' 和 '.join(list(item[1])) + " 置信度: " + repr(item[2])) return render(request,'Apriori.html',{"freqList":freqList,"ContactList":ContactList}) def DataDisp(request): DataDispSet = list(SaleD.objects.all().order_by('Gdate')) ShoppingList = list(ShopList.objects.all()) return render(request,'DataDisplay.html',{"cols":DataDispSet,"shopList":ShoppingList})
[ "matplotlib" ]
f5c5dd8e543db5c7cdb3426578cc7c4a7b01aaa2
Python
rohithsrinivaas/HPCE-AM5080
/13-03-2020/LUDecomp.py
UTF-8
8,234
2.59375
3
[]
no_license
# Program to decompose a matrix to LU form # Importing the required libraries import math import random import numpy as np from mpi4py import MPI import seaborn as sns comm = MPI.COMM_WORLD rank = comm.Get_rank() nProcs = comm.Get_size() size = nProcs np.set_printoptions(precision=3) np.set_printoptions(suppress=True) random.seed(1) m = None k = None n = None A = None if rank == 0: A = np.array([[1.00,0.00,1,2],[0,1,-2,0],[1,2,-1,0],[2,1,3,-2.00]]) m,n = np.shape(A) print A for i in range(m): col_max = A[i,i] ind_max = i for j in range(i+1,n): if A[j,i]>=col_max: col_max = A[j,i] ind_max = j A[[i,ind_max]]=A[[ind_max,i]] print A m = comm.bcast(m,root = 0) n = comm.bcast(n,root = 0) B = np.full(n,1.00) sub_row = np.full(n,1.00) comm.Scatter(A,B,root = 0) # print B iter = 0 while iter < m: if rank == iter: sub_row = B sub_row = comm.bcast(sub_row,root=iter) comm.barrier() if rank > iter: alpha = (B[iter]/sub_row[iter]) for i in range(n): B[i] = B[i] - alpha*sub_row[i] iter+=1 comm.barrier() comm.Gather(B,A,root=0) if rank ==0: print A # A = np.random.rand(4,6) # B = np.random.rand(6,6) # print A # print B # m,k = np.shape(A) # k,n = np.shape(B) # C = np.full((m,n),0.00) # # To factorize nProc so that iProcs/jProcs ~ iLength/jLength # k = comm.bcast(k,root = 0) # if nProcs == 4: # iProcs = 2 # jProcs = 2 # elif nProcs == 6: # if m>n: # jProcs = 3 # iProcs = 2 # else: # iProcs = 2 # jProcs = 3 # iLength = m/iProcs # jLength = n/jProcs # # print("iProcs = {}, jProcs = {}").format(iProcs,jProcs) # if rank == 0: # k = 0 # for i in range(0,iProcs): # for j in range(0,jProcs): # rows = A[i*iLength:(i+1)*iLength,:] # rows.tolist() # cols = B[:,j*jLength:(j+1)*jLength] # comm.send(rows, dest = i*jProcs+j, tag = 0) # comm.send(cols, dest = i*jProcs+j, tag = 0) # rows = None # cols = None # rows = comm.recv(source = 0,tag = 0) # cols = comm.recv(source = 0,tag = 0) # # print("Rows - {}, cols - {} for Rank - {}").format(rows,cols,rank) # ans = np.dot(rows,cols) # # print ans # comm.send(ans, dest = 0, tag = 0) # if rank == 0: # final_ans = None # for i in range(iProcs): # row_ans = None # for j in range(jProcs): # segment = comm.recv(source = i*jProcs+j, tag = 0) # segment = np.asarray(segment) # # print segment # if j == 0: # row_ans = segment # else: # row_ans = np.hstack((row_ans,segment)) # # print("RowAns - {} ").format(row_ans) # if i ==0: # final_ans = row_ans # else: # final_ans = np.vstack((final_ans,row_ans)) # print final_ans # print np.dot(A,B) # print("Rank - {}, Data - {}").format(rank,data) # shift_x = rank%jProcs # shift_y = rank/jProcs # if rank <iProcs: # for j in range(jProcs): # comm.send(data,dest = shift_x*jProcs+j,tag = shift_x) # else: # for i in range(iProcs): # comm.send(data,dest = i*jProcs+shift_y,tag = shift_y) # comm.recv() # # iProc = # Declaring the array and setting the seed for random # del_x = 0.025 # del_y = 0.025 # del_x = 0.0025 # del_y = 0.0025 # del_t = 0.1 # length = 0.2 # time_max = 1000 # alpha = 10**(-4) # r = alpha * del_t /(del_x**2) # size_list = int(length/(del_x*(nProcs)**0.5)) # side_size = int(length/(del_x)) # block_size = size_list*size_list # local_temp = np.full((size_list,size_list),0.00) # temp_1 = local_temp # temp_2 = local_temp # if rank == 0: # local_temp[:,0]= 300.00 # local_temp[0,:] = 400.00 # elif rank == 1: # local_temp[:,size_list-1] = 100 # local_temp[0,:] = 400.00 # elif rank == 2: # local_temp[:,0] = 300.00 # else : # local_temp[:,size_list-1] = 100.00 # global_temp = None # local_temp = np.reshape(local_temp,(1,block_size)) # # print(local_temp) # local_temp.tolist() # comm.send(local_temp, dest=0, tag=rank**2) # open('Temperature_Profile.txt', 'w').close() # # print(local_temp) # comm.barrier() # if rank == 0: # # print "Printing the Received buffer" # local_temp_0 = None # local_temp_1 = None # local_temp_2 = None # local_temp_3 = None # local_temp_0 = comm.recv(source=0, tag=0) # local_temp_1 = comm.recv(source=1, tag=1) # local_temp_2 = comm.recv(source=2, tag=4) # local_temp_3 = comm.recv(source=3, tag=9) # local_temp_0 = np.asarray(local_temp_0) # local_temp_1 = np.asarray(local_temp_1) # local_temp_2 = np.asarray(local_temp_2) # local_temp_3 = np.asarray(local_temp_3) # local_temp_0 = np.reshape(local_temp_0,(size_list,size_list)) # local_temp_1 = np.reshape(local_temp_1,(size_list,size_list)) # local_temp_2 = np.reshape(local_temp_2,(size_list,size_list)) # local_temp_3 = np.reshape(local_temp_3,(size_list,size_list)) # # print(local_temp_0) # # print(local_temp_1) # # print(local_temp_2) # # print(local_temp_3) # global_hor_1 = np.hstack((local_temp_0,local_temp_1)) # global_hor_2 = np.hstack((local_temp_2,local_temp_3)) # global_temp = np.vstack((global_hor_1,global_hor_2)) # # print global_temp # global_temp.tolist() # global_temp = comm.bcast(global_temp,root=0) # global_temp = np.asarray(global_temp) # global_temp = np.reshape(global_temp,(size_list*2,size_list*2)) # if rank ==0: # print global_temp # comm.barrier() # origin_shift_x = 0 # origin_shift_y = 0 # if rank == 1: # origin_shift_y = size_list # elif rank == 2: # origin_shift_x = size_list # elif rank == 3: # origin_shift_x = size_list # origin_shift_y = size_list # else: # origin_shift_y = 0 # origin_shift_x = 0 # local_temp = np.reshape(local_temp,(size_list,size_list)) # # print("Printing local Temp - {}").format(local_temp) # # print np.shape(global_temp) # time_iter = 1 # while time_iter <= 1: # diff_temp = np.full((size_list,size_list),0.00) # for i in range(size_list): # for j in range(size_list): # x = origin_shift_x + i # y = origin_shift_y + j # if x == 0 or y == 0 or y == side_size-1: # diff_temp[i,j] = 0 # elif x == side_size-1: # diff_temp[i,j] = r*(global_temp[x,y+1] + global_temp[x,y-1] + 