name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Algebra.FinitePresentation.of_restrict_scalars_finitePresentation
Mathlib/RingTheory/FinitePresentation.lean
theorem of_restrict_scalars_finitePresentation [Algebra A B] [IsScalarTower R A B] [FinitePresentation.{w₁, w₃} R B] [FiniteType R A] : FinitePresentation.{w₂, w₃} A B
case intro.intro.intro.intro.refine_1 R : Type w₁ A : Type w₂ B : Type w₃ inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Algebra R A inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : FinitePresentation R B inst✝ : FiniteType R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] B hf : Surjective ⇑f s : Finset (MvPolynomial (Fin n) R) hs : Ideal.span ↑s = RingHom.ker f.toRingHom RX : Type (max 0 w₁) := MvPolynomial (Fin n) R AX : Type (max 0 w₂) := MvPolynomial (Fin n) A ⊢ ∀ (x : B), x ∈ adjoin A ↑⊤
exact fun {x} => subset_adjoin ⟨⟩
no goals
765dbb818bc3202d
CategoryTheory.Functor.pointwiseRightKanExtension_lift_app
Mathlib/CategoryTheory/Functor/KanExtension/Pointwise.lean
@[simp] lemma pointwiseRightKanExtension_lift_app (G : D ⥤ H) (α : L ⋙ G ⟶ F) (Y : D) : ((pointwiseRightKanExtension L F).liftOfIsRightKanExtension (pointwiseRightKanExtensionCounit L F) G α |>.app Y) = limit.lift _ (structuredArrowMapCone L F G α Y)
C : Type u_1 D : Type u_2 H : Type u_3 inst✝³ : Category.{u_6, u_1} C inst✝² : Category.{u_4, u_2} D inst✝¹ : Category.{u_5, u_3} H L : C ⥤ D F : C ⥤ H inst✝ : L.HasPointwiseRightKanExtension F G : D ⥤ H α : L ⋙ G ⟶ F Y : D ⊢ ((L.pointwiseRightKanExtension F).liftOfIsRightKanExtension (L.pointwiseRightKanExtensionCounit F) G α).app Y = limit.lift (StructuredArrow.proj Y L ⋙ F) (L.structuredArrowMapCone F G α Y)
let β : G ⟶ L.pointwiseRightKanExtension F := { app := fun Y ↦ limit.lift _ (structuredArrowMapCone L F G α Y) }
C : Type u_1 D : Type u_2 H : Type u_3 inst✝³ : Category.{u_6, u_1} C inst✝² : Category.{u_4, u_2} D inst✝¹ : Category.{u_5, u_3} H L : C ⥤ D F : C ⥤ H inst✝ : L.HasPointwiseRightKanExtension F G : D ⥤ H α : L ⋙ G ⟶ F Y : D β : G ⟶ L.pointwiseRightKanExtension F := { app := fun Y => limit.lift (StructuredArrow.proj Y L ⋙ F) (L.structuredArrowMapCone F G α Y), naturality := ⋯ } ⊢ ((L.pointwiseRightKanExtension F).liftOfIsRightKanExtension (L.pointwiseRightKanExtensionCounit F) G α).app Y = limit.lift (StructuredArrow.proj Y L ⋙ F) (L.structuredArrowMapCone F G α Y)
1d51036bafd467c7
CategoryTheory.IsHomLift.of_fac'
Mathlib/CategoryTheory/FiberedCategory/HomLift.lean
lemma of_fac' {R S : 𝒮} {a b : 𝒳} (f : R ⟶ S) (φ : a ⟶ b) (ha : p.obj a = R) (hb : p.obj b = S) (h : p.map φ = eqToHom ha ≫ f ≫ eqToHom hb.symm) : p.IsHomLift f φ
𝒮 : Type u₁ 𝒳 : Type u₂ inst✝¹ : Category.{v₁, u₂} 𝒳 inst✝ : Category.{v₂, u₁} 𝒮 p : 𝒳 ⥤ 𝒮 a b : 𝒳 φ : a ⟶ b h : p.map φ = eqToHom ⋯ ≫ p.map φ ≫ eqToHom ⋯ ⊢ p.IsHomLift (p.map φ) φ
infer_instance
no goals
092cc10978a73530
exists_norm_eq_iInf_of_complete_convex
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem exists_norm_eq_iInf_of_complete_convex {K : Set F} (ne : K.Nonempty) (h₁ : IsComplete K) (h₂ : Convex ℝ K) : ∀ u : F, ∃ v ∈ K, ‖u - v‖ = ⨅ w : K, ‖u - w‖ := fun u => by let δ := ⨅ w : K, ‖u - w‖ letI : Nonempty K := ne.to_subtype have zero_le_δ : 0 ≤ δ := le_ciInf fun _ => norm_nonneg _ have δ_le : ∀ w : K, δ ≤ ‖u - w‖ := ciInf_le ⟨0, Set.forall_mem_range.2 fun _ => norm_nonneg _⟩ have δ_le' : ∀ w ∈ K, δ ≤ ‖u - w‖ := fun w hw => δ_le ⟨w, hw⟩ -- Step 1: since `δ` is the infimum, can find a sequence `w : ℕ → K` in `K` -- such that `‖u - w n‖ < δ + 1 / (n + 1)` (which implies `‖u - w n‖ --> δ`); -- maybe this should be a separate lemma have exists_seq : ∃ w : ℕ → K, ∀ n, ‖u - w n‖ < δ + 1 / (n + 1)
F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F K : Set F ne : K.Nonempty h₁ : IsComplete K h₂ : Convex ℝ K u : F δ : ℝ := ⨅ w, ‖u - ↑w‖ this : Nonempty ↑K := Set.Nonempty.to_subtype ne zero_le_δ : 0 ≤ δ δ_le : ∀ (w : ↑K), δ ≤ ‖u - ↑w‖ δ_le' : ∀ w ∈ K, δ ≤ ‖u - w‖ hδ : ∀ (n : ℕ), δ < δ + 1 / (↑n + 1) h : ∀ (n : ℕ), ∃ i, ‖u - ↑i‖ < δ + 1 / (↑n + 1) w : ℕ → ↑K := fun n => Classical.choose ⋯ ⊢ ∃ w, ∀ (n : ℕ), ‖u - ↑(w n)‖ < δ + 1 / (↑n + 1)
exact ⟨w, fun n => Classical.choose_spec (h n)⟩
no goals
1aed30586c16c1ed
nullMeasurableSet_region_between_oc
Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean
/-- The region between two a.e.-measurable functions on a null-measurable set is null-measurable; a version for the region together with the graph of the upper function. -/ lemma nullMeasurableSet_region_between_oc (μ : Measure α) {f g : α → ℝ} (f_mble : AEMeasurable f μ) (g_mble : AEMeasurable g μ) {s : Set α} (s_mble : NullMeasurableSet s μ) : NullMeasurableSet {p : α × ℝ | p.1 ∈ s ∧ p.snd ∈ Ioc (f p.fst) (g p.fst)} (μ.prod volume)
case refine_2 α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α f g : α → ℝ f_mble : AEMeasurable f μ g_mble : AEMeasurable g μ s : Set α s_mble : NullMeasurableSet s μ ⊢ NullMeasurableSet {p | p.2 ≤ g p.1} (μ.prod volume)
rw [show {p : α × ℝ | p.snd ≤ g p.fst} = {p : α × ℝ | g p.fst < p.snd}ᶜ by ext p simp only [mem_setOf_eq, mem_compl_iff, not_lt]]
case refine_2 α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α f g : α → ℝ f_mble : AEMeasurable f μ g_mble : AEMeasurable g μ s : Set α s_mble : NullMeasurableSet s μ ⊢ NullMeasurableSet {p | g p.1 < p.2}ᶜ (μ.prod volume)
0413eb85ff0d4c4f
CategoryTheory.Limits.parallelPair_initial_mk
Mathlib/CategoryTheory/Limits/Final/ParallelPair.lean
