JacobLinCool's picture
Upload README.md with huggingface_hub
d8eac2c verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - wft
  - whisper
  - automatic-speech-recognition
  - audio
  - speech
  - generated_from_trainer
datasets:
  - ntnu-smil/sandi2025-ds
metrics:
  - wer
model-index:
  - name: whisper-large-v3-sandi-7k-64-448steps
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: ntnu-smil/sandi2025-ds
          type: ntnu-smil/sandi2025-ds
        metrics:
          - type: wer
            value: 24.09465733000756
            name: Wer

whisper-large-v3-sandi-7k-64-448steps

This model is a fine-tuned version of openai/whisper-large-v3 on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5722
  • Wer: 24.0947
  • Cer: 56.2387
  • Decode Runtime: 203.1841
  • Wer Runtime: 0.1735
  • Cer Runtime: 0.3276

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 448

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Runtime Wer Runtime Cer Runtime
0.6419 1.0223 112 0.6663 20.0083 24.8032 187.4701 0.1653 0.2986
0.6651 2.0446 224 0.6117 20.0564 34.0018 189.8527 0.1717 0.3134
0.4682 3.0670 336 0.5826 21.0683 32.6385 190.6981 0.1750 0.3082
0.8059 4.0893 448 0.5722 24.0947 56.2387 203.1841 0.1735 0.3276

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.4.1+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1