Dataset Viewer
Auto-converted to Parquet
name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Matroid.uniqueBaseOn_dual_eq
Mathlib/Data/Matroid/Constructions.lean
theorem uniqueBaseOn_dual_eq (I E : Set α) : (uniqueBaseOn I E)✶ = uniqueBaseOn (E \ I) E
α : Type u_1 I E B : Set α hB : B ⊆ E h : B = E \ I ⊢ E \ B = I ∩ E
rw [h, inter_comm I]
α : Type u_1 I E B : Set α hB : B ⊆ E h : B = E \ I ⊢ E \ (E \ I) = E ∩ I
60744eced319574b
Finsupp.linearCombinationOn_range
Mathlib/LinearAlgebra/Finsupp/LinearCombination.lean
theorem linearCombinationOn_range (s : Set α) : LinearMap.range (linearCombinationOn α M R v s) = ⊤
α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M v : α → M s : Set α ⊢ span R (v '' s) ≤ map (linearCombination R v) (supported R R s)
exact (span_image_eq_map_linearCombination _ _).le
no goals
5d96391416327877
CoxeterSystem.prod_alternatingWord_eq_prod_alternatingWord_sub
Mathlib/GroupTheory/Coxeter/Basic.lean
theorem prod_alternatingWord_eq_prod_alternatingWord_sub (i i' : B) (m : ℕ) (hm : m ≤ M i i' * 2) : π (alternatingWord i i' m) = π (alternatingWord i' i (M i i' * 2 - m))
B : Type u_1 W : Type u_3 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i i' : B m : ℕ hm : m ≤ M.M i i' * 2 ⊢ (if Even ↑m then 1 else cs.simple i') * (cs.simple i * cs.simple i') ^ (↑m / ↑2) = (if Even (↑(M.M i i' * 2) - ↑m) then 1 else cs.simple i) * (cs.simple i' * cs.simple i) ^ ((↑(M.M i i' * 2) - ↑m) / ↑2)
generalize (m : ℤ) = m'
B : Type u_1 W : Type u_3 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i i' : B m : ℕ hm : m ≤ M.M i i' * 2 m' : ℤ ⊢ (if Even m' then 1 else cs.simple i') * (cs.simple i * cs.simple i') ^ (m' / ↑2) = (if Even (↑(M.M i i' * 2) - m') then 1 else cs.simple i) * (cs.simple i' * cs.simple i) ^ ((↑(M.M i i' * 2) - m') / ↑2)
8b276f2d43ad82bd
IsCompactlyGenerated.BooleanGenerators.sSup_inter
Mathlib/Order/BooleanGenerators.lean
lemma sSup_inter (hS : BooleanGenerators S) {T₁ T₂ : Set α} (hT₁ : T₁ ⊆ S) (hT₂ : T₂ ⊆ S) : sSup (T₁ ∩ T₂) = (sSup T₁) ⊓ (sSup T₂)
case a.a α : Type u_1 inst✝¹ : CompleteLattice α S : Set α inst✝ : IsCompactlyGenerated α hS : BooleanGenerators S T₁ T₂ : Set α hT₁ : T₁ ⊆ S hT₂ : T₂ ⊆ S ⊢ sSup (T₁ ∩ T₂) ≤ sSup T₁
apply sSup_le_sSup Set.inter_subset_left
no goals
7804e1cb5854118b
CategoryTheory.ShortComplex.exact_iff_mono
Mathlib/Algebra/Homology/ShortComplex/Exact.lean
lemma exact_iff_mono [HasZeroObject C] (hf : S.f = 0) : S.Exact ↔ Mono S.g
case mp C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C S : ShortComplex C inst✝ : HasZeroObject C hf : S.f = 0 this✝ : S.HasHomology h : IsZero S.homology this : IsIso S.pOpcycles ⊢ Mono S.g
have := mono_of_isZero_kernel' _ S.homologyIsKernel h
case mp C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C S : ShortComplex C inst✝ : HasZeroObject C hf : S.f = 0 this✝¹ : S.HasHomology h : IsZero S.homology this✝ : IsIso S.pOpcycles this : Mono S.fromOpcycles ⊢ Mono S.g
f4e5eedef442a362
Real.sign_eq_zero_iff
Mathlib/Data/Real/Sign.lean
theorem sign_eq_zero_iff {r : ℝ} : sign r = 0 ↔ r = 0
case inl r : ℝ h : r.sign = 0 hn : r < 0 ⊢ r = 0
rw [sign_of_neg hn, neg_eq_zero] at h
case inl r : ℝ h : 1 = 0 hn : r < 0 ⊢ r = 0
2e6f33eeda35157a
WeierstrassCurve.exists_variableChange_of_char_two
Mathlib/AlgebraicGeometry/EllipticCurve/IsomOfJ.lean
private lemma exists_variableChange_of_char_two (heq : E.j = E'.j) : ∃ C : VariableChange F, E.variableChange C = E'
case intro.of_j_ne_zero.intro.of_j_ne_zero F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E E' : WeierstrassCurve F inst✝⁴ : E.IsElliptic inst✝³ : E'.IsElliptic inst✝² : CharP F 2 heq : E.j = E'.j C : VariableChange F inst✝¹ : (E.variableChange C).IsCharTwoJNeZeroNF C' : VariableChange F inst✝ : (E'.variableChange C').IsCharTwoJNeZeroNF ⊢ ∃ C, E.variableChange C = E'
simp_rw [← variableChange_j E C, ← variableChange_j E' C', j_of_isCharTwoJNeZeroNF_of_char_two, one_div, inv_inj] at heq
case intro.of_j_ne_zero.intro.of_j_ne_zero F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E E' : WeierstrassCurve F inst✝⁴ : E.IsElliptic inst✝³ : E'.IsElliptic inst✝² : CharP F 2 C : VariableChange F inst✝¹ : (E.variableChange C).IsCharTwoJNeZeroNF C' : VariableChange F inst✝ : (E'.variableChange C').IsCharTwoJNeZeroNF heq : (E.variableChange C).a₆ = (E'.variableChange C').a₆ ⊢ ∃ C, E.variableChange C = E'
777fc2b6b6b2f928
Std.Sat.CNF.nonempty_or_impossible
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/CNF/Relabel.lean
theorem nonempty_or_impossible (f : CNF α) : Nonempty α ∨ ∃ n, f = List.replicate n []
case nil α : Type u_1 ⊢ Nonempty α ∨ ∃ n, [] = List.replicate n []
exact Or.inr ⟨0, rfl⟩
no goals
eb153cbe9df80b19
MeasureTheory.ae_nonneg_of_forall_setIntegral_nonneg
Mathlib/MeasureTheory/Function/AEEqOfIntegral.lean
theorem ae_nonneg_of_forall_setIntegral_nonneg (hf : Integrable f μ) (hf_zero : ∀ s, MeasurableSet s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → 0 ≤ ∫ (x : α) in s, f x ∂μ b : ℝ hb_neg : b < 0 s : Set α := {x | f x ≤ b} hs : NullMeasurableSet s μ mus : μ s < ⊤ ⊢ ∀ᵐ (x : α) ∂μ, x ∈ s → f x ≤ b
exact Eventually.of_forall fun x hxs => hxs
no goals
d52a385303ec1354
MvPowerSeries.WithPiTopology.tendsto_pow_of_constantCoeff_nilpotent_iff
Mathlib/RingTheory/MvPowerSeries/PiTopology.lean
theorem tendsto_pow_of_constantCoeff_nilpotent_iff [CommRing R] [DiscreteTopology R] (f) : Tendsto (fun n : ℕ => f ^ n) atTop (nhds 0) ↔ IsNilpotent (constantCoeff σ R f)
σ : Type u_1 R : Type u_2 inst✝² : TopologicalSpace R inst✝¹ : CommRing R inst✝ : DiscreteTopology R f : MvPowerSeries σ R h : Tendsto (fun n => f ^ n) atTop (nhds 0) this : Tendsto (fun n => (constantCoeff σ R) (f ^ n)) atTop (nhds 0) ⊢ IsNilpotent ((constantCoeff σ R) f)
simp only [tendsto_def] at this
σ : Type u_1 R : Type u_2 inst✝² : TopologicalSpace R inst✝¹ : CommRing R inst✝ : DiscreteTopology R f : MvPowerSeries σ R h : Tendsto (fun n => f ^ n) atTop (nhds 0) this : ∀ s ∈ nhds 0, (fun n => (constantCoeff σ R) (f ^ n)) ⁻¹' s ∈ atTop ⊢ IsNilpotent ((constantCoeff σ R) f)
75b216f0c0004b82
RCLike.add_conj
Mathlib/Analysis/RCLike/Basic.lean
theorem add_conj (z : K) : z + conj z = 2 * re z := calc z + conj z = re z + im z * I + (re z - im z * I)
K : Type u_1 inst✝ : RCLike K z : K ⊢ ↑(re z) + ↑(im z) * I + (↑(re z) - ↑(im z) * I) = 2 * ↑(re z)
rw [add_add_sub_cancel, two_mul]
no goals
935131c31d9ee0b1
Array.exists_of_eraseP
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Erase.lean
theorem exists_of_eraseP {l : Array α} {a} (hm : a ∈ l) (hp : p a) : ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁.push a ++ l₂ ∧ l.eraseP p = l₁ ++ l₂
α : Type u_1 p : α → Bool l : Array α a : α hm : a ∈ l hp : p a = true ⊢ ∃ a l₁ l₂, (∀ (b : α), b ∈ l₁ → ¬p b = true) ∧ p a = true ∧ l = l₁.push a ++ l₂ ∧ l.eraseP p = l₁ ++ l₂
rcases l with ⟨l⟩
case mk α : Type u_1 p : α → Bool a : α hp : p a = true l : List α hm : a ∈ { toList := l } ⊢ ∃ a l₁ l₂, (∀ (b : α), b ∈ l₁ → ¬p b = true) ∧ p a = true ∧ { toList := l } = l₁.push a ++ l₂ ∧ { toList := l }.eraseP p = l₁ ++ l₂
3081e6f43f7730fa
Matrix.zpow_sub_one
Mathlib/LinearAlgebra/Matrix/ZPow.lean
theorem zpow_sub_one {A : M} (h : IsUnit A.det) (n : ℤ) : A ^ (n - 1) = A ^ n * A⁻¹ := calc A ^ (n - 1) = A ^ (n - 1) * A * A⁻¹
n' : Type u_1 inst✝² : DecidableEq n' inst✝¹ : Fintype n' R : Type u_2 inst✝ : CommRing R A : M h : IsUnit A.det n : ℤ ⊢ A ^ (n - 1) = A ^ (n - 1) * A * A⁻¹
rw [mul_assoc, mul_nonsing_inv _ h, mul_one]
no goals
21343db4aa6e3915
Complex.norm_sub_mem_Icc_angle
Mathlib/Analysis/Complex/Angle.lean
/-- Chord-length is a multiple of arc-length up to constants. -/ lemma norm_sub_mem_Icc_angle (hx : ‖x‖ = 1) (hy : ‖y‖ = 1) : ‖x - y‖ ∈ Icc (2 / π * angle x y) (angle x y)
x y : ℂ hy : ‖1‖ = 1 θ : ℝ hθ : θ ∈ Ioc (-π) π ⊢ 2 * (1 - Real.cos θ) = (Real.cos θ - 1) ^ 2 + Real.sin θ ^ 2
linear_combination -θ.cos_sq_add_sin_sq
no goals
5f1a2d709d27832f
UniformSpace.secondCountable_of_separable
Mathlib/Topology/UniformSpace/Cauchy.lean
theorem secondCountable_of_separable [SeparableSpace α] : SecondCountableTopology α
case intro.intro.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u uniformSpace : UniformSpace α inst✝¹ : (𝓤 α).IsCountablyGenerated inst✝ : SeparableSpace α s : Set α hsc : s.Countable hsd : Dense s t : ℕ → Set (α × α) h_basis : (𝓤 α).HasAntitoneBasis t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V U : Set (α × α) hU : U ∈ 𝓤 α hUV : ball x U ⊆ V U' : Set (α × α) hU' : U' ∈ 𝓤 α left✝ : ∀ {a b : α}, (a, b) ∈ U' → (b, a) ∈ U' hUU' : U' ○ U' ⊆ U k : ℕ hk : t k ⊆ U' y : α hxy : y ∈ ball x (t k) hys : y ∈ s ⊢ ∃ v, (∃ i ∈ s, ∃ y, ball i (t y) = v) ∧ x ∈ v ∧ v ⊆ V
refine ⟨_, ⟨y, hys, k, rfl⟩, (hts k).subset hxy, fun z hz => ?_⟩
case intro.intro.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u uniformSpace : UniformSpace α inst✝¹ : (𝓤 α).IsCountablyGenerated inst✝ : SeparableSpace α s : Set α hsc : s.Countable hsd : Dense s t : ℕ → Set (α × α) h_basis : (𝓤 α).HasAntitoneBasis t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V U : Set (α × α) hU : U ∈ 𝓤 α hUV : ball x U ⊆ V U' : Set (α × α) hU' : U' ∈ 𝓤 α left✝ : ∀ {a b : α}, (a, b) ∈ U' → (b, a) ∈ U' hUU' : U' ○ U' ⊆ U k : ℕ hk : t k ⊆ U' y : α hxy : y ∈ ball x (t k) hys : y ∈ s z : α hz : z ∈ ball y (t k) ⊢ z ∈ V
4ad08f66c78319f3
Std.Tactic.BVDecide.BVExpr.bitblast.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Expr.lean
theorem bitblast.go_decl_eq (aig : AIG BVBit) (expr : BVExpr w) : ∀ (idx : Nat) (h1) (h2), (go aig expr).val.aig.decls[idx]'h2 = aig.decls[idx]'h1
case const w idx w✝ : Nat val✝ : BitVec w✝ aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (const val✝)).val.aig.decls.size ⊢ (go aig (const val✝)).val.aig.decls[idx] = aig.decls[idx]
dsimp only [go]
case const w idx w✝ : Nat val✝ : BitVec w✝ aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (const val✝)).val.aig.decls.size ⊢ (blastConst aig val✝).aig.decls[idx] = aig.decls[idx]
f92988d5a1595b39
ContinuousMultilinearMap.changeOrigin_toFormalMultilinearSeries
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
theorem changeOrigin_toFormalMultilinearSeries [DecidableEq ι] : continuousMultilinearCurryFin1 𝕜 (∀ i, E i) F (f.toFormalMultilinearSeries.changeOrigin x 1) = f.linearDeriv x
case h.inr 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 F : Type v inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝³ : (i : ι) → NormedAddCommGroup (E i) inst✝² : (i : ι) → NormedSpace 𝕜 (E i) inst✝¹ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F x : (i : ι) → E i inst✝ : DecidableEq ι y : (i : ι) → E i h✝ : Nonempty ι ⊢ (∑ a : { s // #s = Fintype.card ι - 1 }, ((f.toFormalMultilinearSeries.changeOriginSeriesTerm 1 (Fintype.card ι - 1) ↑a ⋯) fun x_1 => x) fun x => y) = ∑ i : ι, f (Function.update x i (y i))
simp_rw [changeOriginSeriesTerm_apply]