lemma parallelPair_initial_mk {X Y : C} (f g : X ⟶ Y) (h₁ : ∀ Z, Nonempty (X ⟶ Z)) (h₂ : ∀ ⦃Z : C⦄ (i j : X ⟶ Z), ∃ (a : Y ⟶ Z), i = f ≫ a ∧ j = g ≫ a) : (parallelPair f g).Initial := parallelPair_initial_mk' f g h₁ (fun Z i j => by obtain ⟨a, rfl, rfl⟩ := h₂ i j let f₁ : (mk (Y := zero) (f ≫ a) : CostructuredArrow (parallelPair f g) Z) ⟶ mk (Y := one) a := homMk left let f₂ : (mk (Y := zero) (g ≫ a) : CostructuredArrow (parallelPair f g) Z) ⟶ mk (Y := one) a := homMk right exact Zigzag.of_hom_inv f₁ f₂)
case intro.intro C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : C f g : X ⟶ Y h₁ : ∀ (Z : C), Nonempty (X ⟶ Z) h₂ : ∀ ⦃Z : C⦄ (i j : X ⟶ Z), ∃ a, i = f ≫ a ∧ j = g ≫ a Z : C a : Y ⟶ Z f₁ : mk (f ≫ a) ⟶ mk a := homMk left ⋯ f₂ : mk (g ≫ a) ⟶ mk a := homMk right ⋯ ⊢ Zigzag (mk (f ≫ a)) (mk (g ≫ a))
exact Zigzag.of_hom_inv f₁ f₂
no goals
27db1e5d1a630a99
MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range'
Mathlib/Probability/Process/Stopping.lean
theorem measurableSet_lt_of_countable_range' (hτ : IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) : MeasurableSet[hτ.measurableSpace] {ω | τ ω < i}
Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ h_countable : (Set.range τ).Countable i : ι ⊢ {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
ext1 ω
case h Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ h_countable : (Set.range τ).Countable i : ι ω : Ω ⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ {ω | τ ω ≤ i} \ {ω | τ ω = i}
8014c4cb59d652af
EReal.eq_bot_iff_forall_lt
Mathlib/Data/Real/EReal.lean
theorem eq_bot_iff_forall_lt (x : EReal) : x = ⊥ ↔ ∀ y : ℝ, x < (y : EReal)
case mpr x : EReal ⊢ x ≠ ⊥ → ∃ y, ↑y ≤ x
intro h
case mpr x : EReal h : x ≠ ⊥ ⊢ ∃ y, ↑y ≤ x
755b025f3991a944
Subgroup.goursat
Mathlib/GroupTheory/Goursat.lean
/-- **Goursat's lemma** for an arbitrary subgroup. If `I` is a subgroup of `G × H`, then there exist subgroups `G' ≤ G`, `H' ≤ H` and normal subgroups `M ⊴ G'` and `N ⊴ H'` such that `M × N ≤ I` and the image of `I` in `G' ⧸ M × H' ⧸ N` is the graph of an isomorphism `G' ⧸ M ≃ H' ⧸ N`. -/ @[to_additive "**Goursat's lemma** for an arbitrary subgroup. If `I` is a subgroup of `G × H`, then there exist subgroups `G' ≤ G`, `H' ≤ H` and normal subgroups `M ≤ G'` and `N ≤ H'` such that `M × N ≤ I` and the image of `I` in `G' ⧸ M × H' ⧸ N` is the graph of an isomorphism `G ⧸ G' ≃ H ⧸ H'`."] lemma goursat : ∃ (G' : Subgroup G) (H' : Subgroup H) (M : Subgroup G') (N : Subgroup H') (_ : M.Normal) (_ : N.Normal) (e : G' ⧸ M ≃* H' ⧸ N), I = (e.toMonoidHom.graph.comap <| (QuotientGroup.mk' M).prodMap (QuotientGroup.mk' N)).map (G'.subtype.prodMap H'.subtype)
case intro.h.mk.mpr G : Type u_1 H : Type u_2 inst✝¹ : Group G inst✝ : Group H I : Subgroup (G × H) G' : Subgroup G := map (MonoidHom.fst G H) I H' : Subgroup H := map (MonoidHom.snd G H) I P : ↥I →* ↥G' := (MonoidHom.fst G H).subgroupMap I Q : ↥I →* ↥H' := (MonoidHom.snd G H).subgroupMap I I' : Subgroup (↥G' × ↥H') := (P.prod Q).range hI₁' : Surjective (Prod.fst ∘ ⇑I'.subtype) hI₂' : Surjective (Prod.snd ∘ ⇑I'.subtype) this✝ : I'.goursatFst.Normal this : I'.goursatSnd.Normal e : ↥G' ⧸ I'.goursatFst ≃* ↥H' ⧸ I'.goursatSnd he : (((QuotientGroup.mk' I'.goursatFst).prodMap (QuotientGroup.mk' I'.goursatSnd)).comp I'.subtype).range = e.toMonoidHom.graph g : G h : H ⊢ ∀ (x : H) (h_1 : (g, x) ∈ I) (x_1 : G) (h_2 : (x_1, h) ∈ I) (x_2 : G) (x_3 : H) (x_4 : (x_2, x_3) ∈ I), P ⟨(x_2, x_3), ⋯⟩ = ⟨g, ⋯⟩ → Q ⟨(x_2, x_3), ⋯⟩ = ⟨h, ⋯⟩ → (g, h) ∈ I
rintro h₁ hgh₁ g₁ hg₁h g₂ h₂ hg₂h₂ hP hQ
case intro.h.mk.mpr G : Type u_1 H : Type u_2 inst✝¹ : Group G inst✝ : Group H I : Subgroup (G × H) G' : Subgroup G := map (MonoidHom.fst G H) I H' : Subgroup H := map (MonoidHom.snd G H) I P : ↥I →* ↥G' := (MonoidHom.fst G H).subgroupMap I Q : ↥I →* ↥H' := (MonoidHom.snd G H).subgroupMap I I' : Subgroup (↥G' × ↥H') := (P.prod Q).range hI₁' : Surjective (Prod.fst ∘ ⇑I'.subtype) hI₂' : Surjective (Prod.snd ∘ ⇑I'.subtype) this✝ : I'.goursatFst.Normal this : I'.goursatSnd.Normal e : ↥G' ⧸ I'.goursatFst ≃* ↥H' ⧸ I'.goursatSnd he : (((QuotientGroup.mk' I'.goursatFst).prodMap (QuotientGroup.mk' I'.goursatSnd)).comp I'.subtype).range = e.toMonoidHom.graph g : G h h₁ : H hgh₁ : (g, h₁) ∈ I g₁ : G hg₁h : (g₁, h) ∈ I g₂ : G h₂ : H hg₂h₂ : (g₂, h₂) ∈ I hP : P ⟨(g₂, h₂), ⋯⟩ = ⟨g, ⋯⟩ hQ : Q ⟨(g₂, h₂), ⋯⟩ = ⟨h, ⋯⟩ ⊢ (g, h) ∈ I
e32b63a688eecae2
PrimeSpectrum.exists_primeSpectrum_prod_le
Mathlib/RingTheory/Spectrum/Prime/Basic.lean
theorem exists_primeSpectrum_prod_le (I : Ideal R) : ∃ Z : Multiset (PrimeSpectrum R), Multiset.prod (Z.map asIdeal) ≤ I
case h R : Type u inst✝¹ : CommRing R inst✝ : IsNoetherianRing R I M : Ideal R hgt : ∀ J > M, (fun I => ∃ Z, (Multiset.map asIdeal Z).prod ≤ I) J h_prM : ¬M.IsPrime htop : ¬M = ⊤ lt_add : ∀ z ∉ M, M < M + span R {z} x : R hx : x ∉ M y : R hy : y ∉ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : (Multiset.map asIdeal Wx).prod ≤ M + span R {x} Wy : Multiset (PrimeSpectrum R) h_Wy : (Multiset.map asIdeal Wy).prod ≤ M + span R {y} ⊢ (Multiset.map asIdeal (Wx + Wy)).prod ≤ M
rw [Multiset.map_add, Multiset.prod_add]
case h R : Type u inst✝¹ : CommRing R inst✝ : IsNoetherianRing R I M : Ideal R hgt : ∀ J > M, (fun I => ∃ Z, (Multiset.map asIdeal Z).prod ≤ I) J h_prM : ¬M.IsPrime htop : ¬M = ⊤ lt_add : ∀ z ∉ M, M < M + span R {z} x : R hx : x ∉ M y : R hy : y ∉ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : (Multiset.map asIdeal Wx).prod ≤ M + span R {x} Wy : Multiset (PrimeSpectrum R) h_Wy : (Multiset.map asIdeal Wy).prod ≤ M + span R {y} ⊢ (Multiset.map asIdeal Wx).prod * (Multiset.map asIdeal Wy).prod ≤ M
