|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-large-v3 |
|
tags: |
|
- wft |
|
- whisper |
|
- automatic-speech-recognition |
|
- audio |
|
- speech |
|
- generated_from_trainer |
|
datasets: |
|
- ntnu-smil/sandi2025-ds |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-large-v3-sandi-7k-64-448steps |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: ntnu-smil/sandi2025-ds |
|
type: ntnu-smil/sandi2025-ds |
|
metrics: |
|
- type: wer |
|
value: 24.09465733000756 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-large-v3-sandi-7k-64-448steps |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the ntnu-smil/sandi2025-ds dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5722 |
|
- Wer: 24.0947 |
|
- Cer: 56.2387 |
|
- Decode Runtime: 203.1841 |
|
- Wer Runtime: 0.1735 |
|
- Cer Runtime: 0.3276 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- training_steps: 448 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:--------------:|:-----------:|:-----------:| |
|
| 0.6419 | 1.0223 | 112 | 0.6663 | 20.0083 | 24.8032 | 187.4701 | 0.1653 | 0.2986 | |
|
| 0.6651 | 2.0446 | 224 | 0.6117 | 20.0564 | 34.0018 | 189.8527 | 0.1717 | 0.3134 | |
|
| 0.4682 | 3.0670 | 336 | 0.5826 | 21.0683 | 32.6385 | 190.6981 | 0.1750 | 0.3082 | |
|
| 0.8059 | 4.0893 | 448 | 0.5722 | 24.0947 | 56.2387 | 203.1841 | 0.1735 | 0.3276 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.15.2 |
|
- Transformers 4.51.3 |
|
- Pytorch 2.4.1+cu124 |
|
- Datasets 3.5.1 |
|
- Tokenizers 0.21.1 |