case h.inr 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 F : Type v inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝³ : (i : ι) → NormedAddCommGroup (E i) inst✝² : (i : ι) → NormedSpace 𝕜 (E i) inst✝¹ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F x : (i : ι) → E i inst✝ : DecidableEq ι y : (i : ι) → E i h✝ : Nonempty ι ⊢ ∑ x_1 : { s // #s = Fintype.card ι - 1 }, (f.toFormalMultilinearSeries (1 + (Fintype.card ι - 1))) ((↑x_1).piecewise (fun x_2 => x) fun x => y) = ∑ i : ι, f (Function.update x i (y i))
d7dded01cf2a4e1b
QuaternionAlgebra.Basis.lift_mul
Mathlib/Algebra/QuaternionBasis.lean
theorem lift_mul (x y : ℍ[R,c₁,c₂,c₃]) : q.lift (x * y) = q.lift x * q.lift y
R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A c₁ c₂ c₃ : R q : Basis A c₁ c₂ c₃ x y : ℍ[R,c₁,c₂,c₃] ⊢ (x * y).re • 1 + (x * y).imI • q.i + (x * y).imJ • q.j + (x * y).imK • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (x.imI * y.imI) • (c₁ • 1 + c₂ • q.i) + (x.imI * y.imJ) • q.k + (x.imI * y.imK) • (c₁ • q.j + c₂ • q.k) + (x.imJ * y.re) • q.j + (x.imJ * y.imI) • (c₂ • q.j + -q.k) + (x.imJ * c₃ * y.imJ) • 1 + (x.imJ * y.imK) • ((c₂ * c₃) • 1 + -(c₃ • q.i)) + (x.imK * y.re) • q.k + -((c₁ * x.imK * y.imI) • q.j) + (x.imK * c₃ * y.imJ) • q.i + -((c₁ * c₃ * x.imK * y.imK) • 1)
simp only [mul_re, sub_eq_add_neg, add_smul, neg_smul, mul_imI, ← add_assoc, mul_imJ, mul_imK]
R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A c₁ c₂ c₃ : R q : Basis A c₁ c₂ c₃ x y : ℍ[R,c₁,c₂,c₃] ⊢ (x.re * y.re) • 1 + (c₁ * x.imI * y.imI) • 1 + (c₃ * x.imJ * y.imJ) • 1 + (c₂ * c₃ * x.imJ * y.imK) • 1 + -((c₁ * c₃ * x.imK * y.imK) • 1) + (x.re * y.imI) • q.i + (x.imI * y.re) • q.i + (c₂ * x.imI * y.imI) • q.i + -((c₃ * x.imJ * y.imK) • q.i) + (c₃ * x.imK * y.imJ) • q.i + (x.re * y.imJ) • q.j + (c₁ * x.imI * y.imK) • q.j + (x.imJ * y.re) • q.j + (c₂ * x.imJ * y.imI) • q.j + -((c₁ * x.imK * y.imI) • q.j) + (x.re * y.imK) • q.k + (x.imI * y.imJ) • q.k + (c₂ * x.imI * y.imK) • q.k + -((x.imJ * y.imI) • q.k) + (x.imK * y.re) • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (x.imI * y.imI) • (c₁ • 1 + c₂ • q.i) + (x.imI * y.imJ) • q.k + (x.imI * y.imK) • (c₁ • q.j + c₂ • q.k) + (x.imJ * y.re) • q.j + (x.imJ * y.imI) • (c₂ • q.j + -q.k) + (x.imJ * c₃ * y.imJ) • 1 + (x.imJ * y.imK) • ((c₂ * c₃) • 1 + -(c₃ • q.i)) + (x.imK * y.re) • q.k + -((c₁ * x.imK * y.imI) • q.j) + (x.imK * c₃ * y.imJ) • q.i + -((c₁ * c₃ * x.imK * y.imK) • 1)
09bfbbd836e86c34
CategoryTheory.Dial.tensor_comp
Mathlib/CategoryTheory/Dialectica/Monoidal.lean
theorem tensor_comp {X₁ Y₁ Z₁ X₂ Y₂ Z₂ : Dial C} (f₁ : X₁ ⟶ Y₁) (f₂ : X₂ ⟶ Y₂) (g₁ : Y₁ ⟶ Z₁) (g₂ : Y₂ ⟶ Z₂) : tensorHom (f₁ ≫ g₁) (f₂ ≫ g₂) = tensorHom f₁ f₂ ≫ tensorHom g₁ g₂
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasFiniteProducts C inst✝ : HasPullbacks C X₁ Y₁ Z₁ X₂ Y₂ Z₂ : Dial C f₁ : X₁ ⟶ Y₁ f₂ : X₂ ⟶ Y₂ g₁ : Y₁ ⟶ Z₁ g₂ : Y₂ ⟶ Z₂ ⊢ tensorHom (f₁ ≫ g₁) (f₂ ≫ g₂) = tensorHom f₁ f₂ ≫ tensorHom g₁ g₂
ext <;> simp
case hF C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasFiniteProducts C inst✝ : HasPullbacks C X₁ Y₁ Z₁ X₂ Y₂ Z₂ : Dial C f₁ : X₁ ⟶ Y₁ f₂ : X₂ ⟶ Y₂ g₁ : Y₁ ⟶ Z₁ g₂ : Y₂ ⟶ Z₂ ⊢ π(prod.map π₁ π₁ ≫ π(π₁, prod.map f₁.f (𝟙 Z₁.tgt) ≫ g₁.F) ≫ f₁.F, prod.map π₂ π₂ ≫ π(π₁, prod.map f₂.f (𝟙 Z₂.tgt) ≫ g₂.F) ≫ f₂.F) = π(π(π₁ ≫ π₁, prod.map (π₁ ≫ f₁.f) π₁ ≫ g₁.F) ≫ f₁.F, π(π₁ ≫ π₂, prod.map (π₂ ≫ f₂.f) π₂ ≫ g₂.F) ≫ f₂.F)
1e9289a58304a4a7
Module.support_of_noZeroSMulDivisors
Mathlib/RingTheory/Support.lean
lemma Module.support_of_noZeroSMulDivisors [NoZeroSMulDivisors R M] [Nontrivial M] : Module.support R M = Set.univ
R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M ⊢ support R M = Set.univ
simp only [Set.eq_univ_iff_forall, mem_support_iff', ne_eq, smul_eq_zero, not_or]
R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M ⊢ ∀ (x : PrimeSpectrum R), ∃ m, ∀ r ∉ x.asIdeal, ¬r = 0 ∧ ¬m = 0
40f3ce29daf90d9a
Ordinal.CNF_sorted
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)
b o : Ordinal.{u_1} ⊢ Sorted (fun x1 x2 => x1 > x2) (map Prod.fst (CNF b o))
refine CNFRec b ?_ (fun o ho IH ↦ ?_) o
case refine_1 b o : Ordinal.{u_1} ⊢ Sorted (fun x1 x2 => x1 > x2) (map Prod.fst (CNF b 0)) case refine_2 b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x1 x2 => x1 > x2) (map Prod.fst (CNF b (o % b ^ log b o))) ⊢ Sorted (fun x1 x2 => x1 > x2) (map Prod.fst (CNF b o))
d982c7966c162266
interior_subset_gauge_lt_one
Mathlib/Analysis/Convex/Gauge.lean
theorem interior_subset_gauge_lt_one (s : Set E) : interior s ⊆ { x | gauge s x < 1 }
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E ⊢ interior s ⊆ {x | gauge s x < 1}
intro x hx
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E x : E hx : x ∈ interior s ⊢ x ∈ {x | gauge s x < 1}
3cd737264597e0ba
PMF.support_normalize
Mathlib/Probability/ProbabilityMassFunction/Constructions.lean
theorem support_normalize : (normalize f hf0 hf).support = Function.support f := Set.ext fun a => by simp [hf, mem_support_iff]
α : Type u_1 f : α → ℝ≥0∞ hf0 : tsum f ≠ 0 hf : tsum f ≠ ⊤ a : α ⊢ a ∈ (normalize f hf0 hf).support ↔ a ∈ Function.support f
simp [hf, mem_support_iff]
no goals
6e34b3d5b5061659
continuousAt_gauge_zero
Mathlib/Analysis/Convex/Gauge.lean
theorem continuousAt_gauge_zero (hs : s ∈ 𝓝 0) : ContinuousAt (gauge s) 0
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s : Set E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs : s ∈ 𝓝 0 ⊢ ContinuousAt (gauge s) 0
rw [ContinuousAt, gauge_zero]
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s : Set E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs : s ∈ 𝓝 0 ⊢ Tendsto (gauge s) (𝓝 0) (𝓝 0)
5dd1f9e9b5f3bede
t2_separation_compact_nhds
Mathlib/Topology/Separation/Hausdorff.lean
theorem t2_separation_compact_nhds [LocallyCompactSpace X] [T2Space X] {x y : X} (h : x ≠ y) : ∃ u v, u ∈ 𝓝 x ∧ v ∈ 𝓝 y ∧ IsCompact u ∧ IsCompact v ∧ Disjoint u v
X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X x y : X h : x ≠ y ⊢ ∃ u v, u ∈ 𝓝 x ∧ v ∈ 𝓝 y ∧ IsCompact u ∧ IsCompact v ∧ Disjoint u v
simpa only [exists_prop, ← exists_and_left, and_comm, and_assoc, and_left_comm] using ((compact_basis_nhds x).disjoint_iff (compact_basis_nhds y)).1 (disjoint_nhds_nhds.2 h)
no goals
ee342c49880ccde1
sum_mul_eq_sub_integral_mul₀
Mathlib/NumberTheory/AbelSummation.lean
theorem sum_mul_eq_sub_integral_mul₀ (hc : c 0 = 0) (b : ℝ) (hf_diff : ∀ t ∈ Set.Icc 1 b, DifferentiableAt ℝ f t) (hf_int : IntegrableOn (deriv f) (Set.Icc 1 b)) : ∑ k ∈ Icc 0 ⌊b⌋₊, f k * c k = f b * (∑ k ∈ Icc 0 ⌊b⌋₊, c k) - ∫ t in Set.Ioc 1 b, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k
𝕜 : Type u_1 inst✝ : RCLike 𝕜 c : ℕ → 𝕜 f : ℝ → 𝕜 hc : c 0 = 0 b : ℝ hf_diff : ∀ t ∈ Set.Icc 1 b, DifferentiableAt ℝ f t hf_int : IntegrableOn (deriv f) (Set.Icc 1 b) volume ⊢ ∑ k ∈ Icc 0 ⌊b⌋₊, f ↑k * c k = f b * ∑ k ∈ Icc 0 ⌊b⌋₊, c k - ∫ (t : ℝ) in Set.Ioc 1 b, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k
obtain hb | hb := le_or_gt 1 b
case inl 𝕜 : Type u_1 inst✝ : RCLike 𝕜 c : ℕ → 𝕜 f : ℝ → 𝕜 hc : c 0 = 0 b : ℝ hf_diff : ∀ t ∈ Set.Icc 1 b, DifferentiableAt ℝ f t hf_int : IntegrableOn (deriv f) (Set.Icc 1 b) volume hb : 1 ≤ b ⊢ ∑ k ∈ Icc 0 ⌊b⌋₊, f ↑k * c k = f b * ∑ k ∈ Icc 0 ⌊b⌋₊, c k - ∫ (t : ℝ) in Set.Ioc 1 b, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k case inr 𝕜 : Type u_1 inst✝ : RCLike 𝕜 c : ℕ → 𝕜 f : ℝ → 𝕜 hc : c 0 = 0 b : ℝ hf_diff : ∀ t ∈ Set.Icc 1 b, DifferentiableAt ℝ f t hf_int : IntegrableOn (deriv f) (Set.Icc 1 b) volume hb : 1 > b ⊢ ∑ k ∈ Icc 0 ⌊b⌋₊, f ↑k * c k = f b * ∑ k ∈ Icc 0 ⌊b⌋₊, c k - ∫ (t : ℝ) in Set.Ioc 1 b, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k
715329581e1c96e7
Nat.minSqFac_has_prop
Mathlib/Data/Nat/Squarefree.lean
theorem minSqFac_has_prop (n : ℕ) : MinSqFacProp n (minSqFac n)
case neg.inr n : ℕ d2 : ¬2 ∣ n n0 : n > 0 ⊢ n.MinSqFacProp (n.minSqFacAux 3)
refine minSqFacAux_has_prop _ n0 0 rfl ?_
case neg.inr n : ℕ d2 : ¬2 ∣ n n0 : n > 0 ⊢ ∀ (m : ℕ), Prime m → m ∣ n → 3 ≤ m
60eba7de40a3a105
UniformContinuousOn.continuousOn
Mathlib/Topology/UniformSpace/Basic.lean
theorem UniformContinuousOn.continuousOn [UniformSpace α] [UniformSpace β] {f : α → β} {s : Set α} (h : UniformContinuousOn f s) : ContinuousOn f s
α : Type ua β : Type ub inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α h : UniformContinuousOn f s ⊢ ContinuousOn f s
rw [uniformContinuousOn_iff_restrict] at h
α : Type ua β : Type ub inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α h : UniformContinuous (s.restrict f) ⊢ ContinuousOn f s
5802946f1c9cbf58
irreducible_pow_sup_of_le
Mathlib/RingTheory/DedekindDomain/Ideal.lean
theorem irreducible_pow_sup_of_le (hJ : Irreducible J) (n : ℕ) (hn : n ≤ emultiplicity J I) : J ^ n ⊔ I = J ^ n
case neg T : Type u_4 inst✝¹ : CommRing T inst✝ : IsDedekindDomain T I J : Ideal T hJ : Irreducible J n : ℕ hn : ↑n ≤ emultiplicity J I hI : ¬I = ⊥ ⊢ n ≤ count J (normalizedFactors I)
rw [emultiplicity_eq_count_normalizedFactors hJ hI, normalize_eq J] at hn
case neg T : Type u_4 inst✝¹ : CommRing T inst✝ : IsDedekindDomain T I J : Ideal T hJ : Irreducible J n : ℕ hn : ↑n ≤ ↑(count J (normalizedFactors I)) hI : ¬I = ⊥ ⊢ n ≤ count J (normalizedFactors I)
c29a75c2640d6fa6
PadicInt.bojanic_mahler_step2
Mathlib/NumberTheory/Padics/MahlerBasis.lean
/-- Second step in Bojanić's proof of Mahler's theorem (equation (11) of [bojanic74]): show that values `Δ_[1]^[n + p ^ t] f 0` for large enough `n` are bounded by the max of `(‖f‖ / p ^ s)` and `1 / p` times a sup over values for smaller `n`. We use `nnnorm`s on the RHS since `Finset.sup` requires an order with a bottom element. -/ private lemma bojanic_mahler_step2 {f : C(ℤ_[p], E)} {s t : ℕ} (hst : ∀ x y : ℤ_[p], ‖x - y‖ ≤ p ^ (-t : ℤ) → ‖f x - f y‖ ≤ ‖f‖ / p ^ s) (n : ℕ) : ‖Δ_[1]^[n + p ^ t] f 0‖ ≤ max ↑((Finset.range (p ^ t - 1)).sup fun j ↦ ‖Δ_[1]^[n + (j + 1)] f 0‖₊ / p) (‖f‖ / p ^ s)
p : ℕ hp : Fact (Nat.Prime p) E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℚ_[p] E inst✝ : IsUltrametricDist E f : C(ℤ_[p], E) s t : ℕ hst : ∀ (x y : ℤ_[p]), ‖x - y‖ ≤ ↑p ^ (-↑t) → ‖f x - f y‖ ≤ ‖f‖ / ↑p ^ s n : ℕ ⊢ ‖Δ_[1]^[n + p ^ t] (⇑f) 0‖ ≤ ↑((range (p ^ t - 1)).sup fun j => ‖Δ_[1]^[n + (j + 1)] (⇑f) 0‖₊ / ↑p) ⊔ ‖f‖ / ↑p ^ s
rw [bojanic_mahler_step1 _ _ (one_le_pow₀ hp.out.one_le)]
p : ℕ hp : Fact (Nat.Prime p) E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℚ_[p] E inst✝ : IsUltrametricDist E f : C(ℤ_[p], E) s t : ℕ hst : ∀ (x y : ℤ_[p]), ‖x - y‖ ≤ ↑p ^ (-↑t) → ‖f x - f y‖ ≤ ‖f‖ / ↑p ^ s n : ℕ ⊢ ‖-∑ j ∈ range (p ^ t - 1), (p ^ t).choose (j + 1) • Δ_[1]^[n + (j + 1)] (⇑f) 0 + ∑ k ∈ range (n + 1), ((-1) ^ (n - k) * ↑(n.choose k)) • (f (↑k + ↑(p ^ t)) - f ↑k)‖ ≤ ↑((range (p ^ t - 1)).sup fun j => ‖Δ_[1]^[n + (j + 1)] (⇑f) 0‖₊ / ↑p) ⊔ ‖f‖ / ↑p ^ s
2db3408803885b9e
Real.strictConcaveOn_rpow
Mathlib/Analysis/Convex/SpecificFunctions/Pow.lean