81cfa8c0bba1005f
Algebra.FinitePresentation.of_restrict_scalars_finitePresentation
Mathlib/RingTheory/FinitePresentation.lean
theorem of_restrict_scalars_finitePresentation [Algebra A B] [IsScalarTower R A B] [FinitePresentation.{w₁, w₃} R B] [FiniteType R A] : FinitePresentation.{w₂, w₃} A B
R : Type w₁ A : Type w₂ B : Type w₃ inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Algebra R A inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : FinitePresentation R B inst✝ : FiniteType R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] B hf : Surjective ⇑f s : Finset (MvPolynomial (Fin n) R) hs : Ideal.span ↑s = RingHom.ker f.toRingHom RX : Type (max 0 w₁) := MvPolynomial (Fin n) R AX : Type (max 0 w₂) := MvPolynomial (Fin n) A t : Finset A ht : adjoin R ↑t = ⊤ t' : { x // x ∈ t } → MvPolynomial (Fin n) R ht' : ∀ (i : { x // x ∈ t }), f (t' i) = (algebraMap A B) ↑i ht'' : adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) = ⊤ g : { x // x ∈ t } → AX := fun x => MvPolynomial.C ↑x - (MvPolynomial.map (algebraMap R A)) (t' x) s₀✝ : Set (MvPolynomial (Fin n) A) := ⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g I : Ideal (MvPolynomial (Fin n) A) := RingHom.ker (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) leI : Ideal.span (⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g) ≤ RingHom.ker (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) x : MvPolynomial (Fin n) A hx : (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) x = 0 s₀ : Set (MvPolynomial (Fin n) A) := ⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g this : x ∈ adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) ⊢ x ∈ (MvPolynomial.map (algebraMap R A)).range.toAddSubmonoid ⊔ (Ideal.span s₀).toAddSubmonoid
refine adjoin_induction ?_ ?_ ?_ ?_ this
case refine_1 R : Type w₁ A : Type w₂ B : Type w₃ inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Algebra R A inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : FinitePresentation R B inst✝ : FiniteType R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] B hf : Surjective ⇑f s : Finset (MvPolynomial (Fin n) R) hs : Ideal.span ↑s = RingHom.ker f.toRingHom RX : Type (max 0 w₁) := MvPolynomial (Fin n) R AX : Type (max 0 w₂) := MvPolynomial (Fin n) A t : Finset A ht : adjoin R ↑t = ⊤ t' : { x // x ∈ t } → MvPolynomial (Fin n) R ht' : ∀ (i : { x // x ∈ t }), f (t' i) = (algebraMap A B) ↑i ht'' : adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) = ⊤ g : { x // x ∈ t } → AX := fun x => MvPolynomial.C ↑x - (MvPolynomial.map (algebraMap R A)) (t' x) s₀✝ : Set (MvPolynomial (Fin n) A) := ⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g I : Ideal (MvPolynomial (Fin n) A) := RingHom.ker (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) leI : Ideal.span (⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g) ≤ RingHom.ker (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) x : MvPolynomial (Fin n) A hx : (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) x = 0 s₀ : Set (MvPolynomial (Fin n) A) := ⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g this : x ∈ adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) ⊢ ∀ x ∈ ⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X, x ∈ (MvPolynomial.map (algebraMap R A)).range.toAddSubmonoid ⊔ (Ideal.span s₀).toAddSubmonoid case refine_2 R : Type w₁ A : Type w₂ B : Type w₃ inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Algebra R A inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : FinitePresentation R B inst✝ : FiniteType R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] B hf : Surjective ⇑f s : Finset (MvPolynomial (Fin n) R) hs : Ideal.span ↑s = RingHom.ker f.toRingHom RX : Type (max 0 w₁) := MvPolynomial (Fin n) R AX : Type (max 0 w₂) := MvPolynomial (Fin n) A t : Finset A ht : adjoin R ↑t = ⊤ t' : { x // x ∈ t } → MvPolynomial (Fin n) R ht' : ∀ (i : { x // x ∈ t }), f (t' i) = (algebraMap A B) ↑i ht'' : adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) = ⊤ g : { x // x ∈ t } → AX := fun x => MvPolynomial.C ↑x - (MvPolynomial.map (algebraMap R A)) (t' x) s₀✝ : Set (MvPolynomial (Fin n) A) := ⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g I : Ideal (MvPolynomial (Fin n) A) := RingHom.ker (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) leI : Ideal.span (⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g) ≤ RingHom.ker (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) x : MvPolynomial (Fin n) A hx : (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) x = 0 s₀ : Set (MvPolynomial (Fin n) A) := ⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g this : x ∈ adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) ⊢ ∀ (r : R), (algebraMap R (MvPolynomial (Fin n) A)) r ∈ (MvPolynomial.map (algebraMap R A)).range.toAddSubmonoid ⊔ (Ideal.span s₀).toAddSubmonoid case refine_3 R : Type w₁ A : Type w₂ B : Type w₃ inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Algebra R A inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : FinitePresentation R B inst✝ : FiniteType R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] B hf : Surjective ⇑f s : Finset (MvPolynomial (Fin n) R) hs : Ideal.span ↑s = RingHom.ker f.toRingHom RX : Type (max 0 w₁) := MvPolynomial (Fin n) R AX : Type (max 0 w₂) := MvPolynomial (Fin n) A t : Finset A ht : adjoin R ↑t = ⊤ t' : { x // x ∈ t } → MvPolynomial (Fin n) R ht' : ∀ (i : { x // x ∈ t }), f (t' i) = (algebraMap A B) ↑i ht'' : adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) = ⊤ g : { x // x ∈ t } → AX := fun x => MvPolynomial.C ↑x - (MvPolynomial.map (algebraMap R A)) (t' x) s₀✝ : Set (MvPolynomial (Fin n) A) := ⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g I : Ideal (MvPolynomial (Fin n) A) := RingHom.ker (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) leI : Ideal.span (⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g) ≤ RingHom.ker (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) x : MvPolynomial (Fin n) A hx : (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) x = 0 s₀ : Set (MvPolynomial (Fin n) A) := ⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g this : x ∈ adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) ⊢ ∀ (x y : MvPolynomial (Fin n) A), x ∈ adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) → y ∈ adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) → x ∈ (MvPolynomial.map (algebraMap R A)).range.toAddSubmonoid ⊔ (Ideal.span s₀).toAddSubmonoid → y ∈ (MvPolynomial.map (algebraMap R A)).range.toAddSubmonoid ⊔ (Ideal.span s₀).toAddSubmonoid → x + y ∈ (MvPolynomial.map (algebraMap R A)).range.toAddSubmonoid ⊔ (Ideal.span s₀).toAddSubmonoid case refine_4 R : Type w₁ A : Type w₂ B : Type w₃ inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Algebra R A inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : FinitePresentation R B inst✝ : FiniteType R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] B hf : Surjective ⇑f s : Finset (MvPolynomial (Fin n) R) hs : Ideal.span ↑s = RingHom.ker f.toRingHom RX : Type (max 0 w₁) := MvPolynomial (Fin n) R AX : Type (max 0 w₂) := MvPolynomial (Fin n) A t : Finset A ht : adjoin R ↑t = ⊤ t' : { x // x ∈ t } → MvPolynomial (Fin n) R ht' : ∀ (i : { x // x ∈ t }), f (t' i) = (algebraMap A B) ↑i ht'' : adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) = ⊤ g : { x // x ∈ t } → AX := fun x => MvPolynomial.C ↑x - (MvPolynomial.map (algebraMap R A)) (t' x) s₀✝ : Set (MvPolynomial (Fin n) A) := ⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g I : Ideal (MvPolynomial (Fin n) A) := RingHom.ker (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) leI : Ideal.span (⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g) ≤ RingHom.ker (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) x : MvPolynomial (Fin n) A hx : (MvPolynomial.aeval (⇑f ∘ MvPolynomial.X)) x = 0 s₀ : Set (MvPolynomial (Fin n) A) := ⇑(MvPolynomial.map (algebraMap R A)) '' ↑s ∪ Set.range g this : x ∈ adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) ⊢ ∀ (x y : MvPolynomial (Fin n) A), x ∈ adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) → y ∈ adjoin R (⇑(algebraMap A AX) '' ↑t ∪ Set.range MvPolynomial.X) → x ∈ (MvPolynomial.map (algebraMap R A)).range.toAddSubmonoid ⊔ (Ideal.span s₀).toAddSubmonoid → y ∈ (MvPolynomial.map (algebraMap R A)).range.toAddSubmonoid ⊔ (Ideal.span s₀).toAddSubmonoid → x * y ∈ (MvPolynomial.map (algebraMap R A)).range.toAddSubmonoid ⊔ (Ideal.span s₀).toAddSubmonoid
765dbb818bc3202d
balanced_iff_neg_mem
Mathlib/Analysis/LocallyConvex/Basic.lean
theorem balanced_iff_neg_mem (hs : Convex ℝ s) : Balanced ℝ s ↔ ∀ ⦃x⦄, x ∈ s → -x ∈ s
E : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : Set E hs : Convex ℝ s ⊢ Balanced ℝ s ↔ ∀ ⦃x : E⦄, x ∈ s → -x ∈ s
refine ⟨fun h x => h.neg_mem_iff.2, fun h a ha => smul_set_subset_iff.2 fun x hx => ?_⟩
E : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : Set E hs : Convex ℝ s h : ∀ ⦃x : E⦄, x ∈ s → -x ∈ s a : ℝ ha : ‖a‖ ≤ 1 x : E hx : x ∈ s ⊢ a • x ∈ s
86647cdfa5c92b41
Set.chainHeight_eq_top_iff
Mathlib/Order/Height.lean
theorem chainHeight_eq_top_iff : s.chainHeight = ⊤ ↔ ∀ n, ∃ l ∈ s.subchain, length l = n
α : Type u_1 inst✝ : LT α s : Set α ⊢ s.chainHeight = ⊤ ↔ ∀ (n : ℕ), ∃ l ∈ s.subchain, l.length = n
refine ⟨fun h n ↦ le_chainHeight_iff.1 (le_top.trans_eq h.symm), fun h ↦ ?_⟩
α : Type u_1 inst✝ : LT α s : Set α h : ∀ (n : ℕ), ∃ l ∈ s.subchain, l.length = n ⊢ s.chainHeight = ⊤
8fb85cc382007eb8
AlgebraicGeometry.Scheme.Hom.preimage_iSup
Mathlib/AlgebraicGeometry/Scheme.lean
lemma preimage_iSup {ι} (U : ι → Opens Y) : f ⁻¹ᵁ iSup U = ⨆ i, f ⁻¹ᵁ U i := Opens.ext (by simp)
X Y : Scheme f : X.Hom Y ι : Sort u_1 U : ι → Y.Opens ⊢ ↑(f ⁻¹ᵁ iSup U) = ↑(⨆ i, f ⁻¹ᵁ U i)
simp
no goals
e5286c159d8c8193
HasFDerivAt.le_of_lip'
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀) {C : ℝ} (hC₀ : 0 ≤ C) (hlip : ∀ᶠ x in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖) : ‖f'‖ ≤ C
case h 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F f' : E →L[𝕜] F x₀ : E hf : HasFDerivAt f f' x₀ C : ℝ hC₀ : 0 ≤ C hlip : ∀ᶠ (a : E) in 𝓝 0, ‖f (x₀ + a) - f x₀‖ ≤ C * ‖x₀ + a - x₀‖ ε : ℝ ε0 : 0 < ε y : E hy : ‖f (x₀ + y) - f x₀ - f' y‖ ≤ ε * ‖y‖ hyC : ‖f (x₀ + y) - f x₀‖ ≤ C * ‖y‖ ⊢ ‖f' y‖ ≤ (C + ε) * ‖y‖
calc ‖f' y‖ ≤ ‖f (x₀ + y) - f x₀‖ + ‖f (x₀ + y) - f x₀ - f' y‖ := norm_le_insert _ _ _ ≤ C * ‖y‖ + ε * ‖y‖ := add_le_add hyC hy _ = (C + ε) * ‖y‖ := (add_mul _ _ _).symm
no goals
8c833a4fe1e5790f
Nat.sub_one_mul_sum_div_pow_eq_sub_sum_digits
Mathlib/Data/Nat/Digits.lean
theorem sub_one_mul_sum_div_pow_eq_sub_sum_digits {p : ℕ} (L : List ℕ) {h_nonempty} (h_ne_zero : L.getLast h_nonempty ≠ 0) (h_lt : ∀ l ∈ L, l < p) : (p - 1) * ∑ i ∈ range L.length, (ofDigits p L) / p ^ i.succ = (ofDigits p L) - L.sum
