JacobLinCool's picture
Upload README.md with huggingface_hub
f78a5bc verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - wft
  - whisper
  - automatic-speech-recognition
  - audio
  - speech
  - generated_from_trainer
datasets:
  - ntnu-smil/sandi2025-ds
metrics:
  - wer
model-index:
  - name: whisper-large-v3-sandi-7k-1024-28steps
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: ntnu-smil/sandi2025-ds
          type: ntnu-smil/sandi2025-ds
        metrics:
          - type: wer
            value: 73.82367281180885
            name: Wer

whisper-large-v3-sandi-7k-1024-28steps

This model is a fine-tuned version of openai/whisper-large-v3 on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0275
  • Wer: 73.8237
  • Cer: 203.1654
  • Decode Runtime: 257.7123
  • Wer Runtime: 0.2072
  • Cer Runtime: 0.4935

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 28

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Runtime Wer Runtime Cer Runtime
1.9026 1.0357 7 1.3670 70.5577 206.9010 266.1791 0.2147 0.5053
1.2477 2.0714 14 1.1783 86.2572 223.6346 268.9910 0.2241 0.5015
1.07 3.1071 21 1.0605 78.7713 211.1141 262.5822 0.2186 0.5076
1.0348 4.1429 28 1.0275 73.8237 203.1654 257.7123 0.2072 0.4935

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.4.1+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1