2*global_temp[x-1,y] - 4 * global_temp[x,y])/4 # elif x>=0 and y>=0 and x<side_size and y<side_size: # diff_temp[i,j] = r*(global_temp[x+1,y] + global_temp[x,y+1] + global_temp[x,y-1] + global_temp[x-1,y] - 4 * global_temp[x,y])/4 # else: # print("Index out of bounds - x - {} y - {} i - {} j - {} rank - {}").format(x,y,i,j,rank) # local_temp = np.add(local_temp,diff_temp) # # print("Rank = {}, local temp - {}").format(rank,local_temp) # local_temp.tolist() # comm.send(local_temp, dest=0, tag=rank**2) # # print(local_temp) # comm.barrier() # if rank == 0: # # print "Printing the Received buffer" # local_temp_0 = None # local_temp_1 = None # local_temp_2 = None # local_temp_3 = None # local_temp_0 = comm.recv(source=0, tag=0) # local_temp_1 = comm.recv(source=1, tag=1) # local_temp_2 = comm.recv(source=2, tag=4) # local_temp_3 = comm.recv(source=3, tag=9) # local_temp_0 = np.asarray(local_temp_0) # local_temp_1 = np.asarray(local_temp_1) # local_temp_2 = np.asarray(local_temp_2) # local_temp_3 = np.asarray(local_temp_3) # local_temp_0 = np.reshape(local_temp_0,(size_list,size_list)) # local_temp_1 = np.reshape(local_temp_1,(size_list,size_list)) # local_temp_2 = np.reshape(local_temp_2,(size_list,size_list)) # local_temp_3 = np.reshape(local_temp_3,(size_list,size_list)) # # print(local_temp_0) # # print(local_temp_1) # # print(local_temp_2) # # print(local_temp_3) # global_hor_1 = np.hstack((local_temp_0,local_temp_1)) # global_hor_2 = np.hstack((local_temp_2,local_temp_3)) # global_temp = np.vstack((global_hor_1,global_hor_2)) # # print global_temp # global_temp.tolist() # global_temp = comm.bcast(global_temp,root=0) # global_temp = np.asarray(global_temp) # global_temp = np.reshape(global_temp,(size_list*2,size_list*2)) # local_temp = np.asarray(local_temp) # local_temp = np.reshape(local_temp,(size_list,size_list)) # time_iter += 1 # if rank ==0: # print global_temp # plot_temp = sns.heatmap(global_temp) # fig = plot_temp.get_figure() # fig.savefig("time_iter.png") # fig.clf() # temp_csv = np.reshape(global_temp,(1,side_size**2)) # with open("Temperature_Profile.txt", "a") as myfile: # np.savetxt(myfile, temp_csv, fmt='%1.4e', delimiter=",")
[ "seaborn" ]
82d75ace9d14b9c79070a2c5956236c202af0366
Python
Anusha-Kokkinti/Linear-Regression--Analysis
/BCD5.py
UTF-8
2,811
2.84375
3
[]
no_license
#%atplotlib qt from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np import pandas as pt def cost_computation(x1,x2,x3,y,t,n,m,b): sum1=0 z=0 for i in range(x1.size): sum1=sum1+(((t*x3[i]+n*x2[i]+m*x1[i]+b)-y[i])**2) z=sum1/(2*(x1.size)) return z def stepGradient(b_current, m_current,n_current,t_current,x3,x2,x1,y, learningRate): b_gradient = 0 m_gradient,n_gradient,t_gradient = 0, 0,0 #n_gradient = 0 N = float(x1.size) for i in range(x1.size): b_gradient-=(2/N)*(y[i]-((n_current*x2[i])+(m_current*x1[i])+b_current));t_gradient-=(2/N)*x3[i]*(y[i]-((t_gradient*x3[i])+(n_current*x2[i])+(m_current*x1[i])+b_current)) m_gradient-=(2/N)*x1[i]*(y[i]-((n_current*x2[i])+(m_current*x1[i])+b_current));n_gradient-=(2/N)*x2[i]*(y[i]-((n_current*x2[i])+(m_current*x1[i])+b_current)) new_b=b_current-(learningRate*b_gradient);new_t=t_current-(learningRate*t_gradient) new_m=m_current-(learningRate*m_gradient);new_n=n_current-(learningRate*n_gradient) return (new_b, new_m, new_n,new_t) def main(): #initializing the data set data=pt.read_excel('BreastCancerData.xlsx') x1=np.array(data[u'Perimeter'],dtype=np.float64) x2=np.array(data[u'Area'],dtype=np.float64);x3=np.array(data[u'FractalDimension'],dtype=np.float64);y=np.array(data[u'Compactness'],dtype=np.float64) mvalues,tvalues=np.zeros(x1.size+1),np.zeros(x1.size+1) bvalues,nvalues=np.zeros(x1.size+1),np.zeros(x1.size+1) learningRate=0.00000092 mvalue,nvalue,tvalue=1,1,1 bvalue,error=1,[] z,newz=1000000,100000 i=0 while(z>0.009): #print mvalue,bvalue,z newbvalue,newmvalue,newnvalue,newtvalue=stepGradient(bvalue,mvalue,nvalue,tvalue,x3,x2,x1,y,learningRate);z=newz newz=cost_computation(x1,x2,x3,y,tvalue,nvalue,mvalue,bvalue);error.append(newz) mvalue,bvalue,nvalue,tvalue=newmvalue,newbvalue,newnvalue,newtvalue print tvalue,nvalue,mvalue,bvalue,z,i i=i+1;plt.figure(1),plt.title('Cost Over Iterations'),plt.xlabel('No. Of Iterations'),plt.ylabel('Cost Function'),plt.scatter(i,newz,color='r') '''xaxis=np.linspace(60,200,num=50);yaxis=np.linspace(250,2500,num=50);taxis=np.linspace(60,200,num=50) newx1=xaxis;zaxis=[tvalue*taxis[i]+nvalue*yaxis[i]+mvalue*xaxis[i]+bvalue for i in range(50)] fig=plt.figure() ax=fig.add_subplot(111,projection='3d') ax.scatter(x1, x2, y,c='r',marker='o'),ax.scatter(xaxis, yaxis, zaxis,marker='*'),ax.set_xlabel('Perimeter'),ax.set_ylabel('Area'),ax.set_zlabel('Compactness'),ax.set_title('Performance of Model when Area is added') #plt.scatter(y,x,color='r') #plt.scatter(y,x) ''' plt.show() if __name__=="__main__": main()
[ "matplotlib" ]
63a1fb3e0201946a6ebe02f8054cba7a89d91a50
Python
zietzm/modifiers-analysis
/data/computed/severity_modifier_normalization.py
UTF-8
17,395
2.75
3
[]
no_license
import sys import pandas as pd import numpy as np import os from collections import Counter import matplotlib.pyplot as plt % matplotlib inline from gensim.models import Word2Vec import nltk def clean_string_list(input_list, list_output = False, chars_to_ignore = None, min_char_count = None) : output_list = [] for s in input_list: if chars_to_ignore : for char in chars_to_ignore : s = s.replace(char, ' ') s = s.split(' ') s = [str(x).lower() for x in s] s = [str(x).strip() for x in s] s = [x for x in s if (x != '-')] if min_char_count : s = [x for x in s if (len(x) >= min_char_count)] s = [x for x in s if not (x.isdigit())] s = [x for x in s if x] if list_output == False : s = ' '.join(s) output_list.append(s) return output_list def get_dataframes_from_csv() : # Dump extracted_parents.csv into pandas DataFrame extracted = pd.read_csv('extracted_parents.csv', sep = ',') # Remove missing criteria strings in df extracted = extracted.dropna(how = 'any') # Drop duplicates extracted = extracted.drop_duplicates() # Reset index after drop extracted = extracted.reset_index(drop = True) # REMOVE ROWS WITH CRITERIA STRINGS THAT DO NOT INCLUDE MATCHED