case inr.inr.nil p : ℕ h : p < 1 h_nonempty : [] ≠ [] h_ne_zero : [].getLast h_nonempty ≠ 0 h_lt : ∀ l ∈ [], l < p ⊢ 0 = ofDigits 0 [] - [].sum
rfl
no goals
a136b4f3960a4789
Std.DHashMap.Internal.Raw₀.Const.get!_insertIfNew
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem get!_insertIfNew [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.1.WF) {k a : α} {v : β} : get! (m.insertIfNew k v) a = if k == a ∧ m.contains k = false then v else get! m a
α : Type u inst✝⁴ : BEq α inst✝³ : Hashable α β : Type v m : Raw₀ α fun x => β inst✝² : EquivBEq α inst✝¹ : LawfulHashable α inst✝ : Inhabited β h : m.val.WF k a : α v : β ⊢ get! (m.insertIfNew k v) a = if (k == a) = true ∧ m.contains k = false then v else get! m a
simp_to_model [insertIfNew] using List.getValue!_insertEntryIfNew
no goals
cec8317ff74e0b06
Ideal.finite_quotient_pow
Mathlib/RingTheory/Ideal/Quotient/Index.lean
lemma Ideal.finite_quotient_pow (hI : I.FG) [Finite (R ⧸ I)] (n) : Finite (R ⧸ I ^ n)
case zero R : Type u_1 inst✝¹ : CommRing R I : Ideal R hI : I.FG inst✝ : Finite (R ⧸ I) ⊢ Finite (R ⧸ I ^ 0)
simp only [pow_zero, Ideal.one_eq_top]
case zero R : Type u_1 inst✝¹ : CommRing R I : Ideal R hI : I.FG inst✝ : Finite (R ⧸ I) ⊢ Finite (R ⧸ ⊤)
a872582db39414d1
Composition.mem_range_embedding_iff
Mathlib/Combinatorics/Enumerative/Composition.lean
theorem mem_range_embedding_iff {j : Fin n} {i : Fin c.length} : j ∈ Set.range (c.embedding i) ↔ c.sizeUpTo i ≤ j ∧ (j : ℕ) < c.sizeUpTo (i : ℕ).succ
n : ℕ c : Composition n j : Fin n i : Fin c.length ⊢ j ∈ Set.range ⇑(c.embedding i) ↔ c.sizeUpTo ↑i ≤ ↑j ∧ ↑j < c.sizeUpTo (↑i).succ
constructor
case mp n : ℕ c : Composition n j : Fin n i : Fin c.length ⊢ j ∈ Set.range ⇑(c.embedding i) → c.sizeUpTo ↑i ≤ ↑j ∧ ↑j < c.sizeUpTo (↑i).succ case mpr n : ℕ c : Composition n j : Fin n i : Fin c.length ⊢ c.sizeUpTo ↑i ≤ ↑j ∧ ↑j < c.sizeUpTo (↑i).succ → j ∈ Set.range ⇑(c.embedding i)
ffb2f79e5a4de694
integral_mul_cpow_one_add_sq
Mathlib/Analysis/SpecialFunctions/Integrals.lean
theorem integral_mul_cpow_one_add_sq {t : ℂ} (ht : t ≠ -1) : (∫ x : ℝ in a..b, (x : ℂ) * ((1 : ℂ) + ↑x ^ 2) ^ t) = ((1 : ℂ) + (b : ℂ) ^ 2) ^ (t + 1) / (2 * (t + ↑1)) - ((1 : ℂ) + (a : ℂ) ^ 2) ^ (t + 1) / (2 * (t + ↑1))
case hint.hu a b : ℝ t : ℂ ht : t ≠ -1 this : t + 1 ≠ 0 ⊢ Continuous fun y => ↑y * (1 + ↑y ^ 2) ^ t
refine continuous_ofReal.mul ?_
case hint.hu a b : ℝ t : ℂ ht : t ≠ -1 this : t + 1 ≠ 0 ⊢ Continuous fun y => (1 + ↑y ^ 2) ^ t
5e0a067782411706
List.ofFn_getElem
Mathlib/Data/List/OfFn.lean
theorem ofFn_getElem : ∀ l : List α, (ofFn (fun i : Fin l.length => l[(i : Nat)])) = l | [] => by rw [ofFn_zero] | a :: l => by rw [ofFn_succ] congr exact ofFn_get l
α : Type u a : α l : List α ⊢ (ofFn fun i => (a :: l)[↑i]) = a :: l
rw [ofFn_succ]
α : Type u a : α l : List α ⊢ ((a :: l)[↑0] :: ofFn fun i => (a :: l)[↑i.succ]) = a :: l
4249a4a6f2cbd535
IsNilpotent.exp_add_of_commute
Mathlib/RingTheory/Nilpotent/Exp.lean
theorem exp_add_of_commute {a b : A} (h₁ : Commute a b) (h₂ : IsNilpotent a) (h₃ : IsNilpotent b) : exp (a + b) = exp a * exp b
case intro.intro A : Type u_1 inst✝¹ : Ring A inst✝ : Algebra ℚ A a b : A h₁ : Commute a b n₁ : ℕ hn₁ : a ^ n₁ = 0 n₂ : ℕ hn₂ : b ^ n₂ = 0 ⊢ exp (a + b) = exp a * exp b
let N := n₁ ⊔ n₂
case intro.intro A : Type u_1 inst✝¹ : Ring A inst✝ : Algebra ℚ A a b : A h₁ : Commute a b n₁ : ℕ hn₁ : a ^ n₁ = 0 n₂ : ℕ hn₂ : b ^ n₂ = 0 N : ℕ := n₁ ⊔ n₂ ⊢ exp (a + b) = exp a * exp b
925becc4d11e37f5
irreducible_sq_not_dvd_iff_eq_zero_and_no_irreducibles_or_squarefree
Mathlib/Algebra/Squarefree/Basic.lean
theorem irreducible_sq_not_dvd_iff_eq_zero_and_no_irreducibles_or_squarefree (r : R) : (∀ x : R, Irreducible x → ¬x * x ∣ r) ↔ (r = 0 ∧ ∀ x : R, ¬Irreducible x) ∨ Squarefree r
R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R ⊢ (∀ (x : R), Irreducible x → ¬x * x ∣ r) ↔ (r = 0 ∧ ∀ (x : R), ¬Irreducible x) ∨ Squarefree r
refine ⟨fun h ↦ ?_, ?_⟩
case refine_1 R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r ⊢ (r = 0 ∧ ∀ (x : R), ¬Irreducible x) ∨ Squarefree r case refine_2 R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R ⊢ (r = 0 ∧ ∀ (x : R), ¬Irreducible x) ∨ Squarefree r → ∀ (x : R), Irreducible x → ¬x * x ∣ r
95d2bc81f47d92e1
Real.sin_pi_div_thirty_two
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem sin_pi_div_thirty_two : sin (π / 32) = √(2 - √(2 + √(2 + √2))) / 2
⊢ sin (π / 32) = sin (π / 2 ^ 5)
congr
case e_x.e_a ⊢ 32 = 2 ^ 5
c2b49e6b83d3738b
ContinuousSMul.of_nhds_zero
Mathlib/Topology/Algebra/Module/Basic.lean
theorem ContinuousSMul.of_nhds_zero [IsTopologicalRing R] [IsTopologicalAddGroup M] (hmul : Tendsto (fun p : R × M => p.1 • p.2) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0)) (hmulleft : ∀ m : M, Tendsto (fun a : R => a • m) (𝓝 0) (𝓝 0)) (hmulright : ∀ a : R, Tendsto (fun m : M => a • m) (𝓝 0) (𝓝 0)) : ContinuousSMul R M where continuous_smul
R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : TopologicalSpace R inst✝⁴ : TopologicalSpace M inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsTopologicalRing R inst✝ : IsTopologicalAddGroup M hmul : Tendsto (fun p => p.1 • p.2) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) hmulleft : ∀ (m : M), Tendsto (fun a => a • m) (𝓝 0) (𝓝 0) hmulright : ∀ (a : R), Tendsto (fun m => a • m) (𝓝 0) (𝓝 0) ⊢ Continuous fun p => p.1 • p.2
rw [← nhds_prod_eq] at hmul
