Bagel-7B-Demo / eval /gen /geneval /evaluation /evaluate_images_mp.py
KingNish's picture
Upload 110 files
e6af450 verified
raw
history blame
13.2 kB
# Copyright (c) 2023 Dhruba Ghosh
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: MIT
#
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
#
# Original file was released under MIT, with the full license text
# available at https://github.com/djghosh13/geneval/blob/main/LICENSE.
#
# This modified file is released under the same license.
import argparse
import json
import os
import re
import sys
import time
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
from PIL import Image, ImageOps
import torch
import torch.distributed as dist
import mmdet
from mmdet.apis import inference_detector, init_detector
import open_clip
from clip_benchmark.metrics import zeroshot_classification as zsc
zsc.tqdm = lambda it, *args, **kwargs: it
def setup_distributed():
"""初始化分布式环境"""
dist.init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
# Get directory path
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("imagedir", type=str)
parser.add_argument("--outfile", type=str, default="results.jsonl")
parser.add_argument("--model-config", type=str, default=None)
parser.add_argument("--model-path", type=str, default="./")
# Other arguments
parser.add_argument("--options", nargs="*", type=str, default=[])
args = parser.parse_args()
args.options = dict(opt.split("=", 1) for opt in args.options)
if args.model_config is None:
args.model_config = os.path.join(
os.path.dirname(mmdet.__file__),
"../configs/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco.py"
)
return args
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
assert DEVICE == "cuda"
def timed(fn):
def wrapper(*args, **kwargs):
startt = time.time()
result = fn(*args, **kwargs)
endt = time.time()
print(f'Function {fn.__name__!r} executed in {endt - startt:.3f}s', file=sys.stderr)
return result
return wrapper
# Load models
@timed
def load_models(args):
CONFIG_PATH = args.model_config
OBJECT_DETECTOR = args.options.get('model', "mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco")
CKPT_PATH = os.path.join(args.model_path, f"{OBJECT_DETECTOR}.pth")
object_detector = init_detector(CONFIG_PATH, CKPT_PATH, device=DEVICE)
clip_arch = args.options.get('clip_model', "ViT-L-14")
clip_model, _, transform = open_clip.create_model_and_transforms(clip_arch, pretrained="openai", device=DEVICE)
tokenizer = open_clip.get_tokenizer(clip_arch)
with open(os.path.join(os.path.dirname(__file__), "object_names.txt")) as cls_file:
classnames = [line.strip() for line in cls_file]
return object_detector, (clip_model, transform, tokenizer), classnames
COLORS = ["red", "orange", "yellow", "green", "blue", "purple", "pink", "brown", "black", "white"]
COLOR_CLASSIFIERS = {}
# Evaluation parts
class ImageCrops(torch.utils.data.Dataset):
def __init__(self, image: Image.Image, objects):
self._image = image.convert("RGB")
bgcolor = args.options.get('bgcolor', "#999")
if bgcolor == "original":
self._blank = self._image.copy()
else:
self._blank = Image.new("RGB", image.size, color=bgcolor)
self._objects = objects
def __len__(self):
return len(self._objects)
def __getitem__(self, index):
box, mask = self._objects[index]
if mask is not None:
assert tuple(self._image.size[::-1]) == tuple(mask.shape), (index, self._image.size[::-1], mask.shape)
image = Image.composite(self._image, self._blank, Image.fromarray(mask))
else:
image = self._image
if args.options.get('crop', '1') == '1':
image = image.crop(box[:4])
# if args.save:
# base_count = len(os.listdir(args.save))
# image.save(os.path.join(args.save, f"cropped_{base_count:05}.png"))
return (transform(image), 0)