lemma strictConcaveOn_rpow {p : ℝ} (hp₀ : 0 < p) (hp₁ : p < 1) : StrictConcaveOn ℝ (Set.Ici 0) fun x : ℝ ↦ x ^ p
case a p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := ⟨x, hx⟩ y' : ℝ≥0 := ⟨y, hy⟩ a' : ℝ≥0 := ⟨a, ⋯⟩ b' : ℝ≥0 := ⟨b, ⋯⟩ hxy' : x' ≠ y' ⊢ ↑(a' + b') = ↑1
simp [a', b', hab]
no goals
e355702cbbe8ec4b
IncidenceAlgebra.mu_toDual
Mathlib/Combinatorics/Enumerative/IncidenceAlgebra.lean
@[simp] lemma mu_toDual (a b : α) : mu 𝕜 (toDual a) (toDual b) = mu 𝕜 b a
𝕜 : Type u_2 α : Type u_5 inst✝³ : Ring 𝕜 inst✝² : PartialOrder α inst✝¹ : LocallyFiniteOrder α inst✝ : DecidableEq α this : DecidableRel fun x1 x2 => x1 ≤ x2 := Classical.decRel fun x1 x2 => x1 ≤ x2 mud : IncidenceAlgebra 𝕜 αᵒᵈ := { toFun := fun a b => (mu 𝕜) (ofDual b) (ofDual a), eq_zero_of_not_le' := ⋯ } ⊢ mud * zeta 𝕜 = 1
ext a b
case h 𝕜 : Type u_2 α : Type u_5 inst✝³ : Ring 𝕜 inst✝² : PartialOrder α inst✝¹ : LocallyFiniteOrder α inst✝ : DecidableEq α this : DecidableRel fun x1 x2 => x1 ≤ x2 := Classical.decRel fun x1 x2 => x1 ≤ x2 mud : IncidenceAlgebra 𝕜 αᵒᵈ := { toFun := fun a b => (mu 𝕜) (ofDual b) (ofDual a), eq_zero_of_not_le' := ⋯ } a b : αᵒᵈ a✝ : a ≤ b ⊢ (mud * zeta 𝕜) a b = 1 a b
95f4eed14862eb7a
BoundedContinuousFunction.isBounded_range_integral
Mathlib/MeasureTheory/Integral/BoundedContinuousFunction.lean
lemma isBounded_range_integral {ι : Type*} (μs : ι → Measure X) [∀ i, IsProbabilityMeasure (μs i)] (f : X →ᵇ E) : Bornology.IsBounded (Set.range (fun i ↦ ∫ x, f x ∂ (μs i)))
case intro X : Type u_1 inst✝⁸ : MeasurableSpace X inst✝⁷ : TopologicalSpace X E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : OpensMeasurableSpace X inst✝⁴ : SecondCountableTopology E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : NormedSpace ℝ E ι : Type u_3 μs : ι → Measure X inst✝ : ∀ (i : ι), IsProbabilityMeasure (μs i) f : X →ᵇ E v : E i : ι hi : (fun i => ∫ (x : X), f x ∂μs i) i = v ⊢ ‖v‖ ≤ ‖f‖
rw [← hi]
case intro X : Type u_1 inst✝⁸ : MeasurableSpace X inst✝⁷ : TopologicalSpace X E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : OpensMeasurableSpace X inst✝⁴ : SecondCountableTopology E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : NormedSpace ℝ E ι : Type u_3 μs : ι → Measure X inst✝ : ∀ (i : ι), IsProbabilityMeasure (μs i) f : X →ᵇ E v : E i : ι hi : (fun i => ∫ (x : X), f x ∂μs i) i = v ⊢ ‖(fun i => ∫ (x : X), f x ∂μs i) i‖ ≤ ‖f‖
ab2ff73039861d6a
Set.range_ite_subset'
Mathlib/Data/Set/Image.lean
theorem range_ite_subset' {p : Prop} [Decidable p] {f g : α → β} : range (if p then f else g) ⊆ range f ∪ range g
case neg α : Type u_1 β : Type u_2 p : Prop inst✝ : Decidable p f g : α → β h : ¬p ⊢ range g ⊆ range f ∪ range g
exact subset_union_right
no goals
62472e83fd94611c
Basis.maximal
Mathlib/LinearAlgebra/Basis/Basic.lean
theorem maximal [Nontrivial R] (b : Basis ι R M) : b.linearIndependent.Maximal := fun w hi h => by -- If `w` is strictly bigger than `range b`, apply le_antisymm h -- then choose some `x ∈ w \ range b`, intro x p by_contra q -- and write it in terms of the basis. have e := b.linearCombination_repr x -- This then expresses `x` as a linear combination -- of elements of `w` which are in the range of `b`, let u : ι ↪ w := ⟨fun i => ⟨b i, h ⟨i, rfl⟩⟩, fun i i' r => b.injective (by simpa only [Subtype.mk_eq_mk] using r)⟩ simp_rw [Finsupp.linearCombination_apply] at e change ((b.repr x).sum fun (i : ι) (a : R) ↦ a • (u i : M)) = ((⟨x, p⟩ : w) : M) at e rw [← Finsupp.sum_embDomain (f := u) (g := fun x r ↦ r • (x : M)), ← Finsupp.linearCombination_apply] at e -- Now we can contradict the linear independence of `hi` refine hi.linearCombination_ne_of_not_mem_support _ ?_ e simp only [Finset.mem_map, Finsupp.support_embDomain] rintro ⟨j, -, W⟩ simp only [u, Embedding.coeFn_mk, Subtype.mk_eq_mk] at W apply q ⟨j, W⟩
ι : Type u_1 R : Type u_3 M : Type u_5 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : range ⇑b ≤ w ⊢ w ≤ range ⇑b
intro x p
ι : Type u_1 R : Type u_3 M : Type u_5 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : range ⇑b ≤ w x : M p : x ∈ w ⊢ x ∈ range ⇑b
26f21cbf99980896
PowerSeries.trunc_X
Mathlib/RingTheory/PowerSeries/Trunc.lean
theorem trunc_X (n) : trunc (n + 2) X = (Polynomial.X : R[X])
case a R : Type u_1 inst✝ : Semiring R n d : ℕ ⊢ (if d < n + 2 then if d = 1 then 1 else 0 else 0) = Polynomial.X.coeff d
split_ifs with h₁ h₂
case pos R : Type u_1 inst✝ : Semiring R n d : ℕ h₁ : d < n + 2 h₂ : d = 1 ⊢ 1 = Polynomial.X.coeff d case neg R : Type u_1 inst✝ : Semiring R n d : ℕ h₁ : d < n + 2 h₂ : ¬d = 1 ⊢ 0 = Polynomial.X.coeff d case neg R : Type u_1 inst✝ : Semiring R n d : ℕ h₁ : ¬d < n + 2 ⊢ 0 = Polynomial.X.coeff d
b873ec511fef51ee
MeasureTheory.Measure.pi_pi_aux
Mathlib/MeasureTheory/Constructions/Pi.lean
theorem pi_pi_aux [∀ i, SigmaFinite (μ i)] (s : ∀ i, Set (α i)) (hs : ∀ i, MeasurableSet (s i)) : Measure.pi μ (pi univ s) = ∏ i, μ i (s i)
case refine_2 ι : Type u_1 α : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → MeasurableSpace (α i) μ : (i : ι) → Measure (α i) inst✝ : ∀ (i : ι), SigmaFinite (μ i) s : (i : ι) → Set (α i) hs : ∀ (i : ι), MeasurableSet (s i) this : Encodable ι ⊢ (pi' μ) (univ.pi s) ≤ (OuterMeasure.pi fun i => (μ i).toOuterMeasure) (univ.pi s)
suffices (pi' μ).toOuterMeasure ≤ OuterMeasure.pi fun i => (μ i).toOuterMeasure by exact this _
case refine_2 ι : Type u_1 α : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → MeasurableSpace (α i) μ : (i : ι) → Measure (α i) inst✝ : ∀ (i : ι), SigmaFinite (μ i) s : (i : ι) → Set (α i) hs : ∀ (i : ι), MeasurableSet (s i) this : Encodable ι ⊢ (pi' μ).toOuterMeasure ≤ OuterMeasure.pi fun i => (μ i).toOuterMeasure
d6eb1f2f929e1b76
IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic
Mathlib/NumberTheory/Cyclotomic/Basic.lean
theorem adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic {n : ℕ+} [IsDomain B] {ζ : B} (hζ : IsPrimitiveRoot ζ n) : adjoin A ((cyclotomic n A).rootSet B) = adjoin A {ζ}
case refine_2 A : Type u B : Type v inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra A B n : ℕ+ inst✝ : IsDomain B ζ : B hζ : IsPrimitiveRoot ζ ↑n x : B hx : x = ζ ⊢ x ∈ (cyclotomic (↑n) A).rootSet B
simpa only [hx, mem_rootSet', map_cyclotomic, aeval_def, ← eval_map, IsRoot] using And.intro (cyclotomic_ne_zero n B) (hζ.isRoot_cyclotomic n.pos)
no goals
47345c8f34a7fd33
factorsThrough_of_pullbackCondition
Mathlib/Condensed/TopComparison.lean
theorem factorsThrough_of_pullbackCondition {Z B : C} {π : Z ⟶ B} [HasPullback π π] [PreservesLimit (cospan π π) G] {a : C(G.obj Z, X)} (ha : a ∘ (G.map (pullback.fst _ _)) = a ∘ (G.map (pullback.snd π π))) : Function.FactorsThrough a (G.map π)
C : Type u inst✝³ : Category.{v, u} C G : C ⥤ TopCat X : Type w' inst✝² : TopologicalSpace X Z B : C π : Z ⟶ B inst✝¹ : HasPullback π π inst✝ : PreservesLimit (cospan π π) G a : C(↑(G.obj Z), X) ha : ⇑a ∘ ⇑(ConcreteCategory.hom (G.map (pullback.fst π π))) = ⇑a ∘ ⇑(ConcreteCategory.hom (G.map (pullback.snd π π))) x y : ↑(G.obj Z) hxy : (ConcreteCategory.hom (G.map π)) x = (ConcreteCategory.hom (G.map π)) y ⊢ a x = a y
let xy : G.obj (pullback π π) := (PreservesPullback.iso G π π).inv <| (TopCat.pullbackIsoProdSubtype (G.map π) (G.map π)).inv ⟨(x, y), hxy⟩
C : Type u inst✝³ : Category.{v, u} C G : C ⥤ TopCat X : Type w' inst✝² : TopologicalSpace X Z B : C π : Z ⟶ B inst✝¹ : HasPullback π π inst✝ : PreservesLimit (cospan π π) G a : C(↑(G.obj Z), X) ha : ⇑a ∘ ⇑(ConcreteCategory.hom (G.map (pullback.fst π π))) = ⇑a ∘ ⇑(ConcreteCategory.hom (G.map (pullback.snd π π))) x y : ↑(G.obj Z) hxy : (ConcreteCategory.hom (G.map π)) x = (ConcreteCategory.hom (G.map π)) y xy : ↑(G.obj (pullback π π)) := (ConcreteCategory.hom (PreservesPullback.iso G π π).inv) ((ConcreteCategory.hom (TopCat.pullbackIsoProdSubtype (G.map π) (G.map π)).inv) ⟨(x, y), hxy⟩) ⊢ a x = a y
579a4db837d3077a
Module.Finite.exists_fin'
Mathlib/RingTheory/Finiteness/Cardinality.lean
/-- A finite module admits a surjective linear map from a finite free module. -/ lemma exists_fin' [Module.Finite R M] : ∃ (n : ℕ) (f : (Fin n → R) →ₗ[R] M), Surjective f
R : Type u M : Type u_3 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module.Finite R M ⊢ ∃ n f, Surjective ⇑f
have ⟨n, s, hs⟩ := exists_fin (R := R) (M := M)
R : Type u M : Type u_3 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module.Finite R M n : ℕ s : Fin n → M hs : span R (Set.range s) = ⊤ ⊢ ∃ n f, Surjective ⇑f
a44152e4175c7cd5
intervalIntegral.integral_comp_neg
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
theorem integral_comp_neg : (∫ x in a..b, f (-x)) = ∫ x in -b..-a, f x
E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E ⊢ ∫ (x : ℝ) in a..b, f (-x) = ∫ (x : ℝ) in -b..-a, f x
simpa only [zero_sub] using integral_comp_sub_left f 0
no goals
3ac1cbee3bf8f34a
VectorFourier.integral_bilin_fourierIntegral_eq_flip
Mathlib/Analysis/Fourier/FourierTransform.lean
theorem integral_bilin_fourierIntegral_eq_flip {f : V → E} {g : W → F} (M : E →L[ℂ] F →L[ℂ] G) (he : Continuous e) (hL : Continuous fun p : V × W ↦ L p.1 p.2) (hf : Integrable f μ) (hg : Integrable g ν) : ∫ ξ, M (fourierIntegral e μ L f ξ) (g ξ) ∂ν = ∫ x, M (f x) (fourierIntegral e ν L.flip g x) ∂μ
case hf.h.h 𝕜 : Type u_1 inst✝²³ : CommRing 𝕜 V : Type u_2 inst✝²² : AddCommGroup V inst✝²¹ : Module 𝕜 V inst✝²⁰ : MeasurableSpace V W : Type u_3 inst✝¹⁹ : AddCommGroup W inst✝¹⁸ : Module 𝕜 W E : Type u_4 F : Type u_5 G : Type u_6 inst✝¹⁷ : NormedAddCommGroup E inst✝¹⁶ : NormedSpace ℂ E inst✝¹⁵ : NormedAddCommGroup F inst✝¹⁴ : NormedSpace ℂ F inst✝¹³ : NormedAddCommGroup G inst✝¹² : NormedSpace ℂ G inst✝¹¹ : TopologicalSpace 𝕜 inst✝¹⁰ : IsTopologicalRing 𝕜 inst✝⁹ : TopologicalSpace V inst✝⁸ : BorelSpace V inst✝⁷ : TopologicalSpace W inst✝⁶ : MeasurableSpace W inst✝⁵ : BorelSpace W e : AddChar 𝕜 𝕊 μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 ν : Measure W inst✝⁴ : SigmaFinite μ inst✝³ : SigmaFinite ν inst✝² : SecondCountableTopology V inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F f : V → E g : W → F M : E →L[ℂ] F →L[ℂ] G he : Continuous ⇑e hL : Continuous fun p => (L p.1) p.2 hf : Integrable f μ hg : Integrable g ν hG : CompleteSpace G this : Integrable (fun p => ‖M‖ * (‖g p.1‖ * ‖f p.2‖)) (ν.prod μ) ξ : W x : V ⊢ ‖(M (f x)) (g ξ)‖ ≤ ‖M‖ * ‖f (ξ, x).2‖ * ‖g (ξ, x).1‖
exact M.le_opNorm₂ (f x) (g ξ)
no goals
81aa292dd9850619
List.dedup_eq_cons
Mathlib/Data/List/Dedup.lean
theorem dedup_eq_cons (l : List α) (a : α) (l' : List α) : l.dedup = a :: l' ↔ a ∈ l ∧ a ∉ l' ∧ l.dedup.tail = l'
case refine_1 α : Type u_1 inst✝ : DecidableEq α l : List α a : α l' : List α h : l.dedup = a :: l' ⊢ a ∈ l ∧ a ∉ l' ∧ l.dedup.tail = l'
refine ⟨mem_dedup.1 (h.symm ▸ mem_cons_self _ _), fun ha => ?_, by rw [h, tail_cons]⟩
case refine_1 α : Type u_1 inst✝ : DecidableEq α l : List α a : α l' : List α h : l.dedup = a :: l' ha : a ∈ l' ⊢ False
