Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,482 Bytes
12a0dd9 e6af450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# Copyright (c) 2022 Facebook, Inc. and its affiliates.
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: CC BY-NC 4.0
#
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
#
# Original file was released under CC BY-NC 4.0, with the full license text
# available at https://github.com/facebookresearch/DiT/blob/main/LICENSE.txt.
#
# This modified file is released under the same license.
import math
import numpy as np
import torch
from torch import nn
from transformers.activations import ACT2FN
# --------------------------------------------------------
# 2D sine-cosine position embedding
# References:
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
# --------------------------------------------------------
# TimestepEmbedder
# Reference:
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
# --------------------------------------------------------
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class MLPconnector(nn.Module):
def __init__(self, in_dim: int, out_dim: int, hidden_act: str):
super().__init__()
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(in_dim, out_dim)
self.fc2 = nn.Linear(out_dim, out_dim)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class PositionEmbedding(nn.Module):
def __init__(self, max_num_patch_per_side, hidden_size):
super().__init__()
self.max_num_patch_per_side = max_num_patch_per_side
self.hidden_size = hidden_size
self.pos_embed = nn.Parameter(
torch.zeros(max_num_patch_per_side ** 2, hidden_size),
requires_grad=False
)
self._init_weights()
def _init_weights(self):
# Initialize (and freeze) pos_embed by sin-cos embedding:
pos_embed = get_2d_sincos_pos_embed(self.hidden_size, self.max_num_patch_per_side)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float())
def forward(self, position_ids):
return self.pos_embed[position_ids] |