STRING indices = [] ; matches = [] ; criteria = [] for idx, criteria_string in enumerate(list(extracted['criteria_string'])) : if (extracted.loc[idx]['matched_string'] in criteria_string) == False : indices.append(idx) matches.append(extracted.loc[idx]['matched_string']) criteria.append(criteria_string) # print('Number rows missing relevant matched_string value: {}'.format(len(indices))) extracted = extracted.drop(indices) extracted = extracted.reset_index(drop = True) confirmation_bool = (extracted.shape[0] == (292320 - 62395)) # NORMALIZE WHITESPACE AND LOWER ALL CASES IN CRITERIA STRING cleaned_criteria = clean_string_list(list(extracted['criteria_string'])) extracted.drop('criteria_string', axis = 1, inplace = True) extracted['criteria_string'] = cleaned_criteria # SET FILE PATHS FILE_ROOT_PATH = 'computed/' CONCEPTS_PATH = FILE_ROOT_PATH + 'concepts_with_modifiers.tsv' PARENT_PATH = FILE_ROOT_PATH + 'parent_to_descendant_synonyms.tsv' PARENT_SYNONYM_PATH = FILE_ROOT_PATH + 'parents_synonyms.tsv' PARENT_MODIFIED_CHILDREN_PATH = FILE_ROOT_PATH + 'parents_with_modified_children.tsv' # DUMP RELEVANT FILES TO DATAFRAMES concepts = pd.read_csv(CONCEPTS_PATH, sep = '\t') parents = pd.read_csv(PARENT_PATH, sep = '\t') synonyms = pd.read_csv(PARENT_SYNONYM_PATH, sep = '\t') modified = pd.read_csv(PARENT_MODIFIED_CHILDREN_PATH, sep = '\t') # REMOVE DUPLICATES FROM DATAFRAMES concepts = concepts.drop_duplicates() concepts = concepts.reset_index(drop = True) parents = parents.drop_duplicates() parents = parents.reset_index(drop = True) synonyms = synonyms.drop_duplicates() synonyms = synonyms.dropna(how = 'all') synonyms.reset_index(drop = True) modified = modified.drop_duplicates() modified = modified.dropna(how = 'any') modified = modified.reset_index(drop = True) return extracted, concepts, parents, synonyms, modified # Function to split top n_rows into the validation set def split_train_val(n_rows, save = 0) : # Top 100 rows serve as validation set validation_extracted = extracted.head(n = n_rows).copy() # Remaining rows serve as training set train_extracted = extracted.tail(n = extracted.shape[0] - (n_rows + 1)).copy() # Reset index after drop train_extracted = train_extracted.reset_index(drop = True) if save == 1 : # Export validation df to .csv file validation_extracted.to_csv('validation_extracted_parents.csv', encoding = 'utf-8', index = False) # Export training df to .csv file train_extracted.to_csv('train_extracted_parents.csv', encoding = 'utf-8', index = False) return train_extracted, validation_extracted # FUNCTIONS TO QUERY AND NAVIGATE DATAFRAMES def get_synonyms(parent) : parent_list = list(synonyms['parent_concept_name']) id_list = list(synonyms['parent_concept_id']) if parent in parent_list : return_df = synonyms[synonyms['parent_concept_name'] == parent] return list(return_df['concept_synonym_name']) elif parent in id_list : return_df = synonyms[synonyms['parent_concept_id'] == parent] return list(return_df['concept_synonym_name']) else : parent = str(parent) parent_list_lower = [str(x).lower() for x in parent_list] if parent.lower() in parent_list_lower : idx = parent_list_lower.index(parent.lower()) return_df = synonyms[synonyms['parent_concept_name'] == parent_list[idx]] return list(return_df['concept_synonym_name']) else : print('Parent concept {} does not have synonyms.'.format(parent)) return None def get_parent_concept_id(parent) : parent_list = list(synonyms['parent_concept_name']) if parent in parent_list : return list(synonyms[synonyms['parent_concept_name'] == parent]['parent_concept_id'])[0] else : parent_list_lower = [str(x).lower() for x in parent_list] if parent.lower() in parent_list_lower : idx = parent_list_lower.index(parent.lower()) return list(synonyms[synonyms['parent_concept_name'] == parent_list[idx]]['parent_concept_id'])[0] else : print('Parent concept {} not found.'.format(parent)) return None def get_train_criteria(train) : train_criteria = [] for s in train['criteria_string'] : chars_to_ignore = [',', '.', ':', ';', '(', ')', '[', ']', '#', '%', '<', '>', '/', '"', '*', '-', '―'] s = s.split(' ') s = clean_string_list(s, list_output = False, chars_to_ignore = chars_to_ignore) train_criteria.append(s) return train_criteria def get_embeddings_model(split) : train, val = split_train_val(split) train_criteria = get_train_criteria(train) return train, val, Word2Vec(train_criteria, min_count = 1) def get_closest_string(query, sentence, model, return_index = 0) : max_sim = -10 most_similar = None if model == None : model = Word2Vec(train_criteria, min_count=1) for word in sentence : simularity = model.wv.similarity(query, word) if max_sim < simularity : max_sim = simularity most_similar = word if return_index == 0 : return most_similar else : return sentence.index(word) # INPUT: # pandas.DataFrame WITH COLUMNS'criteria_string', 'matched_string', 'parent_concept_id' # OUTPUT: # return_ids: LIST OF OMOP CDM CODES ASSOCIATED WITH DESCENDANTS TO GIVEN parent_concept_id # return_names: LIST OF DESCENDANTS TO GIVEN parent_concept_id # matches: LIST OF BEST STRING MATCHES TO manual_string GIVEN matched_string # match_indices: LIST OF FIRST INDEX OF MATCHED STRING IN CLEANED criteria_string def get_indices_and_potetial_synonyms(df, window = 0, back = False, threshold = 10) : return_ids = [] return_names = [] matches = [] match_indices = [] closest_descendents = [] model = None required_columns = set(['criteria_string', 'matched_string', 'parent_concept_id']) if required_columns.issubset(set(df.columns)) : detected_string = [] for i, query in enumerate(list(df['criteria_string'])) : chars_to_ignore = [',', '.', ':', ';', '(', ')', '[', ']', '#', '%', '<', '>', '/', '"', '*', '-', '―'] query = query.split(' ') query = clean_string_list(query, chars_to_ignore = chars_to_ignore) parent_concept_id = list(df['parent_concept_id'])[i] match_candidates = get_descendents_df(parent_concept_id) candidate_ids = set(match_candidates['descendant_concept_id']) candidate_names = set(match_candidates['descendant_synonym_name']) return_names.append(candidate_names) return_ids.append(candidate_ids) candidate_words = list(df['matched_string'])[i].split(' ') match = [x for x in query if candidate_words[0] in x] match_index = 100 if match and len(candidate_words) == 1 : matches.append(match[0]) match_index = query.index(match[0]) match_indices.append(match_index) elif match and len(candidate_words) > 1 : match_index = query.index(match[0]) match_indices.append(match_index) matches.append(' '.join(query[match_index:match_index+len(candidate_words)])) elif len(candidate_words) > 1 : match = [x for x in query if candidate_words[1] in x] match_index = query.index(match[0]) matches.append(match[0]) match_indices.append(match_index) else : match_index = get_index_of_closest(candidate_words[0], query) if match_index is None : print('Term {} was not found in criteria string.'