Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 Bytedance Ltd. and/or its affiliates. | |
# SPDX-License-Identifier: Apache-2.0 | |
import os | |
import json | |
import argparse | |
from safetensors.torch import load_file | |
import torch | |
import torch.distributed as dist | |
from data.data_utils import add_special_tokens | |
from modeling.bagel import ( | |
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel | |
) | |
from modeling.qwen2 import Qwen2Tokenizer | |
from modeling.autoencoder import load_ae | |
from PIL import Image | |
from modeling.bagel.qwen2_navit import NaiveCache | |
def move_generation_input_to_device(generation_input, device): | |
# Utility to move all tensors in generation_input to device | |
for k, v in generation_input.items(): | |
if isinstance(v, torch.Tensor): | |
generation_input[k] = v.to(device) | |
return generation_input | |
def setup_distributed(): | |
dist.init_process_group(backend="nccl") | |
torch.cuda.set_device(int(os.environ["LOCAL_RANK"])) | |
def generate_image(prompt, num_timesteps=50, cfg_scale=10.0, cfg_interval=[0, 1.0], cfg_renorm_min=0., timestep_shift=1.0, num_images=4, resolution=512, device=None): # 添加device参数 | |
past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers) | |
newlens = [0] * num_images | |
new_rope = [0] * num_images | |
generation_input, newlens, new_rope = gen_model.prepare_prompts( | |
curr_kvlens=newlens, | |
curr_rope=new_rope, | |
prompts=[prompt] * num_images, | |
tokenizer=tokenizer, | |
new_token_ids=new_token_ids, | |
) | |
generation_input = move_generation_input_to_device(generation_input, device) | |
with torch.no_grad(): | |
with torch.amp.autocast("cuda", enabled=True, dtype=torch.float16): | |
past_key_values = gen_model.forward_cache_update_text(past_key_values, **generation_input) | |
generation_input = gen_model.prepare_vae_latent( | |
curr_kvlens=newlens, | |
curr_rope=new_rope, | |
image_sizes=[(resolution, resolution)] * num_images, | |
new_token_ids=new_token_ids, | |
) | |
generation_input = move_generation_input_to_device(generation_input, device) | |
cfg_past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers) | |
cfg_newlens = [0] * num_images | |
cfg_new_rope = [0] * num_images | |
generation_input_cfg = model.prepare_vae_latent_cfg( | |
curr_kvlens=cfg_newlens, | |
curr_rope=cfg_new_rope, | |
image_sizes=[(resolution, resolution)] * num_images, | |
) | |
generation_input_cfg = move_generation_input_to_device(generation_input_cfg, device) | |
with torch.no_grad(): | |
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16): | |
unpacked_latent = gen_model.generate_image( | |
past_key_values=past_key_values, | |
num_timesteps=num_timesteps, | |
cfg_text_scale=cfg_scale, | |
cfg_interval=cfg_interval, | |
cfg_renorm_min=cfg_renorm_min, | |
timestep_shift=timestep_shift, | |
cfg_text_past_key_values=cfg_past_key_values, | |
cfg_text_packed_position_ids=generation_input_cfg["cfg_packed_position_ids"], | |
cfg_text_key_values_lens=generation_input_cfg["cfg_key_values_lens"], | |
cfg_text_packed_query_indexes=generation_input_cfg["cfg_packed_query_indexes"], | |
cfg_text_packed_key_value_indexes=generation_input_cfg["cfg_packed_key_value_indexes"], | |
**generation_input, | |
) | |
image_list = [] | |
for latent in unpacked_latent: | |
latent = latent.reshape(1, resolution//16, resolution//16, 2, 2, 16) | |
latent = torch.einsum("nhwpqc->nchpwq", latent) | |
latent = latent.reshape(1, 16, resolution//8, resolution//8) | |
image = vae_model.decode(latent.to(device)) | |
tmpimage = ((image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy() | |
tmpimage = Image.fromarray(tmpimage) | |
image_list.append(tmpimage) | |
return image_list | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Generate images using Bagel model.") | |
parser.add_argument("--output_dir", type=str, required=True, help="Directory to save the generated images.") | |
parser.add_argument("--metadata_file", type=str, required=True, help="JSONL file containing lines of metadata for each prompt.") | |
parser.add_argument("--num_images", type=int, default=4) | |
parser.add_argument("--batch_size", type=int, default=4) | |