def color_classification(image, bboxes, classname):
if classname not in COLOR_CLASSIFIERS:
COLOR_CLASSIFIERS[classname] = zsc.zero_shot_classifier(
clip_model, tokenizer, COLORS,
[
f"a photo of a {{c}} {classname}",
f"a photo of a {{c}}-colored {classname}",
f"a photo of a {{c}} object"
],
DEVICE
)
clf = COLOR_CLASSIFIERS[classname]
dataloader = torch.utils.data.DataLoader(
ImageCrops(image, bboxes),
batch_size=16, num_workers=4
)
with torch.no_grad():
pred, _ = zsc.run_classification(clip_model, clf, dataloader, DEVICE)
return [COLORS[index.item()] for index in pred.argmax(1)]
def compute_iou(box_a, box_b):
area_fn = lambda box: max(box[2] - box[0] + 1, 0) * max(box[3] - box[1] + 1, 0)
i_area = area_fn([
max(box_a[0], box_b[0]), max(box_a[1], box_b[1]),
min(box_a[2], box_b[2]), min(box_a[3], box_b[3])
])
u_area = area_fn(box_a) + area_fn(box_b) - i_area
return i_area / u_area if u_area else 0
def relative_position(obj_a, obj_b):
"""Give position of A relative to B, factoring in object dimensions"""
boxes = np.array([obj_a[0], obj_b[0]])[:, :4].reshape(2, 2, 2)
center_a, center_b = boxes.mean(axis=-2)
dim_a, dim_b = np.abs(np.diff(boxes, axis=-2))[..., 0, :]
offset = center_a - center_b
#
revised_offset = np.maximum(np.abs(offset) - POSITION_THRESHOLD * (dim_a + dim_b), 0) * np.sign(offset)
if np.all(np.abs(revised_offset) < 1e-3):
return set()
#
dx, dy = revised_offset / np.linalg.norm(offset)
relations = set()
if dx < -0.5: relations.add("left of")
if dx > 0.5: relations.add("right of")
if dy < -0.5: relations.add("above")
if dy > 0.5: relations.add("below")
return relations
def evaluate(image, objects, metadata):
"""
Evaluate given image using detected objects on the global metadata specifications.
Assumptions:
* Metadata combines 'include' clauses with AND, and 'exclude' clauses with OR
* All clauses are independent, i.e., duplicating a clause has no effect on the correctness
* CHANGED: Color and position will only be evaluated on the most confidently predicted objects;
therefore, objects are expected to appear in sorted order
"""
correct = True
reason = []
matched_groups = []
# Check for expected objects
for req in metadata.get('include', []):
classname = req['class']
matched = True
found_objects = objects.get(classname, [])[:req['count']]
if len(found_objects) < req['count']:
correct = matched = False
reason.append(f"expected {classname}>={req['count']}, found {len(found_objects)}")
else:
if 'color' in req:
# Color check
colors = color_classification(image, found_objects, classname)
if colors.count(req['color']) < req['count']:
correct = matched = False
reason.append(
f"expected {req['color']} {classname}>={req['count']}, found " +
f"{colors.count(req['color'])} {req['color']}; and " +
", ".join(f"{colors.count(c)} {c}" for c in COLORS if c in colors)
)
if 'position' in req and matched:
# Relative position check
expected_rel, target_group = req['position']
if matched_groups[target_group] is None:
correct = matched = False
reason.append(f"no target for {classname} to be {expected_rel}")
else:
for obj in found_objects:
for target_obj in matched_groups[target_group]:
true_rels = relative_position(obj, target_obj)
if expected_rel not in true_rels:
correct = matched = False
reason.append(
f"expected {classname} {expected_rel} target, found " +
f"{' and '.join(true_rels)} target"
)
break
if not matched:
break
if matched:
matched_groups.append(found_objects)
else:
matched_groups.append(None)
# Check for non-expected objects
for req in metadata.get('exclude', []):
classname = req['class']
if len(objects.get(classname, [])) >= req['count']:
correct = False