31be0178b993dde6
iInter_halfSpaces_eq
Mathlib/Analysis/NormedSpace/HahnBanach/Separation.lean
theorem iInter_halfSpaces_eq (hs₁ : Convex ℝ s) (hs₂ : IsClosed s) : ⋂ l : E →L[ℝ] ℝ, { x | ∃ y ∈ s, l x ≤ l y } = s
E : Type u_2 inst✝⁵ : TopologicalSpace E inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s : Set E inst✝² : IsTopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E hs₁ : Convex ℝ s hs₂ : IsClosed s ⊢ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y ∈ s, i x ≤ i y} = s
refine Set.Subset.antisymm (fun x hx => ?_) fun x hx l => ⟨x, hx, le_rfl⟩
E : Type u_2 inst✝⁵ : TopologicalSpace E inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s : Set E inst✝² : IsTopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E hs₁ : Convex ℝ s hs₂ : IsClosed s x : E hx : x ∈ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y ∈ s, i x ≤ i y} ⊢ x ∈ s
62fc6b991b51d567
AlgebraicGeometry.Scheme.Opens.toSpecΓ_top
Mathlib/AlgebraicGeometry/AffineScheme.lean
@[simp] lemma Scheme.Opens.toSpecΓ_top {X : Scheme} : (⊤ : X.Opens).toSpecΓ = (⊤ : X.Opens).ι ≫ X.toSpecΓ
X : Scheme ⊢ (↑⊤).toSpecΓ ≫ Spec.map (X.presheaf.map (eqToHom ⋯)) = (↑⊤).toSpecΓ ≫ Spec.map (X.presheaf.map (homOfLE ⋯).op)
rfl
no goals
30e215b07924d3af
polynomialFunctions.comap_compRightAlgHom_iccHomeoI
Mathlib/Topology/ContinuousMap/Polynomial.lean
theorem polynomialFunctions.comap_compRightAlgHom_iccHomeoI (a b : ℝ) (h : a < b) : (polynomialFunctions I).comap (compRightAlgHom ℝ ℝ (iccHomeoI a b h).symm) = polynomialFunctions (Set.Icc a b)
case h.mpr.intro.intro.refine_2.h a b : ℝ h : a < b p : ℝ[X] q : ℝ[X] := p.comp ((b - a) • X + Polynomial.C a) x : ↑I ⊢ (↑(toContinuousMapOnAlgHom I) q) x = (↑(compRightAlgHom ℝ ℝ ↑(iccHomeoI a b h).symm) (↑(toContinuousMapOnAlgHom (Set.Icc a b)) p)) x
simp [q, mul_comm]
no goals
c86eff4051268cff
Submodule.exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul
Mathlib/RingTheory/Finiteness/Nakayama.lean
theorem exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul {R : Type*} [CommRing R] {M : Type*} [AddCommGroup M] [Module R M] (I : Ideal R) (N : Submodule R M) (hn : N.FG) (hin : N ≤ I • N) : ∃ r : R, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = (0 : M)
case intro.intro.refine_2 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R N : Submodule R M s✝ : Set M hfs : s✝.Finite i : M s : Set M x✝¹ : i ∉ s x✝ : s.Finite ih : (∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R s) ∧ s ⊆ ↑N) → ∃ r, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = 0 H : ∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R (insert i s)) ∧ insert i s ⊆ ↑N ⊢ ∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R s) ∧ s ⊆ ↑N
rcases H with ⟨r, hr1, hrn, hs⟩
case intro.intro.refine_2.intro.intro.intro R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R N : Submodule R M s✝ : Set M hfs : s✝.Finite i : M s : Set M x✝¹ : i ∉ s x✝ : s.Finite ih : (∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R s) ∧ s ⊆ ↑N) → ∃ r, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = 0 r : R hr1 : r - 1 ∈ I hrn : N ≤ comap ((LinearMap.lsmul R M) r) (I • span R (insert i s)) hs : insert i s ⊆ ↑N ⊢ ∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R s) ∧ s ⊆ ↑N
ddde3c87abdd1812
LieSubmodule.isCompactElement_lieSpan_singleton
Mathlib/Algebra/Lie/Submodule.lean
lemma isCompactElement_lieSpan_singleton (m : M) : CompleteLattice.IsCompactElement (lieSpan R L {m})
R : Type u L : Type v M : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : LieRingModule L M m : M s : Set (LieSubmodule R L M) hne : s.Nonempty hdir : DirectedOn (fun x1 x2 => x1 ≤ x2) s hsup : m ∈ ↑(sSup s) this : ↑(sSup s) = ⋃ N ∈ s, ↑N N : LieSubmodule R L M hN : N ∈ s hN' : m ∈ N ⊢ lieSpan R L {m} ≤ N
simpa
no goals
016ba20f16d8a5de
exists_continuous_add_one_of_isCompact_nnreal
Mathlib/MeasureTheory/Integral/RieszMarkovKakutani/Basic.lean
lemma exists_continuous_add_one_of_isCompact_nnreal {s₀ s₁ : Set X} {t : Set X} (s₀_compact : IsCompact s₀) (s₁_compact : IsCompact s₁) (t_compact : IsCompact t) (disj : Disjoint s₀ s₁) (hst : s₀ ∪ s₁ ⊆ t) : ∃ (f₀ f₁ : C_c(X, ℝ≥0)), EqOn f₀ 1 s₀ ∧ EqOn f₁ 1 s₁ ∧ EqOn (f₀ + f₁) 1 t
case h.refine_3 X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X s₀ s₁ t : Set X s₀_compact : IsCompact s₀ s₁_compact : IsCompact s₁ t_compact : IsCompact t disj : Disjoint s₀ s₁ hst : s₀ ∪ s₁ ⊆ t so : Fin 2 → Set X := fun j => if j = 0 then s₀ᶜ else s₁ᶜ hso : so = fun j => if j = 0 then s₀ᶜ else s₁ᶜ soopen : ∀ (j : Fin 2), IsOpen (so j) hsot : t ⊆ ⋃ j, so j f : Fin 2 → C(X, ℝ) f_supp_in_so : ∀ (i : Fin 2), tsupport ⇑(f i) ⊆ so i sum_f_one_on_t : EqOn (∑ i : Fin 2, ⇑(f i)) 1 t f_in_icc : ∀ (i : Fin 2) (x : X), (f i) x ∈ Icc 0 1 f_hcs : ∀ (i : Fin 2), HasCompactSupport ⇑(f i) sum_one_x : ∀ x ∈ t, (f 0) x + (f 1) x = 1 x : X hx : x ∈ t ⊢ ((f 1) x).toNNReal + ((f 0) x).toNNReal = 1
rw [Real.toNNReal_add_toNNReal (f_in_icc 1 x).1 (f_in_icc 0 x).1, add_comm]
case h.refine_3 X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X s₀ s₁ t : Set X s₀_compact : IsCompact s₀ s₁_compact : IsCompact s₁ t_compact : IsCompact t disj : Disjoint s₀ s₁ hst : s₀ ∪ s₁ ⊆ t so : Fin 2 → Set X := fun j => if j = 0 then s₀ᶜ else s₁ᶜ hso : so = fun j => if j = 0 then s₀ᶜ else s₁ᶜ soopen : ∀ (j : Fin 2), IsOpen (so j) hsot : t ⊆ ⋃ j, so j f : Fin 2 → C(X, ℝ) f_supp_in_so : ∀ (i : Fin 2), tsupport ⇑(f i) ⊆ so i sum_f_one_on_t : EqOn (∑ i : Fin 2, ⇑(f i)) 1 t f_in_icc : ∀ (i : Fin 2) (x : X), (f i) x ∈ Icc 0 1 f_hcs : ∀ (i : Fin 2), HasCompactSupport ⇑(f i) sum_one_x : ∀ x ∈ t, (f 0) x + (f 1) x = 1 x : X hx : x ∈ t ⊢ ((f 0) x + (f 1) x).toNNReal = 1
c2d96a23593bed78
AddCircle.closedBall_ae_eq_ball
Mathlib/MeasureTheory/Group/AddCircle.lean
theorem closedBall_ae_eq_ball {x : AddCircle T} {ε : ℝ} : closedBall x ε =ᵐ[volume] ball x ε
T : ℝ hT : Fact (0 < T) x : AddCircle T ε : ℝ ⊢ closedBall x ε =ᶠ[ae volume] ball x ε
rcases le_or_lt ε 0 with hε | hε
case inl T : ℝ hT : Fact (0 < T) x : AddCircle T ε : ℝ hε : ε ≤ 0 ⊢ closedBall x ε =ᶠ[ae volume] ball x ε case inr T : ℝ hT : Fact (0 < T) x : AddCircle T ε : ℝ hε : 0 < ε ⊢ closedBall x ε =ᶠ[ae volume] ball x ε
d4d4a4368219224a
DerivedCategory.mem_distTriang_iff
Mathlib/Algebra/Homology/DerivedCategory/Basic.lean
lemma mem_distTriang_iff (T : Triangle (DerivedCategory C)) : (T ∈ distTriang (DerivedCategory C)) ↔ ∃ (X Y : CochainComplex C ℤ) (f : X ⟶ Y), Nonempty (T ≅ Q.mapTriangle.obj (CochainComplex.mappingCone.triangle f))
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : HasDerivedCategory C T : Triangle (DerivedCategory C) ⊢ T ∈ distinguishedTriangles ↔ ∃ X Y f, Nonempty (T ≅ Q.mapTriangle.obj (CochainComplex.mappingCone.triangle f))
constructor
case mp C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : HasDerivedCategory C T : Triangle (DerivedCategory C) ⊢ T ∈ distinguishedTriangles → ∃ X Y f, Nonempty (T ≅ Q.mapTriangle.obj (CochainComplex.mappingCone.triangle f)) case mpr C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : HasDerivedCategory C T : Triangle (DerivedCategory C) ⊢ (∃ X Y f, Nonempty (T ≅ Q.mapTriangle.obj (CochainComplex.mappingCone.triangle f))) → T ∈ distinguishedTriangles
03b436a0c0486942
MeasureTheory.L1.setToL1_mono
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToL1_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C) (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁[μ] G'} (hfg : f ≤ g) : setToL1 hT f ≤ setToL1 hT g
α : Type u_1 m : MeasurableSpace α μ : Measure α G' : Type u_7 G'' : Type u_8 inst✝⁴ : NormedLatticeAddCommGroup G'' inst✝³ : NormedSpace ℝ G'' inst✝² : CompleteSpace G'' inst✝¹ : NormedLatticeAddCommGroup G' inst✝ : NormedSpace ℝ G' T : Set α → G' →L[ℝ] G'' C : ℝ hT : DominatedFinMeasAdditive μ T C hT_nonneg : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∀ (x : G'), 0 ≤ x → 0 ≤ (T s) x f g : ↥(Lp G' 1 μ) hfg : 0 ≤ g - f ⊢ 0 ≤ (setToL1 hT) g - (setToL1 hT) f
rw [← (setToL1 hT).map_sub]
α : Type u_1 m : MeasurableSpace α μ : Measure α G' : Type u_7 G'' : Type u_8 inst✝⁴ : NormedLatticeAddCommGroup G'' inst✝³ : NormedSpace ℝ G'' inst✝² : CompleteSpace G'' inst✝¹ : NormedLatticeAddCommGroup G' inst✝ : NormedSpace ℝ G' T : Set α → G' →L[ℝ] G'' C : ℝ hT : DominatedFinMeasAdditive μ T C hT_nonneg : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∀ (x : G'), 0 ≤ x → 0 ≤ (T s) x f g : ↥(Lp G' 1 μ) hfg : 0 ≤ g - f ⊢ 0 ≤ (setToL1 hT) (g - f)
d553f717872d4afe
separableClosure_le_iff
Mathlib/FieldTheory/PurelyInseparable/Basic.lean
theorem separableClosure_le_iff [Algebra.IsAlgebraic F E] (L : IntermediateField F E) : separableClosure F E ≤ L ↔ IsPurelyInseparable L E
F : Type u E : Type v inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Algebra.IsAlgebraic F E L : IntermediateField F E ⊢ separableClosure F E ≤ L ↔ IsPurelyInseparable (↥L) E
refine ⟨fun h ↦ ?_, fun _ ↦ separableClosure_le F E L⟩
F : Type u E : Type v inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Algebra.IsAlgebraic F E L : IntermediateField F E h : separableClosure F E ≤ L ⊢ IsPurelyInseparable (↥L) E
3ca97f86bd963620
strictConvexOn_rpow
Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean
theorem strictConvexOn_rpow {p : ℝ} (hp : 1 < p) : StrictConvexOn ℝ (Ici 0) fun x : ℝ ↦ x ^ p
p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p q : 0 < y - x ⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1)
rw [div_lt_iff₀ q, ← div_lt_div_iff_of_pos_right hy', _root_.sub_div, div_self hy'.ne', ← div_rpow hx hy.le, sub_lt_comm, ← add_sub_cancel_right (x / y) 1, add_comm, add_sub_assoc, ← div_mul_eq_mul_div, mul_div_assoc, ← rpow_sub hy, sub_sub_cancel_left, rpow_neg_one, mul_assoc, ← div_eq_inv_mul, sub_eq_add_neg, ← mul_neg, ← neg_div, neg_sub, _root_.sub_div, div_self hy.ne']
p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p q : 0 < y - x ⊢ 1 + p * (x / y - 1) < (1 + (x / y - 1)) ^ p
003004303f55f1b7
NumberField.InfinitePlace.mk_eq_iff
Mathlib/NumberTheory/NumberField/Embeddings.lean
theorem mk_eq_iff {φ ψ : K →+* ℂ} : mk φ = mk ψ ↔ φ = ψ ∨ ComplexEmbedding.conjugate φ = ψ
case mp.intro.inl.h K : Type u_2 inst✝ : Field K φ ψ : K →+* ℂ h₀ : mk φ = mk ψ j : ℂ → K hiφ : Function.LeftInverse j ⇑φ ι : K ≃+* ↥φ.range := RingEquiv.ofLeftInverse hiφ hlip : LipschitzWith 1 ⇑(ψ.comp ι.symm.toRingHom) h : (↑↑(ψ.comp ι.symm.toRingHom)).toFun = ⇑φ.fieldRange.subtype ⊢ φ = ψ
ext1 x
case mp.intro.inl.h.a K : Type u_2 inst✝ : Field K φ ψ : K →+* ℂ h₀ : mk φ = mk ψ j : ℂ → K hiφ : Function.LeftInverse j ⇑φ ι : K ≃+* ↥φ.range := RingEquiv.ofLeftInverse hiφ hlip : LipschitzWith 1 ⇑(ψ.comp ι.symm.toRingHom) h : (↑↑(ψ.comp ι.symm.toRingHom)).toFun = ⇑φ.fieldRange.subtype x : K ⊢ φ x = ψ x
1d2ef4e3545a7979
CliffordAlgebra.involute_eq_of_mem_odd
Mathlib/LinearAlgebra/CliffordAlgebra/Conjugation.lean
