Bagel-7B-Demo / data /data_utils.py
KingNish's picture
Upload 110 files
e6af450 verified
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import math
import random
from PIL import Image
import torch
from torch.nn.attention.flex_attention import or_masks, and_masks
def create_sparse_mask(document_lens, split_lens, attn_modes, device):
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
def full_and_noise_mask(b, h, q_idx, kv_idx):
return (full_and_noise_seq_id[q_idx] == full_and_noise_seq_id[kv_idx]) & (full_and_noise_seq_id[q_idx] >= 0)
def remove_noise_mask(b, h, q_idx, kv_idx):
return (~((noise_seq_id[kv_idx] >= 0) & (noise_seq_id[q_idx] != noise_seq_id[kv_idx])))
def sample_mask(b, h, q_idx, kv_idx):
return document_id[q_idx] == document_id[kv_idx]
full_and_noise_tmp = []
noise_tmp = []
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
value = i if model in ['full', 'noise'] else -1
full_and_noise_tmp.extend([value] * length)
value_noise = i if model == 'noise' else -1
noise_tmp.extend([value_noise] * length)
full_and_noise_seq_id = torch.Tensor(full_and_noise_tmp).to(device)
noise_seq_id = torch.Tensor(noise_tmp).to(device)
document_id = torch.cat([torch.full((l,), i) for i, l in enumerate(document_lens, start=1)]).to(device)
return and_masks(or_masks(causal_mask, full_and_noise_mask), remove_noise_mask, sample_mask)
def patchify(image, patch_size):
p = patch_size
c, h, w = image.shape
assert h % p == 0 and w % p == 0
image = image.reshape(c, h // p, p, w // p, p)
image = torch.einsum("chpwq->hwpqc", image)
image = image.reshape(-1, p**2 * c)
return image
def get_flattened_position_ids_extrapolate(img_h, img_w, patch_size, max_num_patches_per_side):
num_patches_h, num_patches_w = img_h // patch_size, img_w // patch_size
coords_h = torch.arange(0, num_patches_h)
coords_w = torch.arange(0, num_patches_w)
pos_ids = (coords_h[:, None] * max_num_patches_per_side + coords_w).flatten()
return pos_ids
def get_flattened_position_ids_interpolate(img_h, img_w, patch_size, max_num_patches_per_side):
num_patches_h, num_patches_w = img_h // patch_size, img_w // patch_size
boundaries = torch.arange(1 / max_num_patches_per_side, 1.0, 1 / max_num_patches_per_side)
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / num_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / num_patches_w)
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
pos_ids = (bucket_coords_h[:, None] * max_num_patches_per_side + bucket_coords_w).flatten()
return pos_ids
def prepare_attention_mask_per_sample(split_lens, attn_modes, device="cpu"):
"""
nested_split_lens: A list of N lists of ints. Each int indicates the length of a split within
a sample, where each sample contains multiple splits with different attn modes.
nested_attn_modes: whether to use full attn in each split.
"""
sample_len = sum(split_lens)
attention_mask = torch.zeros((sample_len, sample_len), dtype=torch.bool, device=device)
csum = 0
for s, attn_mode in zip(split_lens, attn_modes):
assert attn_mode in ['causal', 'full', 'noise']
if attn_mode == "causal":
attention_mask[csum:csum + s, csum:csum + s] = torch.ones((s, s), device=device).tril()
attention_mask[csum:csum + s, :csum] = 1
else:
attention_mask[csum:csum + s, csum:csum + s] = torch.ones((s, s))
attention_mask[csum:csum + s, :csum] = 1
csum += s
csum = 0
for s, attn_mode in zip(split_lens, attn_modes):
if attn_mode == "noise":
attention_mask[:, csum : csum + s] = torch.zeros((sample_len, s))
attention_mask[csum : csum + s, csum : csum + s] = torch.ones((s, s))
csum += s
attention_mask = torch.zeros_like(attention_mask, dtype=torch.float).masked_fill_(
~attention_mask, float("-inf")
)
return attention_mask
def split_integer_exp_decay(S, ng_sample_decay=1.0):
if ng_sample_decay == 1.0:
N = random.randint(1, S)
else:
base = (1 - ng_sample_decay) / (1 - math.pow(ng_sample_decay, S))
p = [base * math.pow(ng_sample_decay, i) for i in range(S)]
N = random.choices(list(range(1, S + 1)), p, k=1)[0]
cumsum = [0] + sorted(random.sample(range(1, S), N - 1)) + [S]
result = [cumsum[i+1] - cumsum[i] for i in range(len(cumsum) - 1)]
return result, cumsum
def pil_img2rgb(image):
if image.mode == "RGBA" or image.info.get("transparency", None) is not None:
image = image.convert("RGBA")
white = Image.new(mode="RGB", size=image.size, color=(255, 255, 255))
white.paste(image, mask=image.split()[3])
image = white
else:
image = image.convert("RGB")
return image
def add_special_tokens(tokenizer):
all_special_tokens = []
for k, v in tokenizer.special_tokens_map.items():
if isinstance(v, str):
all_special_tokens.append(v)
elif isinstance(v, list):
all_special_tokens += v
new_tokens = []
if '<|im_start|>' not in all_special_tokens:
new_tokens.append('<|im_start|>')
if '<|im_end|>' not in all_special_tokens:
new_tokens.append('<|im_end|>')
if '<|vision_start|>' not in all_special_tokens:
new_tokens.append('<|vision_start|>')
if '<|vision_end|>' not in all_special_tokens:
new_tokens.append('<|vision_end|>')
num_new_tokens = tokenizer.add_tokens(new_tokens)
bos_token_id = tokenizer.convert_tokens_to_ids('<|im_start|>')
eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>')
start_of_image = tokenizer.convert_tokens_to_ids('<|vision_start|>')
end_of_image = tokenizer.convert_tokens_to_ids('<|vision_end|>')
new_token_ids = dict(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
start_of_image=start_of_image,
end_of_image=end_of_image,
)
return tokenizer, new_token_ids, num_new_tokens
def len2weight(x, loss_reduction='square'):
if x == 0:
return x
if loss_reduction == 'token':
return 1
if loss_reduction == 'sample':
return 1 / x
if loss_reduction == 'square':
return 1 / (x ** 0.5)
raise NotImplementedError(loss_reduction)