R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : TopologicalSpace R inst✝⁴ : TopologicalSpace M inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsTopologicalRing R inst✝ : IsTopologicalAddGroup M hmul : Tendsto (fun p => p.1 • p.2) (𝓝 (0, 0)) (𝓝 0) hmulleft : ∀ (m : M), Tendsto (fun a => a • m) (𝓝 0) (𝓝 0) hmulright : ∀ (a : R), Tendsto (fun m => a • m) (𝓝 0) (𝓝 0) ⊢ Continuous fun p => p.1 • p.2
df1a10ae168101e9
Finset.card_bij
Mathlib/Data/Finset/Card.lean
/-- Reorder a finset. The difference with `Finset.card_bij'` is that the bijection is specified as a surjective injection, rather than by an inverse function. The difference with `Finset.card_nbij` is that the bijection is allowed to use membership of the domain, rather than being a non-dependent function. -/ lemma card_bij (i : ∀ a ∈ s, β) (hi : ∀ a ha, i a ha ∈ t) (i_inj : ∀ a₁ ha₁ a₂ ha₂, i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂) (i_surj : ∀ b ∈ t, ∃ a ha, i a ha = b) : #s = #t
α : Type u_1 β : Type u_2 s : Finset α t : Finset β i : (a : α) → a ∈ s → β hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t i_inj : ∀ (a₁ : α) (ha₁ : a₁ ∈ s) (a₂ : α) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ i_surj : ∀ b ∈ t, ∃ a, ∃ (ha : a ∈ s), i a ha = b ⊢ #s = #t
calc #s = #s.attach := card_attach.symm _ = #(s.attach.image fun a ↦ i a.1 a.2) := Eq.symm ?_ _ = #t := ?_
case calc_1 α : Type u_1 β : Type u_2 s : Finset α t : Finset β i : (a : α) → a ∈ s → β hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t i_inj : ∀ (a₁ : α) (ha₁ : a₁ ∈ s) (a₂ : α) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ i_surj : ∀ b ∈ t, ∃ a, ∃ (ha : a ∈ s), i a ha = b ⊢ #(image (fun a => i ↑a ⋯) s.attach) = #s.attach case calc_2 α : Type u_1 β : Type u_2 s : Finset α t : Finset β i : (a : α) → a ∈ s → β hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t i_inj : ∀ (a₁ : α) (ha₁ : a₁ ∈ s) (a₂ : α) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ i_surj : ∀ b ∈ t, ∃ a, ∃ (ha : a ∈ s), i a ha = b ⊢ #(image (fun a => i ↑a ⋯) s.attach) = #t
f0c71609f28a0461
Std.Tactic.BVDecide.Normalize.BitVec.bne_to_beq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Normalize/Canonicalize.lean
theorem BitVec.bne_to_beq (a b : BitVec w) : (a != b) = (!(a == b))
w : Nat a b : BitVec w ⊢ (a != b) = !a == b
simp [bne]
no goals
6b85173f9b2912ae
List.formPerm_ext_iff
Mathlib/GroupTheory/Perm/List.lean
theorem formPerm_ext_iff {x y x' y' : α} {l l' : List α} (hd : Nodup (x :: y :: l)) (hd' : Nodup (x' :: y' :: l')) : formPerm (x :: y :: l) = formPerm (x' :: y' :: l') ↔ (x :: y :: l) ~r (x' :: y' :: l')
case h α : Type u_1 inst✝ : DecidableEq α x y x' y' : α l l' : List α hd : (x :: y :: l).Nodup hd' : (x' :: y' :: l').Nodup h : ∀ (x_1 : α), (x :: y :: l).formPerm x_1 = (x' :: y' :: l').formPerm x_1 hx : x' ∈ x :: y :: l n : ℕ hn : n < (x :: y :: l).length hx' : (x :: y :: l).get ⟨n, hn⟩ = x' hl : (x :: y :: l).length = (x' :: y' :: l').length ⊢ (x :: y :: l).rotate n = x' :: y' :: l'
apply List.ext_getElem
case h.hl α : Type u_1 inst✝ : DecidableEq α x y x' y' : α l l' : List α hd : (x :: y :: l).Nodup hd' : (x' :: y' :: l').Nodup h : ∀ (x_1 : α), (x :: y :: l).formPerm x_1 = (x' :: y' :: l').formPerm x_1 hx : x' ∈ x :: y :: l n : ℕ hn : n < (x :: y :: l).length hx' : (x :: y :: l).get ⟨n, hn⟩ = x' hl : (x :: y :: l).length = (x' :: y' :: l').length ⊢ ((x :: y :: l).rotate n).length = (x' :: y' :: l').length case h.h α : Type u_1 inst✝ : DecidableEq α x y x' y' : α l l' : List α hd : (x :: y :: l).Nodup hd' : (x' :: y' :: l').Nodup h : ∀ (x_1 : α), (x :: y :: l).formPerm x_1 = (x' :: y' :: l').formPerm x_1 hx : x' ∈ x :: y :: l n : ℕ hn : n < (x :: y :: l).length hx' : (x :: y :: l).get ⟨n, hn⟩ = x' hl : (x :: y :: l).length = (x' :: y' :: l').length ⊢ ∀ (i : ℕ) (h₁ : i < ((x :: y :: l).rotate n).length) (h₂ : i < (x' :: y' :: l').length), ((x :: y :: l).rotate n)[i] = (x' :: y' :: l')[i]
355bf7b7e44c963c
Array.flatten_toArray_map_toArray
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem flatten_toArray_map_toArray (xss : List (List α)) : (xss.map List.toArray).toArray.flatten = xss.flatten.toArray
case cons α : Type u_1 xs : List α xss : List (List α) ih : ∀ (as : Array α), List.foldl (fun r a => r ++ a) as (List.map List.toArray xss) = as ++ xss.flatten.toArray as : Array α ⊢ List.foldl (fun r a => r ++ a) as (List.map List.toArray (xs :: xss)) = as ++ (xs :: xss).flatten.toArray
simp [ih]
no goals
229d39ebde69cbd4
exists_integer_of_is_root_of_monic
Mathlib/RingTheory/Polynomial/RationalRoot.lean
theorem exists_integer_of_is_root_of_monic {p : A[X]} (hp : Monic p) {r : K} (hr : aeval r p = 0) : ∃ r' : A, r = algebraMap A K r' ∧ r' ∣ p.coeff 0
A : Type u_1 K : Type u_2 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : UniqueFactorizationMonoid A inst✝² : Field K inst✝¹ : Algebra A K inst✝ : IsFractionRing A K p : A[X] hp : p.Monic r : K hr : (aeval r) p = 0 ⊢ ∃ r', r = (algebraMap A K) r' ∧ r' ∣ p.coeff 0
obtain ⟨inv, h_inv⟩ := hp ▸ den_dvd_of_is_root hr
case intro A : Type u_1 K : Type u_2 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : UniqueFactorizationMonoid A inst✝² : Field K inst✝¹ : Algebra A K inst✝ : IsFractionRing A K p : A[X] hp : p.Monic r : K hr : (aeval r) p = 0 inv : A h_inv : 1 = ↑(den A r) * inv ⊢ ∃ r', r = (algebraMap A K) r' ∧ r' ∣ p.coeff 0
f67f88843b2c3ec9
fourier_zero
Mathlib/Analysis/Fourier/AddCircle.lean
theorem fourier_zero {x : AddCircle T} : fourier 0 x = 1
T : ℝ x : AddCircle T ⊢ (fourier 0) x = 1
induction x using QuotientAddGroup.induction_on
case H T z✝ : ℝ ⊢ (fourier 0) ↑z✝ = 1
88538cd150aac376
OrderIso.map_minimal_mem
Mathlib/Order/Minimal.lean