theorem involute_eq_of_mem_odd {x : CliffordAlgebra Q} (h : x ∈ evenOdd Q 1) : involute x = -x
R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q h : x ∈ evenOdd Q 1 ⊢ involute x = -x
induction x, h using odd_induction with | ι m => exact involute_ι _ | add x y _hx _hy ihx ihy => rw [map_add, ihx, ihy, neg_add] | ι_mul_ι_mul m₁ m₂ x _hx ihx => rw [map_mul, map_mul, involute_ι, involute_ι, ihx, neg_mul_neg, mul_neg]
no goals
de256de08fdc980b
AlgebraicGeometry.spread_out_of_isGermInjective
Mathlib/AlgebraicGeometry/SpreadingOut.lean
/-- Given `S`-schemes `X Y` and points `x : X` `y : Y` over `s : S`. Suppose we have the following diagram of `S`-schemes ``` Spec 𝒪_{X, x} ⟶ X | Spec(φ) ↓ Spec 𝒪_{Y, y} ⟶ Y ``` Then the map `Spec(φ)` spreads out to an `S`-morphism on an open subscheme `U ⊆ X`, ``` Spec 𝒪_{X, x} ⟶ U ⊆ X | | Spec(φ) | ↓ ↓ Spec 𝒪_{Y, y} ⟶ Y ``` provided that `Y` is locally of finite type over `S` and `X` is "germ-injective" at `x` (e.g. when it's integral or locally noetherian). TODO: The condition on `X` is unnecessary when `Y` is locally of finite presentation. -/ @[stacks 0BX6] lemma spread_out_of_isGermInjective [LocallyOfFiniteType sY] {x : X} [X.IsGermInjectiveAt x] {y : Y} (e : sX.base x = sY.base y) (φ : Y.presheaf.stalk y ⟶ X.presheaf.stalk x) (h : sY.stalkMap y ≫ φ = S.presheaf.stalkSpecializes (Inseparable.of_eq e).specializes ≫ sX.stalkMap x) : ∃ (U : X.Opens) (hxU : x ∈ U) (f : U.toScheme ⟶ Y), Spec.map φ ≫ Y.fromSpecStalk y = U.fromSpecStalkOfMem x hxU ≫ f ∧ f ≫ sY = U.ι ≫ sX
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro X Y S : Scheme sX : X ⟶ S sY : Y ⟶ S inst✝¹ : LocallyOfFiniteType sY x : ↑↑X.toPresheafedSpace inst✝ : X.IsGermInjectiveAt x y : ↑↑Y.toPresheafedSpace e : (ConcreteCategory.hom sX.base) x = (ConcreteCategory.hom sY.base) y φ : Y.presheaf.stalk y ⟶ X.presheaf.stalk x h : Scheme.Hom.stalkMap sY y ≫ φ = S.presheaf.stalkSpecializes ⋯ ≫ Scheme.Hom.stalkMap sX x U : TopologicalSpace.Opens ↑↑S.toPresheafedSpace hU : U ∈ S.affineOpens hxU : (ConcreteCategory.hom sX.base) x ∈ ↑U hyU : (ConcreteCategory.hom sY.base) y ∈ U V : Y.Opens hV : V ∈ Y.affineOpens hyV : y ∈ ↑V iVU : ↑V ⊆ (sY ⁻¹ᵁ U).carrier this : Scheme.Hom.appLE sY U V iVU ≫ Y.presheaf.germ V y hyV ≫ φ = Scheme.Hom.app sX U ≫ X.presheaf.germ (sX ⁻¹ᵁ U) x hxU ⊢ ∃ U, ∃ (hxU : x ∈ U), ∃ f, Spec.map φ ≫ Y.fromSpecStalk y = U.fromSpecStalkOfMem x hxU ≫ f ∧ f ≫ sY = U.ι ≫ sX
obtain ⟨W, hxW, φ', i, hW, h₁, h₂⟩ := exists_lift_of_germInjective (R := Γ(S, U)) (A := Γ(Y, V)) (U := sX ⁻¹ᵁ U) (x := x) hxU (Y.presheaf.germ _ y hyV ≫ φ) (sY.appLE U V iVU) (sX.app U) (LocallyOfFiniteType.finiteType_of_affine_subset ⟨_, hU⟩ ⟨_, hV⟩ _) this
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro X Y S : Scheme sX : X ⟶ S sY : Y ⟶ S inst✝¹ : LocallyOfFiniteType sY x : ↑↑X.toPresheafedSpace inst✝ : X.IsGermInjectiveAt x y : ↑↑Y.toPresheafedSpace e : (ConcreteCategory.hom sX.base) x = (ConcreteCategory.hom sY.base) y φ : Y.presheaf.stalk y ⟶ X.presheaf.stalk x h : Scheme.Hom.stalkMap sY y ≫ φ = S.presheaf.stalkSpecializes ⋯ ≫ Scheme.Hom.stalkMap sX x U : TopologicalSpace.Opens ↑↑S.toPresheafedSpace hU : U ∈ S.affineOpens hxU : (ConcreteCategory.hom sX.base) x ∈ ↑U hyU : (ConcreteCategory.hom sY.base) y ∈ U V : Y.Opens hV : V ∈ Y.affineOpens hyV : y ∈ ↑V iVU : ↑V ⊆ (sY ⁻¹ᵁ U).carrier this : Scheme.Hom.appLE sY U V iVU ≫ Y.presheaf.germ V y hyV ≫ φ = Scheme.Hom.app sX U ≫ X.presheaf.germ (sX ⁻¹ᵁ U) x hxU W : X.Opens hxW : x ∈ W φ' : Γ(Y, V) ⟶ Γ(X, W) i : W ≤ sX ⁻¹ᵁ U hW : IsAffineOpen W h₁ : Y.presheaf.germ V y hyV ≫ φ = φ' ≫ X.presheaf.germ W x hxW h₂ : Scheme.Hom.app sX U ≫ X.presheaf.map i.hom.op = Scheme.Hom.appLE sY U V iVU ≫ φ' ⊢ ∃ U, ∃ (hxU : x ∈ U), ∃ f, Spec.map φ ≫ Y.fromSpecStalk y = U.fromSpecStalkOfMem x hxU ≫ f ∧ f ≫ sY = U.ι ≫ sX
6cace8db5fa36278
List.Sublist.of_sublist_append_right
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem Sublist.of_sublist_append_right (w : ∀ a, a ∈ l → a ∉ l₁) (h : l <+ l₁ ++ l₂) : l <+ l₂
case intro.intro.intro.intro α✝ : Type u_1 l₁ l₂ l₁' l₂' : List α✝ w : ∀ (a : α✝), a ∈ l₁' ++ l₂' → ¬a ∈ l₁ h₁ : l₁' <+ l₁ h₂ : l₂' <+ l₂ ⊢ l₁' ++ l₂' <+ l₂
have : l₁' = [] := by rw [eq_nil_iff_forall_not_mem] exact fun x m => w x (mem_append_left l₂' m) (h₁.mem m)
case intro.intro.intro.intro α✝ : Type u_1 l₁ l₂ l₁' l₂' : List α✝ w : ∀ (a : α✝), a ∈ l₁' ++ l₂' → ¬a ∈ l₁ h₁ : l₁' <+ l₁ h₂ : l₂' <+ l₂ this : l₁' = [] ⊢ l₁' ++ l₂' <+ l₂
a561ed959cac614f
Vector.append_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem append_eq_append_iff {a : Vector α n} {b : Vector α m} {c : Vector α k} {d : Vector α l} (w : k + l = n + m) : a ++ b = (c ++ d).cast w ↔ if h : n ≤ k then ∃ a' : Vector α (k - n), c = (a ++ a').cast (by omega) ∧ b = (a' ++ d).cast (by omega) else ∃ c' : Vector α (n - k), a = (c ++ c').cast (by omega) ∧ d = (c' ++ b).cast (by omega)
case mk.mk.mk.mk.mpr.isFalse.intro.intro α : Type u_1 a b c : Array α h : ¬a.size ≤ c.size c' : Vector α (a.size - c.size) ha : a = ({ toArray := c, size_toArray := ⋯ } ++ c').toArray w : c.size + (c' ++ { toArray := b, size_toArray := ⋯ }).size = a.size + b.size ⊢ (∃ a', c = a ++ a' ∧ b = a' ++ (c' ++ { toArray := b, size_toArray := ⋯ }).toArray) ∨ ∃ c'_1, a = c ++ c'_1 ∧ (c' ++ { toArray := b, size_toArray := ⋯ }).toArray = c'_1 ++ b
right
case mk.mk.mk.mk.mpr.isFalse.intro.intro.h α : Type u_1 a b c : Array α h : ¬a.size ≤ c.size c' : Vector α (a.size - c.size) ha : a = ({ toArray := c, size_toArray := ⋯ } ++ c').toArray w : c.size + (c' ++ { toArray := b, size_toArray := ⋯ }).size = a.size + b.size ⊢ ∃ c'_1, a = c ++ c'_1 ∧ (c' ++ { toArray := b, size_toArray := ⋯ }).toArray = c'_1 ++ b
6aa03c7084d30f0e
Complex.HadamardThreeLines.norm_le_interp_of_mem_verticalClosedStrip₀₁'
Mathlib/Analysis/Complex/Hadamard.lean
/-- **Hadamard three-line theorem** on `re ⁻¹' [0, 1]` (Variant in simpler terms): Let `f` be a bounded function, continuous on the closed strip `re ⁻¹' [0, 1]` and differentiable on open strip `re ⁻¹' (0, 1)`. If, for all `z.re = 0`, `‖f z‖ ≤ a` for some `a ∈ ℝ` and, similarly, for all `z.re = 1`, `‖f z‖ ≤ b` for some `b ∈ ℝ` then for all `z` in the closed strip `re ⁻¹' [0, 1]` the inequality `‖f(z)‖ ≤ a ^ (1 - z.re) * b ^ z.re` holds. -/ lemma norm_le_interp_of_mem_verticalClosedStrip₀₁' (f : ℂ → E) {z : ℂ} {a b : ℝ} (hz : z ∈ verticalClosedStrip 0 1) (hd : DiffContOnCl ℂ f (verticalStrip 0 1)) (hB : BddAbove ((norm ∘ f) '' verticalClosedStrip 0 1)) (ha : ∀ z ∈ re ⁻¹' {0}, ‖f z‖ ≤ a) (hb : ∀ z ∈ re ⁻¹' {1}, ‖f z‖ ≤ b) : ‖f z‖ ≤ a ^ (1 - z.re) * b ^ z.re
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E z : ℂ a b : ℝ hz : z ∈ verticalClosedStrip 0 1 hd : DiffContOnCl ℂ f (verticalStrip 0 1) hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1) ha : ∀ z ∈ re ⁻¹' {0}, ‖f z‖ ≤ a hb : ∀ z ∈ re ⁻¹' {1}, ‖f z‖ ≤ b this : ‖interpStrip f z‖ ≤ sSupNormIm f 0 ^ (1 - z.re) * sSupNormIm f 1 ^ z.re ⊢ sSupNormIm f 0 ^ (1 - z.re) ≤ a ^ (1 - z.re)
apply Real.rpow_le_rpow (sSupNormIm_nonneg f _) _ (sub_nonneg.mpr hz.2)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E z : ℂ a b : ℝ hz : z ∈ verticalClosedStrip 0 1 hd : DiffContOnCl ℂ f (verticalStrip 0 1) hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1) ha : ∀ z ∈ re ⁻¹' {0}, ‖f z‖ ≤ a hb : ∀ z ∈ re ⁻¹' {1}, ‖f z‖ ≤ b this : ‖interpStrip f z‖ ≤ sSupNormIm f 0 ^ (1 - z.re) * sSupNormIm f 1 ^ z.re ⊢ sSupNormIm f 0 ≤ a
0fab8ad239caab3f
BitVec.iunfoldr_getLsbD'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Folds.lean
theorem iunfoldr_getLsbD' {f : Fin w → α → α × Bool} (state : Nat → α) (ind : ∀(i : Fin w), (f i (state i.val)).fst = state (i.val+1)) : (∀ i : Fin w, getLsbD (iunfoldr f (state 0)).snd i.val = (f i (state i.val)).snd) ∧ (iunfoldr f (state 0)).fst = state w
case right w : Nat α : Type u_1 f : Fin w → α → α × Bool state : Nat → α ind : ∀ (i : Fin w), (f i (state ↑i)).fst = state (↑i + 1) j : Fin w s : α v : BitVec ↑j ih : ∀ (hj : ↑j ≤ w), (∀ (i : Fin ↑j), (s, v).snd.getLsbD ↑i = (f ⟨↑i, ⋯⟩ (state ↑i)).snd) ∧ (s, v).fst = state ↑j hj : ↑j + 1 ≤ w ⊢ ((f j (s, v).fst).fst, cons (f j (s, v).fst).snd (s, v).snd).fst = state (↑j + 1)
case right => simp have hj2 : j.val ≤ w := by simp rw [← ind j, ← (ih hj2).2]
no goals
2142a073bff43190
IntermediateField.mem_adjoin_iff
Mathlib/FieldTheory/IntermediateField/Adjoin/Basic.lean
theorem mem_adjoin_iff (x : E) : x ∈ adjoin F S ↔ ∃ r s : MvPolynomial S F, x = MvPolynomial.aeval Subtype.val r / MvPolynomial.aeval Subtype.val s
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S : Set E x : E ⊢ x ∈ adjoin F S ↔ ∃ r s, x = (MvPolynomial.aeval Subtype.val) r / (MvPolynomial.aeval Subtype.val) s
rw [← mem_adjoin_range_iff, Subtype.range_coe]
no goals
366eafc3485b2f7a
Topology.IsUpperSet.monotone_to_upperTopology_continuous
Mathlib/Topology/Order/UpperLowerSetTopology.lean
lemma monotone_to_upperTopology_continuous [TopologicalSpace α] [TopologicalSpace β] [Topology.IsUpperSet α] [IsUpper β] {f : α → β} (hf : Monotone f) : Continuous f
α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : Topology.IsUpperSet α inst✝ : IsUpper β f : α → β hf : Monotone f s : Set β hs : IsOpen s ⊢ IsUpperSet (f ⁻¹' s)
exact (IsUpper.isUpperSet_of_isOpen hs).preimage hf
no goals
ee33d0fa84466562
recursion'
Mathlib/Data/Real/Pi/Irrational.lean
/-- Auxiliary for the proof that `π` is irrational. While it is most natural to give the recursive formula for `I (n + 2) θ`, as well as give the second base case of `I 1 θ`, it is in fact more convenient to give the recursive formula for `I (n + 1) θ` in terms of `I n θ` and `I (n - 1) θ` (note the natural subtraction!). Despite the usually inconvenient subtraction, this in fact allows deducing both of the above facts with significantly fewer analysis computations. In addition, note the `0 ^ n` on the right hand side - this is intentional, and again allows combining the proof of the "usual" recursion formula and the base case `I 1 θ`. -/ private lemma recursion' (n : ℕ) : I (n + 1) θ * θ ^ 2 = - (2 * 2 * ((n + 1) * (0 ^ n * cos θ))) + 2 * (n + 1) * (2 * n + 1) * I n θ - 4 * (n + 1) * n * I (n - 1) θ
case convert_2.convert_2.hg θ : ℝ n : ℕ f : ℝ → ℝ := fun x => 1 - x ^ 2 u₁ : ℝ → ℝ := fun x => f x ^ (n + 1) u₁' : ℝ → ℝ := fun x => -(2 * (↑n + 1) * x * f x ^ n) v₁ : ℝ → ℝ := fun x => sin (x * θ) v₁' : ℝ → ℝ := fun x => cos (x * θ) * θ u₂ : ℝ → ℝ := fun x => x * f x ^ n u₂' : ℝ → ℝ := fun x => f x ^ n - 2 * ↑n * x ^ 2 * f x ^ (n - 1) v₂ : ℝ → ℝ := fun x => cos (x * θ) v₂' : ℝ → ℝ := fun x => -sin (x * θ) * θ hfd : Continuous f hu₁d : Continuous u₁' hv₁d : Continuous v₁' hu₂d : Continuous u₂' hv₂d : Continuous v₂' hu₁_eval_one : u₁ 1 = 0 hu₁_eval_neg_one : u₁ (-1) = 0 t : u₂ 1 * v₂ 1 - u₂ (-1) * v₂ (-1) = 2 * (0 ^ n * cos θ) hf : ∀ (x : ℝ), HasDerivAt f (-2 * x) x hu₁ : ∀ (x : ℝ), HasDerivAt u₁ (u₁' x) x hv₁ : ∀ (x : ℝ), HasDerivAt v₁ (v₁' x) x hu₂ : ∀ (x : ℝ), HasDerivAt u₂ (u₂' x) x hv₂ : ∀ (x : ℝ), HasDerivAt v₂ (v₂' x) x this✝ : ∀ (x : ℝ), u₂' x = (2 * ↑n + 1) * f x ^ n - 2 * ↑n * f x ^ (n - 1) this : Continuous v₂ ⊢ IntervalIntegrable (fun x => 2 * ↑n * (f x ^ (n - 1) * v₂ x)) volume (-1) 1