.format(' '.join(candidate_words))) elif match_index > threshold : match_index = get_closest_string(matched_modifier, s, model = model, return_index = 1) match_indices.append(match_index) else : if len(candidate_words) == 1 : match_indices.append(match_index) match = query[match_index] matches.append(match) else : match_indices.append(match_index) match = ' '.join(query[match_index:match_index+len(candidate_words)]) matches.append(match) if window == 0 : search_string = match[0] elif match_index - window > 0 and match_index + window < len(query) and back == True : search_string = query[match_index - window : match_index + window] elif match_index - window > 0 : search_string = query[match_index - window : match_index] elif back == True : search_string = query[match_index : match_index + window] else : search_string = match[0] closest_descendent = get_closest_in_list(search_string, list(match_candidates['descendant_synonym_name'])) closest_descendents.append(closest_descendent) return matches, match_indices, closest_descendents def check_modifiers(df, window = 3, severity_modifiers = None, threshold = 100) : matches, match_indices, closest_descendents = get_indices_and_potetial_synonyms(df, window = 0, back = True, threshold = threshold) required_columns = set(['criteria_string', 'matched_string', 'parent_concept_name']) if required_columns.issubset(set(df.columns)) : modified = [] detected_string = [] for idx, s in enumerate(list(df['criteria_string'])) : # CLEAN criteria_string chars_to_ignore = [',', '.', ':', ';', '(', ')', '[', ']', '#', '%', '<', '>', '/', '"', '*', '-', '―'] s = s.split(' ') s = clean_string_list(s, list_output = False, chars_to_ignore = chars_to_ignore) if severity_modifiers == None : severity_modifiers = set(['severe', 'significant', 'major']) else : severity_modifiers = list(severity_modifiers) severity_modifiers = set([str(x).lower() for x in severity_modifiers]) # CHECK IF PREDEFINED SEVERITY MODIFIERS ARE IN criteria_string matched_modifier_set = severity_modifiers.intersection(set(s)) if len(matched_modifier_set) >= 1: matched_modifier = list(matched_modifier_set)[0] modifier_index = s.index(matched_modifier) # CHECK EXACT STRING MATCH BETWEEN matched_string AND criteria_string matched_string = list(df['matched_string'])[idx].split(' ') parent_concept_name = list(df['parent_concept_name'])[idx].split(' ') parent_concept_name = set([str(x).lower() for x in parent_concept_name]) concept_matched_string_set = set(parent_concept_name).union(set(matched_string)) concept_matched_string_set = set(s).intersection(concept_matched_string_set) if len(concept_matched_string_set) >= 1 : concept_match = list(concept_matched_string_set)[0] concept_index = s.index(concept_match) # MODIFIER IN FRONT OF CONCEPT if concept_index >= modifier_index and abs(concept_index-modifier_index) < window: modified.append(1) detected_string.append(' '.join(s[modifier_index:concept_index+1])) else : modified.append(0) detected_string.append('') else: if set(s).issubset(set(model.wv.vocab)) : closest_index = get_closest_string(matched_modifier, s, model = model, return_index = 1) if closest_index >= modifier_index and abs(closest_index-modifier_index) < window: modified.append(1) detected_string.append(' '.join(s[modifier_index:concept_index+1])) else : modified.append(0) detected_string.append('') else : modified.append(0) detected_string.append('') else : modified.append(0) detected_string.append('') temp = [] for x in df['severity_modifier'] : if x != 'unmarked' : temp.append(1) else : temp.append(0) df['truth_label'] = temp if 'modified' in df.columns : df.drop('modified', axis = 1) df['MODIFIED_GUESS'] = modified df['CONCEPT_GUESS'] = matches df['DESCENDANT_GUESS'] = closest_descendents return df else : print('Check if input DataFrame columns contain {}'.format(required_columns)) return None def get_parent_concept_id(parent) : if parent in list(hr['parent_concept_name']) : return hr[hr['parent_concept_name'] == parent]['parent_concept_id'][0] else : parent = str(parent).lower() parent_list = list(hr['parent_concept_name']) parent_list_lower = [str(x).lower() for x in parent_list] if parent in parent_list_lower : idx = parent_list_lower.index(parent.lower()) return hr[hr['parent_concept_name'] == list(hr['parent_concept_name'])[idx]]['parent_concept_id'][0] else : print('Parent concept {} does not found.'.format(parent)) return None def get_descendents_df(parent, return_id = 1) : if parent in list(parents['parent_concept_id']) : return parents[parents['parent_concept_id'] == parent] elif get_parent_concept_id(parent) != None : parent = get_parent_concept_id(parent) return parents[parents['parent_concept_id'] == parent] else : print('Parent concept {} does not found.'.format(parent)) return None def edit_distance_list(search, search_space) : return_list = [] for s in search_space: return_list.append(nltk.edit_distance(s, search)) return return_list def get_index_of_closest(search, search_space) : distances = edit_distance_list(search, search_space) return distances.index(min(distances)) def get_closest_in_list(search, search_space) : return search_space[get_index_of_closest(search, search_space)] def main() : if sys.argv : csv_import = sys.argv else : csv_import = 'annotate_notes_hr2479.csv' extracted, concepts, parents, synonyms, modified = get_dataframes_from_csv() df = pd.read_csv(csv_import.head().copy(), sep = ',') df = df.dropna(subset=['snomed_id']) df = df.reset_index(drop = True) df = check_modifiers(df, window = 3, severity_modifiers = None) df = df[['NCT_id', 'matched_string', 'criteria_string', 'parent_concept_id', 'parent_concept_name', 'CONCEPT_GUESS', 'DESCENDANT_GUESS']] df.to_csv('method_output.csv', sep = ',') if __name__== "__main__": main()
