Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 Bytedance Ltd. and/or its affiliates. | |
# SPDX-License-Identifier: Apache-2.0 | |
import json | |
import os | |
import traceback | |
from PIL import Image, ImageFile, PngImagePlugin | |
from .data_utils import pil_img2rgb | |
from .distributed_iterable_dataset import DistributedIterableDataset | |
Image.MAX_IMAGE_PIXELS = 200000000 | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
MaximumDecompressedSize = 1024 | |
MegaByte = 2 ** 20 | |
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte | |
class SftJSONLIterableDataset(DistributedIterableDataset): | |
def __init__( | |
self, dataset_name, transform, tokenizer, frame_sampler, | |
jsonl_path_list, data_dir_list, num_used_data, | |
local_rank=0, world_size=1, num_workers=8, data_status=None, | |
shuffle_lines=False, shuffle_seed=0, | |
): | |
""" | |
jsonl_path_list: list of jsonl file paths | |
data_dir_list: list of image directories containing the images of each jsonl file | |
num_used_data: list of number of sampled data points for each jsonl | |
""" | |
super().__init__(dataset_name, local_rank, world_size, num_workers) | |
self.transform = transform | |
self.tokenizer = tokenizer | |
self.frame_sampler = frame_sampler | |
self.data_status = data_status | |
self.data_paths = self.get_data_paths( | |
jsonl_path_list, | |
data_dir_list, | |
num_used_data, | |
shuffle_lines, | |
shuffle_seed, | |
) | |
self.set_epoch() | |
def get_data_paths( | |
self, | |
jsonl_path_list, | |
data_dir_list, | |
num_used_data, | |
shuffle_lines, | |
shuffle_seed, | |
): | |
data_paths = [] | |
for jsonl_path, image_dir, num_data_point in zip( | |
jsonl_path_list, data_dir_list, num_used_data | |
): | |
with open(jsonl_path, 'r') as f: | |
raw_data = f.readlines() | |
if shuffle_lines: | |
self.rng.seed(shuffle_seed) | |
self.rng.shuffle(raw_data) | |
raw_data = raw_data[:num_data_point] | |
data_paths.extend([(json_data, image_dir) for json_data in raw_data]) | |
return data_paths | |
def change_format(self, data, num_images): | |
elements = [] | |
for conversation in data['conversations']: | |
if conversation['from'] == 'human': | |
if '<image>' not in conversation['value']: | |
elements.append({ | |
'type': 'text', | |
'has_loss': 0, | |
'text': conversation['value'], | |
}) | |
else: | |
text_list = conversation['value'].split('<image>') | |
for idx, text in enumerate(text_list): | |
if text.strip() != '': | |
elements.append({ | |
'type': 'text', | |
'has_loss': 0, | |
'text': text.strip(), | |
}) | |
if (idx != len(text_list) - 1) and (idx < num_images): | |
elements.append({'type': 'image',}) | |
elif conversation['from'] == 'gpt': | |
elements.append({ | |
'type': 'text', | |
'has_loss': 1, | |
'text': conversation['value'], | |
}) | |
return elements | |
def __iter__(self): | |
data_paths_per_worker, worker_id = self.get_data_paths_per_worker() | |
if self.data_status is not None: | |
row_start_id = self.data_status[worker_id] + 1 | |
else: | |
row_start_id = 0 | |
transform_stride = self.transform.stride | |
print( | |
f"rank-{self.local_rank} worker-{worker_id} dataset-{self.dataset_name}: " | |
f"resuming data at row#{row_start_id}" | |
) | |
while True: | |
data_paths_per_worker_ = data_paths_per_worker[row_start_id:] | |
for row_idx, (data, image_dir) in enumerate(data_paths_per_worker_, start=row_start_id): | |
num_tokens = 0 | |
image_tensor_list = [] | |
text_ids_list = [] | |
sequence_plan = [] | |
try: | |
data_item = json.loads(data) | |
raw_images = None | |
if 'image' in data_item: | |
if type(data_item['image']) == list: | |
raw_images = [ | |
pil_img2rgb(Image.open(os.path.join(image_dir, image))) | |
for image in data_item['image'] | |
] | |
else: | |
raw_images = [ | |
pil_img2rgb(Image.open(os.path.join(image_dir, data_item['image']))) | |
] | |
elif 'video' in data_item: | |
raw_images = self.frame_sampler(os.path.join(image_dir, data_item['video'])) | |
special_tokens = '<image>' * len(raw_images) | |
for item in data_item['conversations']: | |
if '<video>' in item['value']: | |
item['value'] = item['value'].replace('<video>', special_tokens) | |
break | |
else: | |
raise ValueError("Cannot find <video> in the conversation!") | |
except: | |
traceback.print_exc() | |
continue | |
if raw_images: | |
for raw_image in raw_images: | |
image_tensor = self.transform(raw_image, img_num=len(raw_images)) | |
image_tensor_list.append(image_tensor) | |
height, width = image_tensor.shape[1:] | |
num_tokens += width * height // transform_stride ** 2 | |
elements = self.change_format(data_item, len(image_tensor_list)) | |
for item in elements: | |
if item['type'] == 'text': | |
text_data = item['text'] | |
text_ids = self.tokenizer.encode(text_data) | |
if len(text_ids) > 0: | |
text_ids_list.append(text_ids) | |
num_tokens += len(text_ids) | |
current_plan = { | |
'type': 'text', | |
'enable_cfg': 0, | |
'loss': item['has_loss'], | |
'special_token_loss': 0, | |
'special_token_label': None, | |
} | |
sequence_plan.append(current_plan) | |
elif item['type'] == 'image': | |
current_plan = { | |
'type': 'vit_image', | |
'enable_cfg': 0, | |
'loss': 0, | |
'special_token_loss': 0, | |
'special_token_label': None, | |
} | |
sequence_plan.append(current_plan) | |
has_loss = [item['loss'] for item in sequence_plan] | |
if sum(has_loss) == 0: | |
print(f'No loss defined, skipped.') | |
continue | |
yield dict( | |
image_tensor_list=image_tensor_list, | |
text_ids_list=text_ids_list, | |
sequence_plan=sequence_plan, | |
num_tokens=num_tokens, | |
data_indexes={ | |
"data_indexes": row_idx, | |
"worker_id": worker_id, | |
"dataset_name": self.dataset_name, | |
} | |
) | |
row_start_id = 0 | |
print(f"{self.dataset_name} repeat in rank-{self.local_rank} worker-{worker_id}") | |