parser.add_argument("--cfg_scale", type=float, default=4) | |
parser.add_argument("--resolution", type=int, default=1024) | |
parser.add_argument("--max_latent_size", type=int, default=64) | |
parser.add_argument('--model-path', type=str, default='hf/BAGEL-7B-MoT/') | |
args = parser.parse_args() | |
seed = 42 | |
if seed is not None: | |
import random | |
import numpy as np | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
setup_distributed() | |
rank = dist.get_rank() | |
world_size = dist.get_world_size() | |
device = f"cuda:{rank}" | |
output_dir = args.output_dir | |
os.makedirs(output_dir, exist_ok=True) | |
if rank == 0: | |
print(f"Output images are saved in {output_dir}") | |
llm_config = Qwen2Config.from_json_file(os.path.join(args.model_path, "llm_config.json")) | |
llm_config.qk_norm = True | |
llm_config.tie_word_embeddings = False | |
llm_config.layer_module = "Qwen2MoTDecoderLayer" | |
vit_config = SiglipVisionConfig.from_json_file(os.path.join(args.model_path, "vit_config.json")) | |
vit_config.rope = False | |
vit_config.num_hidden_layers = vit_config.num_hidden_layers - 1 | |
vae_model, vae_config = load_ae(local_path=os.path.join(args.model_path, "ae.safetensors")) | |
config = BagelConfig( | |
visual_gen=True, | |
visual_und=True, | |
llm_config=llm_config, | |
vit_config=vit_config, | |
vae_config=vae_config, | |
vit_max_num_patch_per_side=70, | |
connector_act='gelu_pytorch_tanh', | |
latent_patch_size=2, | |
max_latent_size=args.max_latent_size, | |
) | |
language_model = Qwen2ForCausalLM(llm_config) | |
vit_model = SiglipVisionModel(vit_config) | |
model = Bagel(language_model, vit_model, config) | |
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config) | |
tokenizer = Qwen2Tokenizer.from_pretrained(args.model_path) | |
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer) | |
model_state_dict_path = os.path.join(args.model_path, "ema.safetensors") | |
model_state_dict = load_file(model_state_dict_path, device="cpu") | |
msg = model.load_state_dict(model_state_dict, strict=False) | |
if rank == 0: | |
print(msg) | |
del model_state_dict | |
model = model.to(device).eval() | |
vae_model = vae_model.to(device).eval() | |
gen_model = model | |
cfg_scale = args.cfg_scale | |
cfg_interval = [0, 1.0] | |
timestep_shift = 3.0 | |
num_timesteps = 50 | |
cfg_renorm_min = 0.0 | |
with open(args.metadata_file, "r", encoding="utf-8") as fp: | |
metadatas = [json.loads(line) for line in fp] | |
total_metadatas = len(metadatas) | |
prompts_per_gpu = (total_metadatas + world_size - 1) // world_size | |
start = rank * prompts_per_gpu | |
end = min(start + prompts_per_gpu, total_metadatas) | |
print(f"GPU {rank}: Processing {end - start} prompts (indices {start} to {end - 1})") | |
for idx in range(start, end): | |
metadata = metadatas[idx] | |
outpath = os.path.join(output_dir, f"{idx:0>5}") | |
os.makedirs(outpath, exist_ok=True) | |
prompt = metadata['prompt'] | |
print(f"GPU {rank} processing prompt {idx - start + 1}/{end - start}: '{prompt}'") | |
sample_path = os.path.join(outpath, "samples") | |
os.makedirs(sample_path, exist_ok=True) | |
flag = True | |
for idx in range(args.num_images): | |
if not os.path.exists(os.path.join(sample_path, f"{idx:05}.png")): | |
flag = False | |
break | |
if flag: | |
print(f"GPU {rank} skipping generation for prompt: {prompt}") | |
continue | |
with open(os.path.join(outpath, "metadata.jsonl"), "w", encoding="utf-8") as fp: | |
json.dump(metadata, fp) | |
image_list = [] | |
for i in range(args.num_images // args.batch_size): | |
tmp_image_list = generate_image( | |
prompt=prompt, | |
cfg_scale=cfg_scale, | |
cfg_interval=cfg_interval, | |
cfg_renorm_min=cfg_renorm_min, | |
timestep_shift=timestep_shift, | |
num_timesteps=num_timesteps, | |
num_images=args.batch_size, | |
resolution=args.resolution, | |
device=device, | |
) | |
image_list.extend(tmp_image_list) | |
sample_count = 0 | |
for sample in image_list: | |
sample = sample.crop(sample.getbbox()) | |
sample.save(os.path.join(sample_path, f"{sample_count:05}.png")) | |
sample_count += 1 | |
print(f"GPU {rank} has completed all tasks") | |
dist.barrier() |