[ "matplotlib" ]
537232a4e76f407f93e0f5f6a629055ba8f3e9ac
Python
alan-yjzhang/AIProjectExamples1
/reinforcement_learning/agent_linear.py
UTF-8
8,146
3.734375
4
[]
no_license
"""Linear QL agent Simple Policy-learning algorithm In this project, we address the task of learning control policies for text-based games using reinforcement learning. In these games, all interactions between players and the virtual world are through text. The current world state is described by elaborate text, and the underlying state is not directly observable. Players read descriptions of the state and respond with natural language commands to take actions. For this project you will conduct experiments on a small Home World, which mimic the environment of a typical house.The world consists of a few rooms, and each room contains a representative object that the player can interact with. For instance, the kitchen has an apple that the player can eat. The goal of the player is to finish some quest. An example of a quest given to the player in text is You are hungry now . To complete this quest, the player has to navigate through the house to reach the kitchen and eat the apple. In this game, the room is hidden from the player, who only receives a description of the underlying room. At each step, the player read the text describing the current room and the quest, and respond with some command (e.g., eat apple ). The player then receives some reward that depends on the state and his/her command. In order to design an autonomous game player, we will employ a reinforcement learning framework to learn command policies using game rewards as feedback. Since the state observable to the player is described in text, we have to choose a mechanism that maps text descriptions into vector representations. A naive approach is to create a map that assigns a unique index for each text description. -- agent_tabular_ql.py However, such approach becomes difficult to implement when the number of textual state descriptions are huge. An alternative method is to use a bag-of-words representation derived from the text description. -- agent_linear.py Deep-learning approach -- agent_dqn.py """ import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm import framework import utils DEBUG = False GAMMA = 0.5 # discounted factor TRAINING_EP = 0.5 # epsilon-greedy parameter for training TESTING_EP = 0.05 # epsilon-greedy parameter for testing NUM_RUNS = 10 NUM_EPOCHS = 600 NUM_EPIS_TRAIN = 25 # number of episodes for training at each epoch NUM_EPIS_TEST = 50 # number of episodes for testing ALPHA = 0.001 # learning rate for training ACTIONS = framework.get_actions() OBJECTS = framework.get_objects() NUM_ACTIONS = len(ACTIONS) NUM_OBJECTS = len(OBJECTS) def tuple2index(action_index, object_index): """Converts a tuple (a,b) to an index c""" return action_index * NUM_OBJECTS + object_index def index2tuple(index): """Converts an index c to a tuple (a,b)""" return index // NUM_OBJECTS, index % NUM_OBJECTS # pragma: coderesponse template name="linear_epsilon_greedy" def epsilon_greedy(state_vector, theta, epsilon): """Returns an action selected by an epsilon-greedy exploration policy Note that the Q-learning algorithm does not specify how we should interact in the world so as to learn quickly. It merely updates the values based on the experience collected. If we explore randomly, i.e., always select actions at random, we would most likely not get anywhere. A better option is to exploit what we have already learned, as summarized by current Q-values. a typical exploration strategy is to follow a so-called epsilon-greedy policy: with probability epsilon take a random action out of 𝐶 with probability 1−epsilon follow that policy. The value of 𝜀 here balances exploration vs exploitation. A large value of 𝜀 means exploring more (randomly), not using much of what we have learned. A small 𝜀, on the other hand, will generate experience consistent with the current estimates of Q-values. Args: state_vector (np.ndarray): extracted vector representation theta (np.ndarray): current weight matrix epsilon (float): the probability of choosing a random command Returns: (int, int): the indices describing the action/object to take """ # TODO Your code here action_index, object_index = None, None return (action_index, object_index) # pragma: coderesponse end # pragma: coderesponse template def linear_q_learning(theta, current_state_vector, action_index, object_index, reward, next_state_vector, terminal): """Update theta for a given transition Note: Q(s,c,theta) can be accessed through q_value = (theta @ state_vector)[tuple2index(action_index, object_index)] Args: theta (np.ndarray): current weight matrix current_state_vector (np.ndarray): vector representation of current state action_index (int): index of the current action object_index (int): index of the current object reward (float): the immediate reward the agent recieves from playing current command next_state_vector (np.ndarray): vector representation of next state terminal (bool): True if this epsiode is over Returns: None """ # TODO Your code here theta = None # TODO Your update here # pragma: coderesponse end def run_episode(for_training): """ Runs one episode If for training, update Q function If for testing, computes and return cumulative discounted reward Args: for_training (bool): True if for training Returns: None """ epsilon = TRAINING_EP if for_training else TESTING_EP epi_reward = None # initialize for each episode # TODO Your code here (current_room_desc, current_quest_desc, terminal) = framework.newGame() while not terminal: # Choose next action and execute current_state = current_room_desc + current_quest_desc current_state_vector = utils.extract_bow_feature_vector( current_state, dictionary) # TODO Your code here if for_training: # update Q-function. # TODO Your code here pass if not for_training: # update reward # TODO Your code here pass # prepare next step # TODO Your code