exact Continuous.intervalIntegrable (by fun_prop) _ _
no goals
834ac76d1ec60c71
AlgebraicGeometry.Scheme.ofRestrict_appIso
Mathlib/AlgebraicGeometry/OpenImmersion.lean
@[simp] lemma Scheme.ofRestrict_appIso (U) : (X.ofRestrict h).appIso U = Iso.refl _
case w U✝ : TopCat X : Scheme f : U✝ ⟶ TopCat.of ↑↑X.toPresheafedSpace h : IsOpenEmbedding ⇑(ConcreteCategory.hom f) U : (X.restrict h).Opens ⊢ (Hom.appIso (X.ofRestrict h) U).hom = (Iso.refl Γ(X, X.ofRestrict h ''ᵁ U)).hom
simp only [restrict_presheaf_obj, Hom.appIso_hom', ofRestrict_appLE, homOfLE_refl, op_id, CategoryTheory.Functor.map_id, Iso.refl_hom]
no goals
7473df1570c2c905
Array.size_eraseIdxIfInBounds
Mathlib/.lake/packages/batteries/Batteries/Data/Array/Lemmas.lean
theorem size_eraseIdxIfInBounds (a : Array α) (i : Nat) : (a.eraseIdxIfInBounds i).size = if i < a.size then a.size-1 else a.size
case isTrue α : Type u_1 a : Array α i : Nat h✝ : i < a.size ⊢ (a.eraseIdx i h✝).size = a.size - 1 case isFalse α : Type u_1 a : Array α i : Nat h✝ : ¬i < a.size ⊢ a.size = a.size
simp
case isFalse α : Type u_1 a : Array α i : Nat h✝ : ¬i < a.size ⊢ a.size = a.size
c70fb068dccb7279
DFinsupp.neLocus_self_sub_left
Mathlib/Data/DFinsupp/NeLocus.lean
theorem neLocus_self_sub_left : neLocus (f - g) f = g.support
α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → AddGroup (N a) f g : Π₀ (a : α), N a ⊢ (f - g).neLocus f = g.support
rw [neLocus_comm, neLocus_self_sub_right]
no goals
552fe3903be4c087
MeasureTheory.AEStronglyMeasurable.piecewise
Mathlib/MeasureTheory/Function/StronglyMeasurable/AEStronglyMeasurable.lean
theorem piecewise {s : Set α} [DecidablePred (· ∈ s)] (hs : MeasurableSet s) (hf : AEStronglyMeasurable f (μ.restrict s)) (hg : AEStronglyMeasurable g (μ.restrict sᶜ)) : AEStronglyMeasurable (s.piecewise f g) μ
case h α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace β m₀ : MeasurableSpace α μ : Measure α f g : α → β s : Set α inst✝ : DecidablePred fun x => x ∈ s hs : MeasurableSet s hf : AEStronglyMeasurable f (μ.restrict s) hg : AEStronglyMeasurable g (μ.restrict sᶜ) h : ∀ᵐ (x : α) ∂μ, x ∈ sᶜ → g x = AEStronglyMeasurable.mk g hg x x : α hx : x ∈ sᶜ → g x = AEStronglyMeasurable.mk g hg x ⊢ x ∈ sᶜ → s.piecewise f g x = s.piecewise (AEStronglyMeasurable.mk f hf) (AEStronglyMeasurable.mk g hg) x
intro hx_mem
case h α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace β m₀ : MeasurableSpace α μ : Measure α f g : α → β s : Set α inst✝ : DecidablePred fun x => x ∈ s hs : MeasurableSet s hf : AEStronglyMeasurable f (μ.restrict s) hg : AEStronglyMeasurable g (μ.restrict sᶜ) h : ∀ᵐ (x : α) ∂μ, x ∈ sᶜ → g x = AEStronglyMeasurable.mk g hg x x : α hx : x ∈ sᶜ → g x = AEStronglyMeasurable.mk g hg x hx_mem : x ∈ sᶜ ⊢ s.piecewise f g x = s.piecewise (AEStronglyMeasurable.mk f hf) (AEStronglyMeasurable.mk g hg) x
3fd4cff7b1ce1750
ProbabilityTheory.condExp_prod_ae_eq_integral_condDistrib'
Mathlib/Probability/Kernel/CondDistrib.lean
theorem condExp_prod_ae_eq_integral_condDistrib' [NormedSpace ℝ F] [CompleteSpace F] (hX : Measurable X) (hY : AEMeasurable Y μ) (hf_int : Integrable f (μ.map fun a => (X a, Y a))) : μ[fun a => f (X a, Y a)|mβ.comap X] =ᵐ[μ] fun a => ∫ y, f (X a,y) ∂condDistrib Y X μ (X a)
case refine_2.intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : MeasurableSpace Ω inst✝⁵ : StandardBorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y μ hf_int : Integrable f (Measure.map (fun a => (X a, Y a)) μ) hf_int' : Integrable (fun a => f (X a, Y a)) μ t : Set β ht : MeasurableSet t a✝ : μ (X ⁻¹' t) < ⊤ ⊢ ∫ (y : β), ∫ (y_1 : Ω), f (y, y_1) ∂(condDistrib Y X μ) y ∂Measure.map X (μ.restrict (X ⁻¹' t)) = ∫ (a : α) in X ⁻¹' t, f (X a, Y a) ∂μ
rw [← Measure.restrict_map hX ht, ← Measure.fst_map_prod_mk₀ hY, condDistrib, Measure.setIntegral_condKernel_univ_right ht hf_int.integrableOn, setIntegral_map (ht.prod MeasurableSet.univ) hf_int.1 (hX.aemeasurable.prod_mk hY), mk_preimage_prod, preimage_univ, inter_univ]
no goals
824ee395dfccb749
CategoryTheory.isUniversalColimit_extendCofan
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem isUniversalColimit_extendCofan {n : ℕ} (f : Fin (n + 1) → C) {c₁ : Cofan fun i : Fin n ↦ f i.succ} {c₂ : BinaryCofan (f 0) c₁.pt} (t₁ : IsUniversalColimit c₁) (t₂ : IsUniversalColimit c₂) [∀ {Z} (i : Z ⟶ c₂.pt), HasPullback c₂.inr i] : IsUniversalColimit (extendCofan c₁ c₂)
case refine_3 C : Type u inst✝¹ : Category.{v, u} C n : ℕ f : Fin (n + 1) → C c₁ : Cofan fun i => f i.succ c₂ : BinaryCofan (f 0) c₁.pt t₁ : IsUniversalColimit c₁ t₂ : IsUniversalColimit c₂ inst✝ : ∀ {Z : C} (i : Z ⟶ c₂.pt), HasPullback c₂.inr i F : Discrete (Fin (n + 1)) ⥤ C c : Cocone F α : F ⟶ Discrete.functor f i : c.pt ⟶ (extendCofan c₁ c₂).pt e : α ≫ (extendCofan c₁ c₂).ι = c.ι ≫ (Functor.const (Discrete (Fin (n + 1)))).map i hα : NatTrans.Equifibered α H : ∀ (j : Discrete (Fin (n + 1))), IsPullback (c.ι.app j) (α.app j) i ((extendCofan c₁ c₂).ι.app j) F' : Fin (n + 1) → C := F.obj ∘ Discrete.mk this : F = Discrete.functor F' j : Discrete (Fin n) ⊢ IsPullback ((Cofan.mk (pullback c₂.inr i) fun j => pullback.lift (α.app { as := j.succ } ≫ c₁.inj j) (c.ι.app { as := j.succ }) ⋯).ι.app j) ((Discrete.natTrans fun i => α.app { as := i.as.succ }).app j) (pullback.fst c₂.inr i) (c₁.ι.app j)
simp only [pair_obj_right, Functor.const_obj_obj, Discrete.functor_obj, id_eq, extendCofan_pt, eq_mpr_eq_cast, Cofan.mk_pt, Cofan.mk_ι_app, Discrete.natTrans_app]
case refine_3 C : Type u inst✝¹ : Category.{v, u} C n : ℕ f : Fin (n + 1) → C c₁ : Cofan fun i => f i.succ c₂ : BinaryCofan (f 0) c₁.pt t₁ : IsUniversalColimit c₁ t₂ : IsUniversalColimit c₂ inst✝ : ∀ {Z : C} (i : Z ⟶ c₂.pt), HasPullback c₂.inr i F : Discrete (Fin (n + 1)) ⥤ C c : Cocone F α : F ⟶ Discrete.functor f i : c.pt ⟶ (extendCofan c₁ c₂).pt e : α ≫ (extendCofan c₁ c₂).ι = c.ι ≫ (Functor.const (Discrete (Fin (n + 1)))).map i hα : NatTrans.Equifibered α H : ∀ (j : Discrete (Fin (n + 1))), IsPullback (c.ι.app j) (α.app j) i ((extendCofan c₁ c₂).ι.app j) F' : Fin (n + 1) → C := F.obj ∘ Discrete.mk this : F = Discrete.functor F' j : Discrete (Fin n) ⊢ IsPullback (pullback.lift (α.app { as := j.as.succ } ≫ c₁.inj j.as) (c.ι.app { as := j.as.succ }) ⋯) (α.app { as := j.as.succ }) (pullback.fst c₂.inr i) (c₁.ι.app j)
26415e6516008f86
Ordinal.preOmega_natCast
Mathlib/SetTheory/Cardinal/Aleph.lean
theorem preOmega_natCast (n : ℕ) : preOmega n = n
case succ n : ℕ IH : preOmega ↑n = ↑n ⊢ preOmega ↑(n + 1) = ↑(n + 1)
apply (le_preOmega_self _).antisymm'
case succ n : ℕ IH : preOmega ↑n = ↑n ⊢ preOmega ↑(n + 1) ≤ ↑(n + 1)
5ffb6949c81c19a7
Std.DHashMap.Internal.List.getValueCast?_insertList_of_mem
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getValueCast?_insertList_of_mem [BEq α] [LawfulBEq α] {l toInsert : List ((a : α) × β a)} {k k' : α} (k_beq : k == k') {v : β k} (distinct_l : DistinctKeys l) (distinct_toInsert : toInsert.Pairwise (fun a b => (a.1 == b.1) = false)) (mem : ⟨k, v⟩ ∈ toInsert) : getValueCast? k' (insertList l toInsert) = some (cast (by congr; exact LawfulBEq.eq_of_beq k_beq) v)
case e_a α : Type u β : α → Type v γ : α → Type w inst✝¹ : BEq α inst✝ : LawfulBEq α l toInsert : List ((a : α) × β a) k k' : α k_beq : (k == k') = true v : β k distinct_l : DistinctKeys l distinct_toInsert : List.Pairwise (fun a b => (a.fst == b.fst) = false) toInsert mem : ⟨k, v⟩ ∈ toInsert ⊢ k = k'
exact LawfulBEq.eq_of_beq k_beq
no goals
82c18001be4198ba
Traversable.toList_spec
Mathlib/Control/Fold.lean
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse
α : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ (unop ((Foldl.ofFreeMonoid (flip cons)) (foldMap FreeMonoid.of xs)) []).reverse = toList xs
rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
α : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ (unop (foldMap (⇑(Foldl.ofFreeMonoid (flip cons)) ∘ FreeMonoid.of) xs) []).reverse = toList xs
9cc7a5054b1c54eb
ProbabilityTheory.IndepFun.variance_add
Mathlib/Probability/Variance.lean
theorem IndepFun.variance_add [IsProbabilityMeasure μ] {X Y : Ω → ℝ} (hX : MemLp X 2 μ) (hY : MemLp Y 2 μ) (h : IndepFun X Y μ) : variance (X + Y) μ = variance X μ + variance Y μ := calc variance (X + Y) μ = μ[fun a => X a ^ 2 + Y a ^ 2 + 2 * X a * Y a] - μ[X + Y] ^ 2
case hg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ X Y : Ω → ℝ hX : MemLp X 2 μ hY : MemLp Y 2 μ h : IndepFun X Y μ ⊢ Integrable (fun a => Y a ^ 2) μ
exact hY.integrable_sq
no goals
6996a4817b022b25
Finset.mulEnergy_univ_left
Mathlib/Combinatorics/Additive/Energy.lean
@[to_additive (attr := simp)] lemma mulEnergy_univ_left : Eₘ[univ, t] = Fintype.card α * t.card ^ 2
α : Type u_1 inst✝² : DecidableEq α inst✝¹ : CommGroup α inst✝ : Fintype α t : Finset α f : α × α × α → (α × α) × α × α := fun x => ((x.1 * x.2.2, x.1 * x.2.1), x.2) ⊢ Set.InjOn f ↑(univ ×ˢ t ×ˢ t)
rintro ⟨a₁, b₁, c₁⟩ _ ⟨a₂, b₂, c₂⟩ h₂ h
case mk.mk.mk.mk α : Type u_1 inst✝² : DecidableEq α inst✝¹ : CommGroup α inst✝ : Fintype α t : Finset α f : α × α × α → (α × α) × α × α := fun x => ((x.1 * x.2.2, x.1 * x.2.1), x.2) a₁ b₁ c₁ : α a✝ : (a₁, b₁, c₁) ∈ ↑(univ ×ˢ t ×ˢ t) a₂ b₂ c₂ : α h₂ : (a₂, b₂, c₂) ∈ ↑(univ ×ˢ t ×ˢ t) h : f (a₁, b₁, c₁) = f (a₂, b₂, c₂) ⊢ (a₁, b₁, c₁) = (a₂, b₂, c₂)
744bbda61960c041
Nat.succ_dvd_centralBinom
Mathlib/Data/Nat/Choose/Central.lean
theorem succ_dvd_centralBinom (n : ℕ) : n + 1 ∣ n.centralBinom
n : ℕ h_s : (n + 1).Coprime (2 * n + 1) ⊢ n + 1 ∣ (2 * n + 1) * n.centralBinom
apply Nat.dvd_of_mul_dvd_mul_left zero_lt_two
n : ℕ h_s : (n + 1).Coprime (2 * n + 1) ⊢ 2 * (n + 1) ∣ 2 * ((2 * n + 1) * n.centralBinom)
fb1b90bbcc5f1bf9
LinearMap.trace_one
Mathlib/LinearAlgebra/Trace.lean
theorem trace_one : trace R M 1 = (finrank R M : R)
R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Module.Finite R M ⊢ (trace R M) 1 = ↑(finrank R M)
cases subsingleton_or_nontrivial R
case inl R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Module.Finite R M h✝ : Subsingleton R ⊢ (trace R M) 1 = ↑(finrank R M) case inr R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Module.Finite R M h✝ : Nontrivial R ⊢ (trace R M) 1 = ↑(finrank R M)
4959d10d80e34ef9
Equiv.Perm.signAux_swap_zero_one'
Mathlib/GroupTheory/Perm/Sign.lean
