|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: llava-hf/llava-v1.6-mistral-7b-hf |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: AA_preference_cocour_new_step10_0_60 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# AA_preference_cocour_new_step10_0_60 |
|
|
|
This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_cocour_new_step10_0_60 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5132 |
|
- Rewards/chosen: 1.2483 |
|
- Rewards/rejected: -1.4384 |
|
- Rewards/accuracies: 0.8090 |
|
- Rewards/margins: 2.6868 |
|
- Logps/rejected: -217.5475 |
|
- Logps/chosen: -242.1045 |
|
- Logits/rejected: -2.5237 |
|
- Logits/chosen: -2.5348 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.5367 | 0.6231 | 50 | 0.5755 | 1.1959 | -0.1615 | 0.7604 | 1.3575 | -204.7787 | -242.6288 | -2.3101 | -2.3204 | |
|
| 0.2278 | 1.2461 | 100 | 0.5325 | 1.6096 | -0.6681 | 0.7986 | 2.2777 | -209.8443 | -238.4921 | -2.6060 | -2.6072 | |
|
| 0.2926 | 1.8692 | 150 | 0.5151 | 1.0491 | -1.4143 | 0.8194 | 2.4633 | -217.3059 | -244.0971 | -2.4769 | -2.4878 | |
|
| 0.1423 | 2.4922 | 200 | 0.5126 | 1.3148 | -1.3120 | 0.8125 | 2.6268 | -216.2832 | -241.4400 | -2.5411 | -2.5506 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.3 |
|
|