File size: 9,051 Bytes
f002295 cbe0420 f002295 cbe0420 9d931e8 cbe0420 6d385bc cbe0420 9d931e8 56b253c 449ceda 56b253c cbe0420 996d946 cbe0420 996d946 8fb1706 cbe0420 69b60da 996d946 69b60da 56b253c ed96526 cbe0420 6d593b8 cbe0420 974c69d cbe0420 cef5701 5490fe0 6333913 5490fe0 cef5701 cbe0420 6d385bc cbe0420 e207a8d 29579af 974c69d d4a3cce 4989262 cbe0420 27aced3 cbe0420 27aced3 6f52d65 cef5701 81620cf 6f52d65 cbe0420 069db10 cbe0420 069db10 cbe0420 069db10 11ceea5 d4a3cce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
---
license: openrail
language:
- en
metrics:
- f1
library_name: fairseq
pipeline_tag: audio-classification
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
We explore benefits of unsupervised pretraining of wav2vec 2.0 (W2V2) using large-scale unlabeled home recordings collected using LittleBeats (LB) and LENA (Language Environment Analysis) devices.
LittleBeats is a new infant wearable multi-modal device that we developed, which simultaneously records audio, movement of the infant, as well as heart-rate variablity.
We use W2V2 to advance LB audio pipeline such that it automatically provides reliable labels of speaker diarization and vocalization classifications for family members, including infants, parents, and siblings, at home.
We show that W2V2 pretrained on thousands hours of large-scale unlabeled home audio outperforms oracle W2V2 pretrained on 960 hours Librispeech released by Facebook/Meta in terms of automatic family audio analysis tasks.
For more details about LittleBeats, check out **https://littlebeats.hdfs.illinois.edu/**
## Model Sources
For more information regarding this model, please checkout our paper
- [Towards Robust Family-Infant Audio Analysis Based on Unsupervised Pretraining of Wav2vec 2.0 on Large-Scale Unlabeled Family Audio](https://arxiv.org/abs/2305.12530)
## Model Description
<!-- Provide a longer summary of what this model is. -->
Two versions of pretrained W2V2 models **using fairseq** are available:
- **LB_1100/checkpoint_best.pt**: pretrained using 1100-hour of LB home recordings collected from 110 families of children under 5-year-old
- **LL_4300/checkpoint_best.pt**: pretrained using 1100-hour of LB home recordings collected from 110 families + 3200-hour of LENA home recordings from 275 families of children under 5-year-old
One version of fine-tuned W2V2 models on labeled LB and LENA data **using SpeechBrain** is available:
- **LL_4300_fine_tuned**: pretrained on LL_4300 checkpoint and followed by fine-tuning on labeled LB and LENA home recordings + labeled lab recordings with data augmentation
Two pretrained ECAPA-TDNN speaker embeddings are available:
- **ECAPA_TDNN_LB/embedding_model.ckpt**: pretrained using 12-hour of labeled LB home recordings collected from 22 families of infants under 14-month-old
- **ECAPA_TDNN_LB_LENA/embedding_model.ckpt**: pretrained using 12-hour of labeled LB home recordings collected from 22 families + 18-hour of labeled LENA home recordings from 30 families of infants under 14-month-old
## Uses
**We develop our complete fine-tuning recipe using SpeechBrain toolkit available at**
- **https://github.com/jialuli3/wav2vec_LittleBeats_LENA**
## Quick Start
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
To extract features from pretrained W2V2 model, first install fairseq and speechbrain framework
<pre><code>
pip install fairseq
pip install speechbrain
</code></pre>
Download [this code snippet (fairseq_wav2vec.py)](https://huggingface.co/lijialudew/wav2vec_LittleBeats_LENA/blob/main/fairseq_wav2vec.py) in this repo.
Download the pretrained or fine-tuned model weights.
Run the following sample code by importing the **FairseqWav2Vec2** class.