theorem signAux_swap_zero_one' (n : ℕ) : signAux (swap (0 : Fin (n + 2)) 1) = -1 := show _ = ∏ x ∈ {(⟨1, 0⟩ : Σ _ : Fin (n + 2), Fin (n + 2))}, if (Equiv.swap 0 1) x.1 ≤ swap 0 1 x.2 then (-1 : ℤˣ) else 1 by refine Eq.symm (prod_subset (fun ⟨x₁, x₂⟩ => by simp +contextual [mem_finPairsLT, Fin.one_pos]) fun a ha₁ ha₂ => ?_) rcases a with ⟨a₁, a₂⟩ replace ha₁ : a₂ < a₁ := mem_finPairsLT.1 ha₁ dsimp only rcases a₁.zero_le.eq_or_lt with (rfl | H) · exact absurd a₂.zero_le ha₁.not_le rcases a₂.zero_le.eq_or_lt with (rfl | H') · simp only [and_true, eq_self_iff_true, heq_iff_eq, mem_singleton, Sigma.mk.inj_iff] at ha₂ have : 1 < a₁ := lt_of_le_of_ne (Nat.succ_le_of_lt ha₁) (Ne.symm (by intro h; apply ha₂; simp [h])) have h01 : Equiv.swap (0 : Fin (n + 2)) 1 0 = 1
case mk n : ℕ a₁ a₂ : Fin (n + 2) ha₂ : ⟨a₁, a₂⟩ ∉ {⟨1, 0⟩} ha₁ : a₂ < a₁ ⊢ (if (swap 0 1) a₁ ≤ (swap 0 1) a₂ then -1 else 1) = 1
rcases a₁.zero_le.eq_or_lt with (rfl | H)
case mk.inl n : ℕ a₂ : Fin (n + 2) ha₂ : ⟨0, a₂⟩ ∉ {⟨1, 0⟩} ha₁ : a₂ < 0 ⊢ (if (swap 0 1) 0 ≤ (swap 0 1) a₂ then -1 else 1) = 1 case mk.inr n : ℕ a₁ a₂ : Fin (n + 2) ha₂ : ⟨a₁, a₂⟩ ∉ {⟨1, 0⟩} ha₁ : a₂ < a₁ H : 0 < a₁ ⊢ (if (swap 0 1) a₁ ≤ (swap 0 1) a₂ then -1 else 1) = 1
31014fc4c4be8869
abs_sub_round_eq_min
Mathlib/Algebra/Order/Round.lean
theorem abs_sub_round_eq_min (x : α) : |x - round x| = min (fract x) (1 - fract x)
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α hx : fract x ≥ 1 - fract x ⊢ 0 < fract x
replace hx : 0 < fract x + fract x := lt_of_lt_of_le zero_lt_one (tsub_le_iff_left.mp hx)
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α hx : 0 < fract x + fract x ⊢ 0 < fract x
04106663884a2f2b
Module.End.eigenspace_restrict_le_eigenspace
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
theorem eigenspace_restrict_le_eigenspace (f : End R M) {p : Submodule R M} (hfp : ∀ x ∈ p, f x ∈ p) (μ : R) : (eigenspace (f.restrict hfp) μ).map p.subtype ≤ f.eigenspace μ
case intro.intro R : Type v M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : End R M p : Submodule R M hfp : ∀ x ∈ p, f x ∈ p μ : R x : ↥p hx : x ∈ ↑(eigenspace (LinearMap.restrict f hfp) μ) ⊢ p.subtype x ∈ f.eigenspace μ
simp only [SetLike.mem_coe, mem_eigenspace_iff, LinearMap.restrict_apply] at hx ⊢
case intro.intro R : Type v M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : End R M p : Submodule R M hfp : ∀ x ∈ p, f x ∈ p μ : R x : ↥p hx : ⟨f ↑x, ⋯⟩ = μ • x ⊢ f (p.subtype x) = μ • p.subtype x
b2a6d59fdcc08e4e
IsFractional.mul
Mathlib/RingTheory/FractionalIdeal/Basic.lean
theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I → IsFractional S J → IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ · intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm · intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩
case refine_1 R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) b : P hb : b ∈ I * J ⊢ ∀ m ∈ I, ∀ n ∈ J, IsInteger R ((aI * aJ) • (m * n))
intro m hm n hn
case refine_1 R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) b : P hb : b ∈ I * J m : P hm : m ∈ I n : P hn : n ∈ J ⊢ IsInteger R ((aI * aJ) • (m * n))
003413a5af38d292
AlgebraicGeometry.affineAnd_isLocal
Mathlib/AlgebraicGeometry/Morphisms/AffineAnd.lean
/-- `affineAnd P` is local if `P` is local on the (algebraic) source. -/ lemma affineAnd_isLocal (hPi : RingHom.RespectsIso Q) (hQl : RingHom.LocalizationAwayPreserves Q) (hQs : RingHom.OfLocalizationSpan Q) : (affineAnd Q).IsLocal where respectsIso := affineAnd_respectsIso hPi to_basicOpen {X Y _} f r := fun ⟨hX, hf⟩ ↦ by simp only [Opens.map_top] at hf constructor · simp only [Scheme.preimage_basicOpen, Opens.map_top] exact (isAffineOpen_top X).basicOpen _ · dsimp only rw [morphismRestrict_appTop, CommRingCat.hom_comp, hPi.cancel_right_isIso] -- Not sure why the `show` fixes the following `rw` complaining about "motive is incorrect" show Q (Scheme.Hom.app f ((Y.basicOpen r).ι ''ᵁ ⊤)).hom rw [Scheme.Opens.ι_image_top] rw [(isAffineOpen_top Y).app_basicOpen_eq_away_map f (isAffineOpen_top X), CommRingCat.hom_comp, hPi.cancel_right_isIso, ← Scheme.Hom.appTop] dsimp only [Opens.map_top] haveI := (isAffineOpen_top X).isLocalization_basicOpen (f.appTop r) apply hQl exact hf of_basicOpenCover {X Y _} f s hs hf
Q : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hPi : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => Q hQl : RingHom.LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => Q hQs : RingHom.OfLocalizationSpan fun {R S} [CommRing R] [CommRing S] => Q X Y : Scheme x✝ : IsAffine Y f : X ⟶ Y s : Finset ↑Γ(Y, ⊤) hs : Ideal.span ↑s = ⊤ hf : ∀ (r : { x // x ∈ s }), IsAffine ↑(f ⁻¹ᵁ Y.basicOpen ↑r) ∧ Q (CommRingCat.Hom.hom (Scheme.Hom.appTop (f ∣_ Y.basicOpen ↑r))) this : IsAffine X ⊢ affineAnd (fun {R S} [CommRing R] [CommRing S] => Q) f
refine ⟨inferInstance, hQs.ofIsLocalization' hPi (f.appTop).hom s hs fun a ↦ ?_⟩
Q : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hPi : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => Q hQl : RingHom.LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => Q hQs : RingHom.OfLocalizationSpan fun {R S} [CommRing R] [CommRing S] => Q X Y : Scheme x✝ : IsAffine Y f : X ⟶ Y s : Finset ↑Γ(Y, ⊤) hs : Ideal.span ↑s = ⊤ hf : ∀ (r : { x // x ∈ s }), IsAffine ↑(f ⁻¹ᵁ Y.basicOpen ↑r) ∧ Q (CommRingCat.Hom.hom (Scheme.Hom.appTop (f ∣_ Y.basicOpen ↑r))) this : IsAffine X a : ↑↑s ⊢ ∃ Rᵣ Sᵣ x x_1 x_2 x_3, ∃ (x_4 : IsLocalization.Away (↑a) Rᵣ) (x_5 : IsLocalization.Away ((CommRingCat.Hom.hom (Scheme.Hom.appTop f)) ↑a) Sᵣ), Q (IsLocalization.Away.map Rᵣ Sᵣ (CommRingCat.Hom.hom (Scheme.Hom.appTop f)) ↑a)
2b5f5ef2a8aa609c
List.pairwise_filter
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Pairwise.lean
theorem pairwise_filter {p : α → Prop} [DecidablePred p] {l : List α} : Pairwise R (filter p l) ↔ Pairwise (fun x y => p x → p y → R x y) l
α : Type u_1 R : α → α → Prop p : α → Prop inst✝ : DecidablePred p l : List α ⊢ Pairwise R (filter (fun b => decide (p b)) l) ↔ Pairwise (fun x y => p x → p y → R x y) l
rw [← filterMap_eq_filter, pairwise_filterMap]
α : Type u_1 R : α → α → Prop p : α → Prop inst✝ : DecidablePred p l : List α ⊢ Pairwise (fun a a' => ∀ (b : α), b ∈ Option.guard (fun x => decide (p x) = true) a → ∀ (b' : α), b' ∈ Option.guard (fun x => decide (p x) = true) a' → R b b') l ↔ Pairwise (fun x y => p x → p y → R x y) l
7ca88e024fd3a25b
SetTheory.PGame.insertRight_numeric
Mathlib/SetTheory/Surreal/Basic.lean
theorem insertRight_numeric {x x' : PGame} (x_num : x.Numeric) (x'_num : x'.Numeric) (h : x ≤ x') : (insertRight x x').Numeric
x x' : PGame x_num : x.Numeric x'_num : x'.Numeric h : x ≤ x' ⊢ (-(-x).insertLeft (-x')).Numeric
apply Numeric.neg
case x x x' : PGame x_num : x.Numeric x'_num : x'.Numeric h : x ≤ x' ⊢ ((-x).insertLeft (-x')).Numeric
3fe52f8d55a21b54
SimpleGraph.Walk.concat_inj
Mathlib/Combinatorics/SimpleGraph/Walk.lean
theorem concat_inj {u v v' w : V} {p : G.Walk u v} {h : G.Adj v w} {p' : G.Walk u v'} {h' : G.Adj v' w} (he : p.concat h = p'.concat h') : ∃ hv : v = v', p.copy rfl hv = p'
case nil.cons.intro V : Type u G : SimpleGraph V u v v' w : V h' : G.Adj v' w u✝ : V h h✝ : G.Adj u✝ w p✝ : G.Walk w v' he : nil = p✝.concat h' ⊢ False
exact concat_ne_nil _ _ he.symm
no goals
6aa77e2092977f18
contDiffWithinAt_localInvariantProp_of_le
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
theorem contDiffWithinAt_localInvariantProp_of_le (n m : WithTop ℕ∞) (hmn : m ≤ n) : (contDiffGroupoid n I).LocalInvariantProp (contDiffGroupoid n I') (ContDiffWithinAtProp I I' m) where is_local {s x u f} u_open xu
case convert_2 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' n m : WithTop ℕ∞ hmn : m ≤ n s : Set H x : H f : H → H' e : PartialHomeomorph H H he : e ∈ contDiffGroupoid n I hx : x ∈ e.source h : ContDiffWithinAt 𝕜 m (↑I' ∘ f ∘ ↑I.symm) (↑I.symm ⁻¹' s ∩ range ↑I) ((↑I ∘ ↑e.symm ∘ ↑I.symm) (↑I (↑e x))) this✝¹ : ↑I x = (↑I ∘ ↑e.symm ∘ ↑I.symm) (↑I (↑e x)) this✝ : ↑I (↑e x) ∈ ↑I.symm ⁻¹' e.target ∩ range ↑I this : ContDiffWithinAt 𝕜 n (↑I ∘ ↑e.symm ∘ ↑I.symm) (↑I.symm ⁻¹' e.target ∩ range ↑I) (↑I (↑e x)) ⊢ ↑I.symm ⁻¹' e.target ∩ (↑I.symm ⁻¹' (↑e.symm ⁻¹' s) ∩ range ↑I) ⊆ ↑I.symm ⁻¹' e.target ∩ range ↑I ∩ ↑I ∘ ↑e.symm ∘ ↑I.symm ⁻¹' (↑I.symm ⁻¹' s ∩ range ↑I)
mfld_set_tac
no goals
841928255da4a913
MeasureTheory.Measure.eq_withDensity_rnDeriv
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem eq_withDensity_rnDeriv {s : Measure α} {f : α → ℝ≥0∞} (hf : Measurable f) (hs : s ⟂ₘ ν) (hadd : μ = s + ν.withDensity f) : ν.withDensity f = ν.withDensity (μ.rnDeriv ν)
α : Type u_1 m : MeasurableSpace α μ ν s : Measure α f : α → ℝ≥0∞ hf : Measurable f hs : s ⟂ₘ ν hadd : μ = s + ν.withDensity f ⊢ ν.withDensity f = ν.withDensity (μ.rnDeriv ν)
have : HaveLebesgueDecomposition μ ν := ⟨⟨⟨s, f⟩, hf, hs, hadd⟩⟩
α : Type u_1 m : MeasurableSpace α μ ν s : Measure α f : α → ℝ≥0∞ hf : Measurable f hs : s ⟂ₘ ν hadd : μ = s + ν.withDensity f this : μ.HaveLebesgueDecomposition ν ⊢ ν.withDensity f = ν.withDensity (μ.rnDeriv ν)
fc3f06ec8038d87c
MeasureTheory.continuous_of_dominated
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem continuous_of_dominated {F : X → α → G} {bound : α → ℝ} (hF_meas : ∀ x, AEStronglyMeasurable (F x) μ) (h_bound : ∀ x, ∀ᵐ a ∂μ, ‖F x a‖ ≤ bound a) (bound_integrable : Integrable bound μ) (h_cont : ∀ᵐ a ∂μ, Continuous fun x => F x a) : Continuous fun x => ∫ a, F x a ∂μ
case pos α : Type u_1 G : Type u_5 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace ℝ G m : MeasurableSpace α μ : Measure α X : Type u_6 inst✝¹ : TopologicalSpace X inst✝ : FirstCountableTopology X F : X → α → G bound : α → ℝ hF_meas : ∀ (x : X), AEStronglyMeasurable (F x) μ h_bound : ∀ (x : X), ∀ᵐ (a : α) ∂μ, ‖F x a‖ ≤ bound a bound_integrable : Integrable bound μ h_cont : ∀ᵐ (a : α) ∂μ, Continuous fun x => F x a hG : CompleteSpace G ⊢ Continuous fun x => ∫ (a : α), F x a ∂μ
simp only [integral, hG, L1.integral]
case pos α : Type u_1 G : Type u_5 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace ℝ G m : MeasurableSpace α μ : Measure α X : Type u_6 inst✝¹ : TopologicalSpace X inst✝ : FirstCountableTopology X F : X → α → G bound : α → ℝ hF_meas : ∀ (x : X), AEStronglyMeasurable (F x) μ h_bound : ∀ (x : X), ∀ᵐ (a : α) ∂μ, ‖F x a‖ ≤ bound a bound_integrable : Integrable bound μ h_cont : ∀ᵐ (a : α) ∂μ, Continuous fun x => F x a hG : CompleteSpace G ⊢ Continuous fun x => if h : True then if hf : Integrable (fun a => F x a) μ then L1.integralCLM (Integrable.toL1 (fun a => F x a) hf) else 0 else 0
4a2462339b98c2fb
Localization.smul_mk
Mathlib/GroupTheory/MonoidLocalization/Basic.lean
theorem smul_mk [SMul R M] [IsScalarTower R M M] (c : R) (a b) : c • (mk a b : Localization S) = mk (c • a) b
M : Type u_1 inst✝² : CommMonoid M S : Submonoid M R : Type u_4 inst✝¹ : SMul R M inst✝ : IsScalarTower R M M c : R a : M b : ↥S ⊢ (c • 1) • a /ₒ (b * 1) = c • a /ₒ b
rw [smul_assoc, one_smul, mul_one]
no goals
f28c11ec5885a209
isZero_Ext_succ_of_projective
Mathlib/CategoryTheory/Abelian/Ext.lean