theorem map_minimal_mem (f : s ≃o t) (hx : Minimal (· ∈ s) x) : Minimal (· ∈ t) (f ⟨x, hx.prop⟩)
α : Type u_1 x : α inst✝¹ : Preorder α β : Type u_2 inst✝ : Preorder β s : Set α t : Set β f : ↑s ≃o ↑t hx : Minimal (fun x => x ∈ s) x ⊢ t = range (Subtype.val ∘ ⇑f)
simp
no goals
16ce13c08cb6f454
Batteries.UnionFind.rankD_findAux
Mathlib/.lake/packages/batteries/Batteries/Data/UnionFind/Basic.lean
theorem rankD_findAux {self : UnionFind} {x : Fin self.size} : rankD (findAux self x).s i = self.rank i
i : Nat self : UnionFind x : Fin self.size h : i < self.size ⊢ rankD (self.findAux x).s i = self.rank i
rw [findAux_s]
i : Nat self : UnionFind x : Fin self.size h : i < self.size ⊢ rankD (if self.arr[↑x].parent = ↑x then self.arr else (self.findAux ⟨self.arr[↑x].parent, ⋯⟩).s.modify ↑x fun s => { parent := self.rootD ↑x, rank := s.rank }) i = self.rank i
df1ad95e2480e7f4
MeromorphicOn.order_ne_top_of_isPreconnected
Mathlib/Analysis/Meromorphic/Order.lean
theorem order_ne_top_of_isPreconnected {x y : 𝕜} (hU : IsPreconnected U) (h₁x : x ∈ U) (hy : y ∈ U) (h₂x : (hf x h₁x).order ≠ ⊤) : (hf y hy).order ≠ ⊤ := (hf.exists_order_ne_top_iff_forall ⟨nonempty_of_mem h₁x, hU⟩).1 (by use ⟨x, h₁x⟩) ⟨y, hy⟩
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E U : Set 𝕜 hf : MeromorphicOn f U x y : 𝕜 hU : IsPreconnected U h₁x : x ∈ U hy : y ∈ U h₂x : ⋯.order ≠ ⊤ ⊢ ∃ u, ⋯.order ≠ ⊤
use ⟨x, h₁x⟩
no goals
ac3d540f6942d753
MaximalSpectrum.toPiLocalization_not_surjective_of_infinite
Mathlib/RingTheory/Spectrum/Maximal/Localization.lean
theorem toPiLocalization_not_surjective_of_infinite [Infinite ι] : ¬ Function.Surjective (toPiLocalization (Π i, R i)) := fun surj ↦ by classical have ⟨J, max, nmem⟩ := PrimeSpectrum.exists_maximal_nmem_range_sigmaToPi_of_infinite R obtain ⟨r, hr⟩ := surj (Function.update 0 ⟨J, max⟩ 1) have : r = 0 := funext fun i ↦ toPiLocalization_injective _ <| funext fun I ↦ by replace hr := congr_fun hr ⟨_, I.2.comap_piEvalRingHom⟩ dsimp only [toPiLocalization_apply_apply, Subtype.coe_mk] at hr simp_rw [toPiLocalization_apply_apply, ← Localization.AtPrime.mapPiEvalRingHom_algebraMap_apply, hr] rw [Function.update_of_ne]; · simp_rw [Pi.zero_apply, map_zero] exact fun h ↦ nmem ⟨⟨i, I.1, I.2.isPrime⟩, PrimeSpectrum.ext congr($h.1)⟩ replace hr := congr_fun hr ⟨J, max⟩ rw [this, map_zero, Function.update_self] at hr exact zero_ne_one hr
ι : Type u_5 R : ι → Type u_4 inst✝² : (i : ι) → CommSemiring (R i) inst✝¹ : ∀ (i : ι), Nontrivial (R i) inst✝ : Infinite ι surj : Function.Surjective ⇑(toPiLocalization ((i : ι) → R i)) J : Ideal ((i : ι) → R i) max : J.IsMaximal nmem : { asIdeal := J, isPrime := ⋯ } ∉ Set.range (PrimeSpectrum.sigmaToPi R) r : (i : ι) → R i i : ι I : MaximalSpectrum (R i) hr : (toPiLocalization ((i : ι) → R i)) r { asIdeal := Ideal.comap (Pi.evalRingHom R i) I.asIdeal, isMaximal := ⋯ } = Function.update 0 { asIdeal := J, isMaximal := max } 1 { asIdeal := Ideal.comap (Pi.evalRingHom R i) I.asIdeal, isMaximal := ⋯ } ⊢ (toPiLocalization (R i)) (r i) I = (toPiLocalization (R i)) (0 i) I
dsimp only [toPiLocalization_apply_apply, Subtype.coe_mk] at hr
ι : Type u_5 R : ι → Type u_4 inst✝² : (i : ι) → CommSemiring (R i) inst✝¹ : ∀ (i : ι), Nontrivial (R i) inst✝ : Infinite ι surj : Function.Surjective ⇑(toPiLocalization ((i : ι) → R i)) J : Ideal ((i : ι) → R i) max : J.IsMaximal nmem : { asIdeal := J, isPrime := ⋯ } ∉ Set.range (PrimeSpectrum.sigmaToPi R) r : (i : ι) → R i i : ι I : MaximalSpectrum (R i) hr : (algebraMap ((i : ι) → R i) (Localization.AtPrime (Ideal.comap (Pi.evalRingHom R i) I.asIdeal))) r = Function.update 0 { asIdeal := J, isMaximal := max } 1 { asIdeal := Ideal.comap (Pi.evalRingHom R i) I.asIdeal, isMaximal := ⋯ } ⊢ (toPiLocalization (R i)) (r i) I = (toPiLocalization (R i)) (0 i) I
695740c4e99b5371
Affine.Triangle.equilateral_iff_dist_eq_and_dist_eq
Mathlib/Analysis/Normed/Affine/Simplex.lean
lemma equilateral_iff_dist_eq_and_dist_eq {t : Triangle R P} {i₁ i₂ i₃ : Fin 3} (h₁₂ : i₁ ≠ i₂) (h₁₃ : i₁ ≠ i₃) (h₂₃ : i₂ ≠ i₃) : t.Equilateral ↔ dist (t.points i₁) (t.points i₂) = dist (t.points i₁) (t.points i₃) ∧ dist (t.points i₁) (t.points i₂) = dist (t.points i₂) (t.points i₃)
case refine_1 R : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring R inst✝³ : SeminormedAddCommGroup V inst✝² : PseudoMetricSpace P inst✝¹ : Module R V inst✝ : NormedAddTorsor V P t : Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ x✝ : Simplex.Equilateral t r : ℝ hr : ∀ (i j : Fin (2 + 1)), i ≠ j → dist (t.points i) (t.points j) = r ⊢ dist (t.points i₁) (t.points i₂) = dist (t.points i₁) (t.points i₃) ∧ dist (t.points i₁) (t.points i₂) = dist (t.points i₂) (t.points i₃)
simp [hr _ _ h₁₂, hr _ _ h₁₃, hr _ _ h₂₃]
no goals
e01c30a9004c5510
exists_perfect_nonempty_of_isClosed_of_not_countable
Mathlib/Topology/Perfect.lean
theorem exists_perfect_nonempty_of_isClosed_of_not_countable [SecondCountableTopology α] (hclosed : IsClosed C) (hunc : ¬C.Countable) : ∃ D : Set α, Perfect D ∧ D.Nonempty ∧ D ⊆ C
case intro.intro.intro.intro.right α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C hunc : ¬C.Countable V D : Set α Vct : V.Countable Dperf : Perfect D VD : C = V ∪ D ⊢ D ⊆ V ∪ D
exact subset_union_right
no goals
5729719cdfac83fb
ContMDiffWithinAt.comp
Mathlib/Geometry/Manifold/ContMDiff/Basic.lean
theorem ContMDiffWithinAt.comp {t : Set M'} {g : M' → M''} (x : M) (hg : ContMDiffWithinAt I' I'' n g t (f x)) (hf : ContMDiffWithinAt I I' n f s x) (st : MapsTo f s t) : ContMDiffWithinAt I I'' n (g ∘ f) s x