here if not for_training: return epi_reward def run_epoch(): """Runs one epoch and returns reward averaged over test episodes""" rewards = [] for _ in range(NUM_EPIS_TRAIN): run_episode(for_training=True) for _ in range(NUM_EPIS_TEST): rewards.append(run_episode(for_training=False)) return np.mean(np.array(rewards)) def run(): """Returns array of test reward per epoch for one run""" global theta theta = np.zeros([action_dim, state_dim]) single_run_epoch_rewards_test = [] pbar = tqdm(range(NUM_EPOCHS), ncols=80) for _ in pbar: single_run_epoch_rewards_test.append(run_epoch()) pbar.set_description( "Avg reward: {:0.6f} | Ewma reward: {:0.6f}".format( np.mean(single_run_epoch_rewards_test), utils.ewma(single_run_epoch_rewards_test))) return single_run_epoch_rewards_test if __name__ == '__main__': state_texts = utils.load_data('game.tsv') dictionary = utils.bag_of_words(state_texts) state_dim = len(dictionary) action_dim = NUM_ACTIONS * NUM_OBJECTS # set up the game framework.load_game_data() epoch_rewards_test = [] # shape NUM_RUNS * NUM_EPOCHS for _ in range(NUM_RUNS): epoch_rewards_test.append(run()) epoch_rewards_test = np.array(epoch_rewards_test) x = np.arange(NUM_EPOCHS) fig, axis = plt.subplots() axis.plot(x, np.mean(epoch_rewards_test, axis=0)) # plot reward per epoch averaged per run axis.set_xlabel('Epochs') axis.set_ylabel('reward') axis.set_title(('Linear: nRuns=%d, Epilon=%.2f, Epi=%d, alpha=%.4f' % (NUM_RUNS, TRAINING_EP, NUM_EPIS_TRAIN, ALPHA)))
[ "matplotlib" ]
9187898cffbae5acf8f0b129f653aa458938106a
Python
furkanoruc/furkanoruc.github.io
/Ship Domain Violation Prediction on AIS Data via ML Applications.py
UTF-8
6,166
2.515625
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jan 14 03:40:03 2021 @author: furkanoruc """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Apr 26 17:10:47 2020 @author: furkanoruc """ import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import precision_score from sklearn.metrics import recall_score import seaborn as sns from sklearn.metrics import (confusion_matrix, recall_score, precision_score, roc_auc_score, accuracy_score, f1_score, plot_confusion_matrix, confusion_matrix, roc_curve, auc) """ dataset = pd.read_csv('RESULTS-Area1_Mart_Nisan_Mayis_2014.csv',sep=',') filenames = ['RESULTS-Area1_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area2_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area3_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area4_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area5_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area6_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area7_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area8_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area9_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area10_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area11_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area12_Aralik_2014_Ocak_Subat_2015.csv', 'RESULTS-Area13_Aralik_2014_Ocak_Subat_2015.csv'] for file in filenames: df = pd.read_csv(file,sep=',') dataset = dataset.append(df) """ backuup_dataset = dataset backup_dataset = backuup_dataset dataset = dataset.drop_duplicates() dataset = dataset.dropna() dataset.head(10) X = dataset.iloc[:, lambda dataset: [1,3]].values R = dataset.iloc[:, 10].values X_train, X_test, Y_train, Y_test = train_test_split(X, R, test_size = 0.25, random_state = 14) X_test.shape #KNN Implement def KNeighbors(X, y, X_test, y_test): from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import roc_curve, roc_auc_score, accuracy_score, plot_confusion_matrix, auc import matplotlib.pyplot as plt accuracy_score_holder = [] misclassified_sample_count = [] precision_score_holder = [] roc_auc_score_holder = [] for i in range (7,8): knn=KNeighborsClassifier(n_neighbors=i, p=2, metric='minkowski') knn.fit(X, y) myprediction_knn = knn.predict(X_test) accuracy_score_holder.append(accuracy_score(y_test, myprediction_knn)) misclassified_sample_count.append((y_test != myprediction_knn).sum()) roc_auc_score_holder.append(roc_auc_score(y_test, myprediction_knn)) k = knn.predict(X_test) precision = precision_score(y_test, myprediction_knn, average = 'macro') recall = recall_score(y_test, myprediction_knn, average = 'macro') i = i + 1 #print("Accuracy Score:", accuracy_score_holder) #print("Precision Score:", precision_score_holder) #print("Misclassified samples:", misclassified_sample_count) #print("ROC - AUC Score:", roc_auc_score_holder) plot_confusion_matrix(knn, X_test, y_test) plt.show() return accuracy_score_holder[0], roc_auc_score_holder[0], misclassified_sample_count[0], precision, recall knn_accuracy, knn_roc_auc, knn_misclassified_count, knn_precision, knn_recall = KNeighbors(X_train, Y_train, X_test, Y_test) violation_check_distribution = dataset["Violation Check"].value_counts() def perceptron(X, y, X_test, y_test): from sklearn.linear_model import Perceptron from sklearn.metrics import accuracy_score, roc_auc_score, roc_curve, plot_confusion_matrix, auc import matplotlib.pyplot as plt for i in range (30,31): myperceptron = Perceptron(penalty = 'elasticnet', max_iter = i, eta0 = 0.001, random_state = 60) myperceptron.fit(X, y) myprediction_perceptron = myperceptron.predict(X_test) precision = precision_score(y_test, myprediction_perceptron, average = 'macro') recall = recall_score(y_test, myprediction_perceptron, average = 'macro') #print(accuracy_score(y_test,myprediction_perceptron)) #print("Accuracy Score: ", accuracy_score(y_test,myprediction_perceptron)) #print("Number of Misclassified Samples: ", (y_test != myprediction_perceptron).sum()) #print("ROC - AUC Score:", roc_auc_score(y_test, myprediction_perceptron)) plot_confusion_matrix(myperceptron, X_test, y_test) plt.show() return accuracy_score(y_test,myprediction_perceptron), roc_auc_score(y_test, myprediction_perceptron), (y_test != myprediction_perceptron).sum(), precision, recall perceptron_accuracy, perceptron_roc_auc, perceptron_misclassified_count, perceptron_precision, perceptron_recall = perceptron(X_train, Y_train, X_test, Y_test) from package import (data_balancer, MultiLayerPerceptron, softmax, sigmoid, Loss_Perceptron,Weight_Initialization, KNeighbors, forest, svm, perceptron) mlp_accuracy_train, mlp_accuracy_test, w1,w2,b1,b2,classes_train, classes_test = MultiLayerPerceptron(X_train, Y_train, X_test, Y_test, hidden_layer_units=100, alpha=0.03, epoch=10) mlp_recall = recall_score(Y_test, classes_test, average = 'macro') mlp_precision = precision_score(Y_test, classes_test, average = 'macro') mlp_roc_auc = roc_auc_score(Y_test, classes_test) f, ax = plt.subplots(1,2,figsize=(12,6)) sns.heatmap(confusion_matrix(Y_test, classes_test)); sns.heatmap(confusion_matrix(Y_train, classes_train), fmt='.0f', annot=True,ax=ax[0], xticklabels=[0,1], yticklabels=[0,1], cmap = 'Oranges'); plt.show() random_forest_accuracy, random_forest_Roc_Auc, random_forest_Misclassified_Count, random_forest_precision = forest(X_train, Y_train, X_test, Y_test) #Some Desc Stat length_mean = dataset.iloc[:,0].mean() speed_mean = dataset.iloc[:,2].mean() plt.hist(dataset.iloc[:,2], bins = 0.6); plt.show() plt.hist2d(dataset.iloc[:,0], dataset.iloc[:,2], bins=30, cmap='Blues')
[ "matplotlib", "seaborn" ]
a62ced7bc90efba1ce419a81fd020cd94a19442f
Python
julescarpentier/classifii
/notebooks/rationales.py
UTF-8
4,947
2.625
3
[]
no_license
from __future__ import absolute_import, division, print_function, unicode_literals import os import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.utils import to_categorical from justifii.database import db_session from justifii.models import Text, Label from models import fully_conv_with_rationales, fully_conv_without_rationales from utilities.embedding import get_embedding_matrix, get_pre_trained_trainable_embedding_layer tf.keras.backend.clear_session() # For easy reset of notebook state. os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # The GPU id to use, usually either "0" or "1" os.environ["CUDA_VISIBLE_DEVICES"] = "3" MAX_SEQUENCE_LENGTH = 1000 MAX_NUM_WORDS = 20000 VALIDATION_SPLIT = 0.2 # ensure the output folder exists try: os.makedirs('output') except OSError: pass # Prepare text samples and their labels print('Retrieving texts from database') texts = [] labels = [] nb_labels = Label.query.count() rationales = [] for text in Text.query.filter(Text.rationales.any()): texts.append(text.get_content()) labels.append(text.label.target) rationales.append(text.get_r(nb_labels, MAX_SEQUENCE_LENGTH)) rationales = np.asarray(rationales) db_session.remove() print('Retrieved {} texts.'.format(len(texts))) # Vectorize the text samples into a 2D integer tensor tokenizer = Tokenizer(num_words=MAX_NUM_WORDS) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index print('Found {} unique tokens.'.format(len(word_index))) data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH) labels = to_categorical(np.asarray(labels)) print('Shape of data tensor:', data.shape) print('Shape of label tensor:', labels.shape) indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] rationales = rationales[indices] num_validation_samples = int(VALIDATION_SPLIT * data.shape[0]) # split the data into a training set and a validation set x_train = data[:-num_validation_samples] y_train = labels[:-num_validation_samples] r_train = rationales[:-num_validation_samples] x_val = data[-num_validation_samples:] y_val = labels[-num_validation_samples:] r_val = rationales[-num_validation_samples:] print('Preparing embedding matrix.') # prepare embedding matrix num_words = min(MAX_NUM_WORDS, len(word_index) + 1) embedding_matrix = get_embedding_matrix(num_words, MAX_NUM_WORDS, word_index) # Embedding layer embedding_layer = get_pre_trained_trainable_embedding_layer(num_words, embedding_matrix, MAX_SEQUENCE_LENGTH) print('Training models.') model_with_rationales = fully_conv_with_rationales.get_compiled_model(embedding_layer, MAX_SEQUENCE_LENGTH, nb_labels) model_without_rationales = fully_conv_without_rationales.get_compiled_model(embedding_layer, MAX_SEQUENCE_LENGTH, nb_labels) history_with_rationales = model_with_rationales.fit(x_train, (y_train, r_train), batch_size=16, epochs=10, validation_data=(x_val, (y_val, r_val))) history_without_rationales = model_without_rationales.fit(x_train, y_train, batch_size=16, epochs=10, validation_data=(x_val, y_val)) # model_with_rationales.save('output/fully_conv_with_rationales.h5') # model_without_rationales.save('output/fully_conv_without_rationales.h5') # print('Saved models') # Plot accuracy plt.figure() plt.plot(history_with_rationales.history['val_topic_acc']) plt.plot(history_without_rationales.history['val_acc']) plt.plot(history_with_rationales.history['topic_acc'], '--') plt.plot(history_without_rationales.history['acc'], '--') plt.title('Compared accuracies') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['R', 'No R', 'R', 'No R'], loc='upper left') plt.savefig('output/fully_conv_rationales_acc.png') plt.close() # Plot trainable, pre-trained and both losses plt.figure() plt.plot(history_with_rationales.history['val_topic_loss']) plt.plot(history_without_rationales.history['val_loss']) plt.plot(history_with_rationales.history['topic_loss'], '--') plt.plot(history_without_rationales.history['loss'], '--') plt.title('Compared losses') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['R', 'No R', 'R', 'No R'], loc='upper left') plt.savefig('output/fully_conv_rationales_loss.png') plt.close() # Plot everything plt.figure() for metric, values in history_with_rationales.history.items(): plt.plot(values, '-' if 'val' in metric else '--', label=metric) plt.title('Everything to show with rationales') plt.ylabel('Metrics') plt.xlabel('Epoch') plt.legend(loc='upper left') plt.savefig('output/fully_conv_rationales_everything.png') plt.close()
[ "matplotlib" ]
cec39195f8eae96bb1258cba684c9c3baf55bcf8
Python
alireidacr/speed_test
/speed_test.py
UTF-8
6,036
2.984375
3
[]
no_license