reason.append(f"expected {classname}<{req['count']}, found {len(objects[classname])}")
return correct, "\n".join(reason)
def evaluate_image(filepath, metadata):
result = inference_detector(object_detector, filepath)
bbox = result[0] if isinstance(result, tuple) else result
segm = result[1] if isinstance(result, tuple) and len(result) > 1 else None
image = ImageOps.exif_transpose(Image.open(filepath))
detected = {}
# Determine bounding boxes to keep
confidence_threshold = THRESHOLD if metadata['tag'] != "counting" else COUNTING_THRESHOLD
for index, classname in enumerate(classnames):
ordering = np.argsort(bbox[index][:, 4])[::-1]
ordering = ordering[bbox[index][ordering, 4] > confidence_threshold] # Threshold
ordering = ordering[:MAX_OBJECTS].tolist() # Limit number of detected objects per class
detected[classname] = []
while ordering:
max_obj = ordering.pop(0)
detected[classname].append((bbox[index][max_obj], None if segm is None else segm[index][max_obj]))
ordering = [
obj for obj in ordering
if NMS_THRESHOLD == 1 or compute_iou(bbox[index][max_obj], bbox[index][obj]) < NMS_THRESHOLD
]
if not detected[classname]:
del detected[classname]
# Evaluate
is_correct, reason = evaluate(image, detected, metadata)
return {
'filename': filepath,
'tag': metadata['tag'],
'prompt': metadata['prompt'],
'correct': is_correct,
'reason': reason,
'metadata': json.dumps(metadata),
'details': json.dumps({
key: [box.tolist() for box, _ in value]
for key, value in detected.items()
})
}
if __name__ == "__main__":
args = parse_args()
THRESHOLD = float(args.options.get('threshold', 0.3))
COUNTING_THRESHOLD = float(args.options.get('counting_threshold', 0.9))
MAX_OBJECTS = int(args.options.get('max_objects', 16))
NMS_THRESHOLD = float(args.options.get('max_overlap', 1.0))
POSITION_THRESHOLD = float(args.options.get('position_threshold', 0.1))
# Initialize distributed environment
setup_distributed()
rank = dist.get_rank()
world_size = dist.get_world_size()
device = f"cuda:{rank}"
# Load models
if rank == 0:
print(f"[Rank 0] Loading model...")
object_detector, (clip_model, transform, tokenizer), classnames = load_models(args)
full_results = []
subfolders = [f for f in os.listdir(args.imagedir) if os.path.isdir(os.path.join(args.imagedir, f)) and f.isdigit()]
total_subfolders = len(subfolders)
# Divide subfolders to process by GPU
subfolders_per_gpu = (total_subfolders + world_size - 1) // world_size
start = rank * subfolders_per_gpu
end = min(start + subfolders_per_gpu, total_subfolders)
print(f"GPU {rank}: Processing {end - start} subfolders (index {start} to {end - 1})")
for subfolder in tqdm(subfolders[start:end]):
folderpath = os.path.join(args.imagedir, subfolder)
with open(os.path.join(folderpath, "metadata.jsonl")) as fp:
metadata = json.load(fp)
# Evaluate each image
for imagename in os.listdir(os.path.join(folderpath, "samples")):
imagepath = os.path.join(folderpath, "samples", imagename)
if not os.path.isfile(imagepath) or not re.match(r"\d+\.png", imagename):
continue
result = evaluate_image(imagepath, metadata)
full_results.append(result)
# Synchronize results from all GPUs
all_results = [None] * world_size
dist.all_gather_object(all_results, full_results)
if rank == 0:
# Merge results from all GPUs
final_results = []
for results in all_results:
final_results.extend(results)
# Save results
if os.path.dirname(args.outfile):
os.makedirs(os.path.dirname(args.outfile), exist_ok=True)
with open(args.outfile, "w") as fp:
pd.DataFrame(final_results).to_json(fp, orient="records", lines=True)
print("All GPUs have completed their tasks and the final results have been saved.")
else:
print(f"GPU {rank} has completed all tasks")