/-- If `X : C` is projective and `n : ℕ`, then `Ext^(n + 1) X Y ≅ 0` for any `Y`. -/ lemma isZero_Ext_succ_of_projective (X Y : C) [Projective X] (n : ℕ) : IsZero (((Ext R C (n + 1)).obj (Opposite.op X)).obj Y)
case hf.h R : Type u_1 inst✝⁵ : Ring R C : Type u_2 inst✝⁴ : Category.{u_3, u_2} C inst✝³ : Abelian C inst✝² : Linear R C inst✝¹ : EnoughProjectives C X Y : C inst✝ : Projective X n : ℕ ⊢ (ModuleCat.Hom.hom (𝟙 (((linearYoneda R C).obj Y).obj (Opposite.op (((ChainComplex.single₀ C).obj X).X (n + 1)))))) 0 = (ModuleCat.Hom.hom 0) 0
rfl
no goals
40abdca1318b58b3
eVariationOn.add_point
Mathlib/Topology/EMetricSpace/BoundedVariation.lean
theorem add_point (f : α → E) {s : Set α} {x : α} (hx : x ∈ s) (u : ℕ → α) (hu : Monotone u) (us : ∀ i, u i ∈ s) (n : ℕ) : ∃ (v : ℕ → α) (m : ℕ), Monotone v ∧ (∀ i, v i ∈ s) ∧ x ∈ v '' Iio m ∧ (∑ i ∈ Finset.range n, edist (f (u (i + 1))) (f (u i))) ≤ ∑ j ∈ Finset.range m, edist (f (v (j + 1))) (f (v j))
case inr.refine_2 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N ≤ n, x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w ⊢ ∑ i ∈ Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j ∈ Finset.range (n + 1), edist (f (w (j + 1))) (f (w j))
rcases eq_or_lt_of_le (zero_le N) with (Npos | Npos)
case inr.refine_2.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N ≤ n, x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N ⊢ ∑ i ∈ Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j ∈ Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) case inr.refine_2.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N ≤ n, x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i ∈ Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j ∈ Finset.range (n + 1), edist (f (w (j + 1))) (f (w j))
760e94573f7a043d
Homotopy.nullHomotopicMap_comp
Mathlib/Algebra/Homology/Homotopy.lean
theorem nullHomotopicMap_comp (hom : ∀ i j, C.X i ⟶ D.X j) (g : D ⟶ E) : nullHomotopicMap hom ≫ g = nullHomotopicMap fun i j => hom i j ≫ g.f j
case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → C.X i ⟶ D.X j g : D ⟶ E n : ι ⊢ (C.dFrom n ≫ hom (c.next n) n + hom n (c.prev n) ≫ D.dTo n) ≫ g.f n = C.dFrom n ≫ hom (c.next n) n ≫ g.f n + (hom n (c.prev n) ≫ g.f (c.prev n)) ≫ E.dTo n
simp only [Preadditive.add_comp, assoc, g.comm]
no goals
08696897e099d0bd
ContinuousMultilinearMap.hasFTaylorSeriesUpTo_iteratedFDeriv
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
theorem hasFTaylorSeriesUpTo_iteratedFDeriv : HasFTaylorSeriesUpTo ⊤ f (fun v n ↦ f.iteratedFDeriv n v)
𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 F : Type v inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝² : (i : ι) → NormedAddCommGroup (E i) inst✝¹ : (i : ι) → NormedSpace 𝕜 (E i) inst✝ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F ⊢ HasFTaylorSeriesUpTo ⊤ ⇑f fun v n => f.iteratedFDeriv n v
constructor
case zero_eq 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 F : Type v inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝² : (i : ι) → NormedAddCommGroup (E i) inst✝¹ : (i : ι) → NormedSpace 𝕜 (E i) inst✝ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F ⊢ ∀ (x : (i : ι) → E i), (f.iteratedFDeriv 0 x).curry0 = f x case fderiv 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 F : Type v inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝² : (i : ι) → NormedAddCommGroup (E i) inst✝¹ : (i : ι) → NormedSpace 𝕜 (E i) inst✝ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F ⊢ ∀ (m : ℕ), ↑m < ⊤ → ∀ (x : (i : ι) → E i), HasFDerivAt (fun y => f.iteratedFDeriv m y) (f.iteratedFDeriv m.succ x).curryLeft x case cont 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 F : Type v inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝² : (i : ι) → NormedAddCommGroup (E i) inst✝¹ : (i : ι) → NormedSpace 𝕜 (E i) inst✝ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F ⊢ ∀ (m : ℕ), ↑m ≤ ⊤ → Continuous fun x => f.iteratedFDeriv m x
ae8227810170d45c
IsPGroup.smul_mul_inv_trivial_or_surjective
Mathlib/GroupTheory/SpecificGroups/ZGroup.lean
theorem smul_mul_inv_trivial_or_surjective [IsCyclic G] (hG : IsPGroup p G) {K : Type*} [Group K] [MulDistribMulAction K G] (hGK : (Nat.card G).Coprime (Nat.card K)) : (∀ g : G, ∀ k : K, k • g * g⁻¹ = 1) ∨ (∀ g : G, ∃ k : K, ∃ q : G, k • q * q⁻¹ = g)
case neg.inr.intro.intro.mk G : Type u_1 inst✝⁴ : Group G p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : IsCyclic G K : Type u_4 inst✝¹ : Group K inst✝ : MulDistribMulAction K G hGK : (Nat.card G).Coprime (Nat.card K) hc : ¬Nat.card G = 0 this : Finite G ϕ : K →* ZMod (Nat.card G) := MulDistribMulAction.toMonoidHomZModOfIsCyclic G K ⋯ h : ∀ (g : G) (k : K) (n : ℤ), ϕ k - 1 = ↑n → k • g * g⁻¹ = g ^ n hG : ∀ (k : K), ϕ k = 1 ∨ IsUnit (ϕ k - 1) k : K hk : ¬ϕ k = 1 u v : ZMod (Nat.card G) hvu : v.cast * u.cast ≡ 1 [ZMOD ↑(Nat.card G)] hu : ↑u.cast = ϕ k - 1 p : G ⊢ k • p ^ v.cast * (p ^ v.cast)⁻¹ = p ^ 1
rw [h (p ^ v.cast) k u.cast hu.symm, ← zpow_mul, zpow_eq_zpow_iff_modEq]
case neg.inr.intro.intro.mk G : Type u_1 inst✝⁴ : Group G p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : IsCyclic G K : Type u_4 inst✝¹ : Group K inst✝ : MulDistribMulAction K G hGK : (Nat.card G).Coprime (Nat.card K) hc : ¬Nat.card G = 0 this : Finite G ϕ : K →* ZMod (Nat.card G) := MulDistribMulAction.toMonoidHomZModOfIsCyclic G K ⋯ h : ∀ (g : G) (k : K) (n : ℤ), ϕ k - 1 = ↑n → k • g * g⁻¹ = g ^ n hG : ∀ (k : K), ϕ k = 1 ∨ IsUnit (ϕ k - 1) k : K hk : ¬ϕ k = 1 u v : ZMod (Nat.card G) hvu : v.cast * u.cast ≡ 1 [ZMOD ↑(Nat.card G)] hu : ↑u.cast = ϕ k - 1 p : G ⊢ v.cast * u.cast ≡ 1 [ZMOD ↑(orderOf p)]
b33bc739e8adc37b
abs_one_div
Mathlib/Algebra/Order/Field/Basic.lean
theorem abs_one_div (a : α) : |1 / a| = 1 / |a|
α : Type u_2 inst✝ : LinearOrderedField α a : α ⊢ |1 / a| = 1 / |a|
rw [abs_div, abs_one]
no goals
ed2a7b8e8201fe19
Nat.card_pair_lcm_eq.f_img
Mathlib/Algebra/Order/Antidiag/Nat.lean
theorem f_img {n : ℕ} (hn : Squarefree n) (a : Fin 3 → ℕ) (ha : a ∈ finMulAntidiag 3 n) : f a ha ∈ Finset.filter (fun ⟨x, y⟩ => x.lcm y = n) (n.divisors ×ˢ n.divisors)
case h n : ℕ hn : Squarefree n a : Fin 3 → ℕ ha : a ∈ finMulAntidiag 3 n ⊢ a 0 * a 1 * a 2 = a 1 * a 2 * a 0
ring
no goals
266d4fcf66130dfe
Batteries.RBNode.Balanced.zoom
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Alter.lean
theorem _root_.Batteries.RBNode.Balanced.zoom : t.Balanced c n → path.Balanced c₀ n₀ c n → zoom cut t path = (t', path') → ∃ c n, t'.Balanced c n ∧ path'.Balanced c₀ n₀ c n | .nil, hp => fun e => by cases e; exact ⟨_, _, .nil, hp⟩ | .red ha hb, hp => by unfold zoom; split · exact ha.zoom (.redL hb hp) · exact hb.zoom (.redR ha hp) · intro e; cases e; exact ⟨_, _, .red ha hb, hp⟩ | .black ha hb, hp => by unfold zoom; split · exact ha.zoom (.blackL hb hp) · exact hb.zoom (.blackR ha hp) · intro e; cases e; exact ⟨_, _, .black ha hb, hp⟩
case h_3 α✝ : Type u_1 cut : α✝ → Ordering t : RBNode α✝ path : Path α✝ t' : RBNode α✝ path' : Path α✝ c₀ : RBColor n₀ : Nat c : RBColor n✝ n : Nat x✝¹ y✝ : RBNode α✝ v✝ : α✝ ha : x✝¹.Balanced black n hb : y✝.Balanced black n hp : Path.Balanced c₀ n₀ path red n x✝ : Ordering heq✝ : cut v✝ = Ordering.eq e : (node red x✝¹ v✝ y✝, path) = (t', path') ⊢ ∃ c n, t'.Balanced c n ∧ Path.Balanced c₀ n₀ path' c n
cases e
case h_3.refl α✝ : Type u_1 cut : α✝ → Ordering t : RBNode α✝ path : Path α✝ c₀ : RBColor n₀ : Nat c : RBColor n✝ n : Nat x✝¹ y✝ : RBNode α✝ v✝ : α✝ ha : x✝¹.Balanced black n hb : y✝.Balanced black n hp : Path.Balanced c₀ n₀ path red n x✝ : Ordering heq✝ : cut v✝ = Ordering.eq ⊢ ∃ c n, (node red x✝¹ v✝ y✝).Balanced c n ∧ Path.Balanced c₀ n₀ path c n
cff44faeb7153c11
Polynomial.content_X_mul
Mathlib/RingTheory/Polynomial/Content.lean
theorem content_X_mul {p : R[X]} : content (X * p) = content p
case h R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R p : R[X] a : ℕ ⊢ ¬(X * p).coeff a = 0 ↔ ∃ a_1, ¬p.coeff a_1 = 0 ∧ a_1.succ = a
rcases a with - | a
case h.zero R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R p : R[X] ⊢ ¬(X * p).coeff 0 = 0 ↔ ∃ a, ¬p.coeff a = 0 ∧ a.succ = 0 case h.succ R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R p : R[X] a : ℕ ⊢ ¬(X * p).coeff (a + 1) = 0 ↔ ∃ a_1, ¬p.coeff a_1 = 0 ∧ a_1.succ = a + 1
ac071a5a6c3a3683
Submodule.LinearDisjoint.of_linearDisjoint_fg_right
Mathlib/LinearAlgebra/LinearDisjoint.lean
theorem of_linearDisjoint_fg_right (H : ∀ N' : Submodule R S, N' ≤ N → N'.FG → M.LinearDisjoint N') : M.LinearDisjoint N := (linearDisjoint_iff _ _).2 fun x y hxy ↦ by obtain ⟨N', hN, hFG, h⟩ := TensorProduct.exists_finite_submodule_right_of_finite' {x, y} (Set.toFinite _) rw [Module.Finite.iff_fg] at hFG obtain ⟨x', hx'⟩ := h (show x ∈ {x, y} by simp) obtain ⟨y', hy'⟩ := h (show y ∈ {x, y} by simp) rw [← hx', ← hy']; congr exact (H N' hN hFG).injective (by simp [← mulMap_comp_lTensor _ hN, hx', hy', hxy])
case intro.intro.intro R : Type u S : Type v inst✝² : CommSemiring R inst✝¹ : Semiring S inst✝ : Algebra R S M N : Submodule R S H : ∀ N' ≤ N, N'.FG → M.LinearDisjoint N' x y : ↥M ⊗[R] ↥N hxy : (M.mulMap N) x = (M.mulMap N) y N' : Submodule R S hN : N' ≤ N hFG : N'.FG h : {x, y} ⊆ ↑(LinearMap.range (LinearMap.lTensor (↥M) (inclusion hN))) ⊢ x = y
obtain ⟨x', hx'⟩ := h (show x ∈ {x, y} by simp)
case intro.intro.intro.intro R : Type u S : Type v inst✝² : CommSemiring R inst✝¹ : Semiring S inst✝ : Algebra R S M N : Submodule R S H : ∀ N' ≤ N, N'.FG → M.LinearDisjoint N' x y : ↥M ⊗[R] ↥N hxy : (M.mulMap N) x = (M.mulMap N) y N' : Submodule R S hN : N' ≤ N hFG : N'.FG h : {x, y} ⊆ ↑(LinearMap.range (LinearMap.lTensor (↥M) (inclusion hN))) x' : ↥M ⊗[R] ↥N' hx' : (LinearMap.lTensor (↥M) (inclusion hN)) x' = x ⊢ x = y
3ea9d0fb125f2a5e
WithSeminorms.isVonNBounded_iff_seminorm_bounded
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithSeminorms p) : Bornology.IsVonNBounded 𝕜 s ↔ ∀ i : ι, ∃ r > 0, ∀ x ∈ s, p i x < r
case neg 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : Nonempty ι p : SeminormFamily 𝕜 E ι inst✝ : TopologicalSpace E s : Set E hp : WithSeminorms p hi : ∀ (i : ι), ∃ r > 0, ∀ x ∈ s, (p i) x < r I : Finset ι hI : ¬I.Nonempty ⊢ ∃ r > 0, ∀ x ∈ s, (I.sup p) x < r
simp only [Finset.not_nonempty_iff_eq_empty.mp hI, Finset.sup_empty, coe_bot, Pi.zero_apply, exists_prop]
case neg 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : Nonempty ι p : SeminormFamily 𝕜 E ι inst✝ : TopologicalSpace E s : Set E hp : WithSeminorms p hi : ∀ (i : ι), ∃ r > 0, ∀ x ∈ s, (p i) x < r I : Finset ι hI : ¬I.Nonempty ⊢ ∃ r > 0, ∀ x ∈ s, 0 < r
24b13a155e892387
End of preview. Expand in Data Studio

ABOUT

This is the result of running the LeanDojo extractor on Mathlib 4.18. It was extracted by Charlie Meyer, and has been published here so I can desecrate his work without bothering him.

Purpose

You could use this to fine tune language models to output in a certain format for automated theorem proving.

Downloads last month
22