<pre><code>
from fairseq_wav2vec import FairseqWav2Vec2
import torch
inputs = torch.rand([10, 6000]) # input wav B x T
save_path = "your/path/to/LL_4300/checkpoint_best.pt"
# extract features from all transformer layers
model = FairseqWav2Vec2(save_path) # Output all features from 12 transformer layers with shapes of 12 x B x T' x D
# To extract features from a certain transformer layer
# model = FairseqWav2Vec2(save_path, output_all_hiddens = False, tgt_layer = [1]) # Output features from the first transformer layer
# to load W2V2 model fine-tuned on LENA and LB audio data
fine_tuned_path = "your/path/to/LL_4300_fine_tuned/save/CKPT+2022-11-26+14-06-17+00/wav2vec2.ckpt"
model._load_sb_pretrained_w2v2_parameters(fine_tuned_path)
# To extract wav2vec features
outputs = model(inputs)
print(outputs.shape)
</code></pre>
<!-- previous comments If you wish to use fairseq framework, the following code snippet provides two functions of loading our pretrained W2V2 model and extracting features.
<pre><code>
import torch
import torch.nn.functional as F
from torch import nn
import fairseq
import torchaudio
def load_model(model_path, freeze=True):
'''
This function loads pretrained model using fairseq framework.
Arguments
---------
model_path : str
Path and filename of the pretrained model
freeze : bool (default: True)
If True, the model is frozen with no parameter updates through training.
'''
model,_,_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([model_path])
model = model[0]
if freeze:
model.eval()
# Freeze parameters
for param in model.parameters():
param.requires_grad = False
else:
model.train()
for param in model.parameters():
param.requires_grad = True
#remove unnecessary components
model.quantizer = None
model.project_q = None
model.target_glu = None
model.final_proj = None
return model
def extract_features(model, wav, input_norm=None, output_norm=True, tgt_layer=None, output_all_hiddens=False):
'''
This function extracts features from w2v2 model. The function extracts the last transformer layer
feature by default. It allows for extracting features from certain layer, or features from all layers
Arguments
---------
model : fairseq wav2vec
wav : tensor
audio wav for feature extraction
input_norm : bool (default: None)
If True, a layer_norm (affine) will be applied to the input waveform.
output_norm : bool (default: True)
If True, a layer_norm (affine) will be applied to the output obtained
from the wav2vec model.
tgt_layer : int (default: None)
Target transformer layer features, 0-indexed.
output_all_hiddens : bool (default: False)
Whether to extract features from all layers. Need to set tgt_layer as None
'''
if input_norm:
wav = F.layer_norm(wav, wav.shape)
# Extract wav2vec output
out = model.extract_features(wav, padding_mask=None, mask=False)['x']
if isinstance(tgt_layer, int):
out = model.extract_features(wav, padding_mask=None, mask=False, layer=tgt_layer)['x']
elif output_all_hiddens:
features = []
model.layerdrop = 0
for i in range(len(out['layer_results'])):
curr_feature = out['layer_results'][i][0].transpose(0,1)
features.append(curr_feature)
out = torch.stack(features)
if output_norm:
out = F.layer_norm(out, out.shape)
return out
model=load_model("your/path/to/LL_4300/checkpoint_best.pt")
audio, fs = torchaudio.load("sample.wav")
audio = audio.transpose(0,1).squeeze(1)
features = extract_features(model, audio)
</code></pre>
-->
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
We test 4 unlabeled datasets on unsupervised pretrained W2V2-base models:
- **base (oracle version):** originally released version pretrained on ~960-hour unlabeled Librispeech audio
- **Libri960h:** oracle version fine-tuned using 960h Librispeech
- **LB1100h:** pretrain W2V2 using 1100h LB home recordings
- **LL4300h:** pretrain W2V2 using 4300h LB+LENA home recordings
We then fine-tune pretrained models on 11.7h of LB labeled home recordings, the f1 scores across three tasks are

Additionally, we improve our model performances by adding relevant labeled home recordings and using data augmentation techniques of SpecAug and noise/reverberation corruption.
For more details of experiments and results, please refer to our paper.
# Paper/BibTex Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
If you found this model helpful to you, please cite us as
<pre><code>
@inproceedings{li23e_interspeech,
author={Jialu Li and Mark Hasegawa-Johnson and Nancy L. McElwain},
title={{Towards Robust Family-Infant Audio Analysis Based on Unsupervised Pretraining of Wav2vec 2.0 on Large-Scale Unlabeled Family Audio}},
year=2023,
booktitle={Proc. INTERSPEECH 2023},
pages={1035--1039},
doi={10.21437/Interspeech.2023-460}
}
</code></pre>
# Model Card Contact
Jialu Li (she, her, hers)
Ph.D candidate @ Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
E-mail: [email protected]
Homepage: https://sites.google.com/view/jialuli/
Our team: https://littlebeats.hdfs.illinois.edu/team/
|