# python script to regulary test internet speed and perform analytics import math import os import time import statistics as stats import matplotlib.pyplot as plt import datetime from shutil import copyfile # read in measurement parameters configFile = open("./config.txt", 'r') for line in configFile.readlines(): if line[0] != '#': vals = line.split() configFile.close() interval = float(vals[0]) measurements = int(vals[1]) repeats = int(vals[2]) def measure(): # set file paths for data, dump and temp files start_time = time.asctime() start_time = start_time.replace(' ', '_') start_time = start_time.replace(':', '_') os.mkdir(start_time) # copy config file into output directory config_str = os.path.join(start_time, 'config.txt') copyfile("./config.txt", config_str) out_str = os.path.join(start_time, 'data.txt') dump_str = os.path.join(start_time, 'dump.txt') temp_str = os.path.join(start_time, 'temp.txt') summ_str = os.path.join(start_time, 'summary_stats.txt') for loop in range(measurements): distances = [] latencies = [] downloads = [] uploads = [] measurement_time = time.time() for counter in range(repeats): os.system("speedtest-cli > " + temp_str) distances.append(getServerDistance(temp_str)) latencies.append(getLatency(temp_str)) downloads.append(getDownloadSpeed(temp_str)) uploads.append(getUploadSpeed(temp_str)) appendDumpFile(temp_str, dump_str) mean_dist = sum(distances)/repeats mean_latency = sum(latencies)/repeats mean_download = sum(downloads)/repeats mean_upload = sum(uploads)/repeats std_download = stats.stdev(downloads)/math.sqrt(repeats) std_upload = stats.stdev(uploads)/math.sqrt(repeats) std_latency = stats.stdev(latencies)/math.sqrt(repeats) datafile = open(out_str, 'a+') format_str = "{0} {1} {2} {3} {4} {5} {6} {7}\n" datafile.write(format_str.format(measurement_time, mean_dist, mean_latency, mean_download, mean_upload, std_download, std_upload, std_latency)) datafile.close() time.sleep(interval*60) return start_time def analyse(start_time): data_str = os.path.join(start_time, 'data.txt') summ_str = os.path.join(start_time, 'summary_stats.txt') # populate lists with download, upload, time data downloads = [] downloads_error = [] uploads = [] uploads_error = [] times = [] latencies = [] latencies_error = [] datafile = open(data_str, 'r') for line in datafile.readlines(): data = line.split() downloads.append(float(data[3])) downloads_error.append(float(data[5])) uploads.append(float(data[4])) uploads_error.append(float(data[6])) latencies.append(float(data[2])) latencies_error.append(float(data[7])) times.append(float(data[0])) datafile.close() times = [datetime.datetime.fromtimestamp(measurement) for measurement in times] plt.errorbar(times, downloads, yerr=downloads_error, label=r"Download Speed") plt.errorbar(times, uploads, yerr=uploads_error, label=r"Upload Speed") plt.xlabel("Time of Measurement") plt.xticks(rotation = (30)) plt.ylabel(r"Bandwidth $(Mbs^{-1})$") plt.title("Variation of Bandwidth Over Time") plt.legend() bandwidth_str = os.path.join(start_time, 'bandwidth.png') plt.savefig(bandwidth_str) plt.close() plt.errorbar(times, latencies, yerr=latencies_error) plt.xlabel("Time of Measurement") plt.xticks(rotation = (30)) plt.ylabel("Latency (ms)") plt.title("Variation of Latency Over Time") latency_str = os.path.join(start_time, 'latency.png') plt.savefig(latency_str) # generate summary statistics mean_download = sum(downloads)/len(downloads) mean_upload = sum(uploads)/len(uploads) mean_latency = sum(latencies)/len(latencies) download_std = stats.stdev(downloads) upload_std = stats.stdev(uploads) latency_std = stats.stdev(latencies) summFile = open(summ_str, 'w') download_str = "Mean Download Speed: {0} Mb/s, Standard Deviation: {1} \n".format(format(mean_download, '.3f'), format(download_std, '.3f')) summFile.write(download_str) upload_str = "Mean Upload Speed: {0} Mb/s, Standard Deviation: {1} \n".format(format(mean_upload, '.3f'), format(upload_std, '.3f')) summFile.write(upload_str) latency_str = "Mean Latency: {0} ms, Standard Deviation: {1} \n".format(format(mean_latency, '.1f'), format(latency_std, '.1f')) summFile.write(latency_str) summFile.close() print("Run Completed Successfully") def main(): start_time = measure() analyse(start_time) def getServerDistance(temp_str): tempFile = open(temp_str, 'r') lines = tempFile.readlines() start_pos = lines[4].find('[') end_pos = lines[4].find(']') tempFile.close() distance = lines[4][start_pos+1:end_pos-2] return float(distance) def getLatency(temp_str): tempFile = open(temp_str, 'r') lines = tempFile.readlines() start_pos = lines[4].find(':') tempFile.close() latency = lines[4][start_pos+2:-3] return float(latency) def appendDumpFile(temp_str, dump_str): tempFile = open(temp_str, 'r') dumpfile = open(dump_str, 'a+') for line in tempFile: dumpfile.write(line) dumpfile.write('\n') tempFile.close() dumpfile.close() def getDownloadSpeed(temp_str): tempFile = open(temp_str, 'r') lines = tempFile.readlines() start_pos = lines[6].find(':') download = lines[6][start_pos+2:-7] return float(download) def getUploadSpeed(temp_str): tempFile = open(temp_str, 'r') lines = tempFile.readlines() start_pos = lines[8].find(':') upload = lines[8][start_pos+2:-7] return float(upload) main()
[ "matplotlib" ]
52c737e90a86d4a33e0f02a235ea43b252601673
Python
dehbi16/FloorPlan
/Pix2Pix_test.py
UTF-8
1,397
3.0625
3
[]
no_license
from keras.models import load_model from numpy import load from numpy import vstack import matplotlib.pyplot as plt from numpy.random import randint # load and prepare training images def load_real_samples(filename): # load compressed arrays data = load(filename) # unpack arrays X1, X2 = data['arr_0'], data['arr_1'] # scale from [0,255] to [-1,1] for i in range(len(X1)): X1[i] = (X1[i] - 127.5) / 127.5 X2[i] = (X2[i] - 6.5) / 6.5 return [X1, X2] # plot source, generated and target images def plot_images(src_img, gen_img, tar_img): src_img = (src_img + 1) / 2.0 gen_img = (gen_img + 1) / 2.0 tar_img = (tar_img + 1) / 2.0 images = vstack((src_img, gen_img, tar_img)) # scale from [-1,1] to [0,1] titles = ['Source', 'Generated', 'Expected'] # plot images row by row for i in range(len(images)): # define subplot plt.subplot(1, 3, 1 + i) # turn off axis plt.axis('off') # plot raw pixel data plt.imshow(images[i], cmap="Greys") # show title plt.title(titles[i]) plt.show() [X1, X2] = load_real_samples('floor_plan.npz') print('Loaded', X1.shape, X2.shape) model = load_model('model_000010.h5') ix = randint(0, len(X1), 1) src_image, tar_image = X1[ix], X2[ix] gen_image = model.predict(src_image) plot_images(src_image, gen_image, tar_image)
[ "matplotlib" ]