whisper-medium-ur / README.md
GogetaBlueMUI's picture
End of training
bc20c58 verified
metadata
library_name: transformers
language:
  - ur
license: apache-2.0
base_model: GogetaBlueMUI/whisper-medium-ur-v3
tags:
  - generated_from_trainer
datasets:
  - fsicoli/common_voice_19_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Ur - Your Name
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 19.0
          type: fsicoli/common_voice_19_0
          config: ur
          split: test
          args: 'config: ur, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 25.0787058744725

Whisper Medium Ur - Your Name

This model is a fine-tuned version of GogetaBlueMUI/whisper-medium-ur-v3 on the Common Voice 19.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3692
  • Wer: 25.0787

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1648 0.3279 250 0.3832 28.1711
0.1748 0.6557 500 0.3737 30.1650
0.1887 0.9836 750 0.3587 24.8532
0.132 1.3108 1000 0.3692 25.0787

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.4.1
  • Tokenizers 0.21.0