case h.intro 𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M E' : Type u_5 inst✝¹⁰ : NormedAddCommGroup E' inst✝⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁷ : TopologicalSpace M' E'' : Type u_8 inst✝⁶ : NormedAddCommGroup E'' inst✝⁵ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝⁴ : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝³ : TopologicalSpace M'' inst✝² : ChartedSpace H M inst✝¹ : ChartedSpace H' M' inst✝ : ChartedSpace H'' M'' f : M → M' s : Set M n : WithTop ℕ∞ t : Set M' g : M' → M'' x : M st : MapsTo f s t e : PartialEquiv M E := extChartAt I x e' : PartialEquiv M' E' := extChartAt I' (f x) hg : ContinuousWithinAt g t (f x) ∧ ContDiffWithinAt 𝕜 n (↑(extChartAt I'' (g (f x))) ∘ g ∘ ↑e'.symm) (↑e'.symm ⁻¹' t ∩ range ↑I') (writtenInExtChartAt I I' x f (↑e x)) hf : ContinuousWithinAt f s x ∧ ContDiffWithinAt 𝕜 n (↑e' ∘ f ∘ ↑e.symm) (↑e.symm ⁻¹' s ∩ range ↑I) (↑e x) this : ↑e' (f x) = writtenInExtChartAt I I' x f (↑e x) A : ∀ᶠ (y : E) in 𝓝[↑e.symm ⁻¹' s ∩ range ↑I] ↑e x, f (↑e.symm y) ∈ t ∧ f (↑e.symm y) ∈ e'.source x' : E ht : f (↑e.symm x') ∈ t hfx' : f (↑e.symm x') ∈ e'.source ⊢ ↑(extChartAt I' (f x)) (f (↑(extChartAt I x).symm x')) ∈ range ↑I'
exact mem_range_self _
no goals
21a30820f7079ed0
Matroid.cRk_map_image_lift
Mathlib/Data/Matroid/Rank/Cardinal.lean
theorem cRk_map_image_lift (M : Matroid α) (hf : InjOn f M.E) (X : Set α) (hX : X ⊆ M.E
α : Type u β : Type v f : α → β M : Matroid α hf : InjOn f M.E X : Set α hX : autoParam (X ⊆ M.E) _auto✝ ⊢ lift.{u, v} ((M.map f hf).cRk (f '' X)) = lift.{v, u} (M.cRk X)
nth_rw 1 [cRk, cRank, le_antisymm_iff, lift_iSup (bddAbove_range _), cRk, cRank, cRk, cRank]
α : Type u β : Type v f : α → β M : Matroid α hf : InjOn f M.E X : Set α hX : autoParam (X ⊆ M.E) _auto✝ ⊢ ⨆ i, lift.{u, v} #↑↑i ≤ lift.{v, u} (⨆ B, #↑↑B) ∧ lift.{v, u} (⨆ B, #↑↑B) ≤ lift.{u, v} (⨆ B, #↑↑B)
58e7e885cad0821d
List.splitWrtComposition_flatten
Mathlib/Combinatorics/Enumerative/Composition.lean
theorem splitWrtComposition_flatten (L : List (List α)) (c : Composition L.flatten.length) (h : map length L = c.blocks) : splitWrtComposition (flatten L) c = L
α : Type u_1 L : List (List α) c : Composition L.flatten.length h : map length L = c.blocks ⊢ L.flatten.splitWrtComposition c = L
simp only [eq_self_iff_true, and_self_iff, eq_iff_flatten_eq, flatten_splitWrtComposition, map_length_splitWrtComposition, h]
no goals
56350ce3184733fc
smoothingSeminormSeq_tendsto_aux
Mathlib/Analysis/Normed/Ring/SmoothingSeminorm.lean
theorem smoothingSeminormSeq_tendsto_aux {L : ℝ} (hL : 0 ≤ L) {ε : ℝ} (hε : 0 < ε) {m1 : ℕ} (hm1 : 0 < m1) {x : R} (hx : μ x ≠ 0) : Tendsto (fun n : ℕ => (L + ε) ^ (-(((n % m1 : ℕ) : ℝ) / (n : ℝ))) * (μ x ^ (n % m1)) ^ (1 / (n : ℝ))) atTop (𝓝 1)
case hf R : Type u_1 inst✝ : CommRing R μ : RingSeminorm R L : ℝ hL : 0 ≤ L ε : ℝ hε : 0 < ε m1 : ℕ hm1 : 0 < m1 x : R hx : μ x ≠ 0 h_exp : Tendsto (fun n => ↑(n % m1) / ↑n) atTop (𝓝 0) h0 : Tendsto (fun t => -(↑(t % m1) / ↑t)) atTop (𝓝 0) ⊢ Tendsto (fun x => (L + ε) ^ (-(↑(x % m1) / ↑x))) atTop (𝓝 ((L + ε) ^ 0))
apply Tendsto.rpow tendsto_const_nhds h0
case hf R : Type u_1 inst✝ : CommRing R μ : RingSeminorm R L : ℝ hL : 0 ≤ L ε : ℝ hε : 0 < ε m1 : ℕ hm1 : 0 < m1 x : R hx : μ x ≠ 0 h_exp : Tendsto (fun n => ↑(n % m1) / ↑n) atTop (𝓝 0) h0 : Tendsto (fun t => -(↑(t % m1) / ↑t)) atTop (𝓝 0) ⊢ L + ε ≠ 0 ∨ 0 < 0
24d0886b35610e91
SatisfiesM_StateT_eq
Mathlib/.lake/packages/batteries/Batteries/Classes/SatisfiesM.lean
theorem SatisfiesM_StateT_eq [Monad m] [LawfulMonad m] : SatisfiesM (m := StateT ρ m) (α := α) p x ↔ ∀ s, SatisfiesM (m := m) (p ·.1) (x.run s)
case refine_1 m : Type u_1 → Type u_2 α ρ : Type u_1 p : α → Prop x : StateT ρ m α inst✝¹ : Monad m inst✝ : LawfulMonad m x✝ : SatisfiesM p x f : StateT ρ m { a // p a } eq : Subtype.val <$> f = x ⊢ ∃ f_1, ∀ (x : ρ), Subtype.val <$> f_1 x = (Subtype.val <$> f) x
refine ⟨fun s => (fun ⟨⟨a, h⟩, s'⟩ => ⟨⟨a, s'⟩, h⟩) <$> f s, fun s => ?_⟩
case refine_1 m : Type u_1 → Type u_2 α ρ : Type u_1 p : α → Prop x : StateT ρ m α inst✝¹ : Monad m inst✝ : LawfulMonad m x✝ : SatisfiesM p x f : StateT ρ m { a // p a } eq : Subtype.val <$> f = x s : ρ ⊢ Subtype.val <$> (fun s => (fun x => match x with | (⟨a, h⟩, s') => ⟨(a, s'), h⟩) <$> f s) s = (Subtype.val <$> f) s
2505b9876bea8db3
LaurentPolynomial.smul_eq_C_mul
Mathlib/Algebra/Polynomial/Laurent.lean
theorem smul_eq_C_mul (r : R) (f : R[T;T⁻¹]) : r • f = C r * f
R : Type u_1 inst✝ : Semiring R r : R f : R[T;T⁻¹] ⊢ r • f = C r * f
induction f using LaurentPolynomial.induction_on' with | h_add _ _ hp hq => rw [smul_add, mul_add, hp, hq] | h_C_mul_T n s => rw [← mul_assoc, ← smul_mul_assoc, mul_left_inj_of_invertible, ← map_mul, ← single_eq_C, Finsupp.smul_single', single_eq_C]
no goals
f43d33374b4834e1
Basis.restrictScalars_repr_apply
Mathlib/LinearAlgebra/Basis/Basic.lean
theorem Basis.restrictScalars_repr_apply (m : span R (Set.range b)) (i : ι) : algebraMap R S ((b.restrictScalars R).repr m i) = b.repr m i
ι : Type u_1 R : Type u_3 M : Type u_5 S : Type u_7 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : ↥(span R (range ⇑b)) i x✝ : ι ⊢ (mapRange.linearMap (Algebra.linearMap R S) ∘ₗ ↑(restrictScalars R b).repr) ((restrictScalars R b) x✝) = ((↑R ↑b.repr).domRestrict (span R (range ⇑b))) ((restrictScalars R b) x✝)
simp only [LinearMap.coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_one, Basis.repr_self, Finsupp.mapRange.linearMap_apply, Finsupp.mapRange_single, Algebra.linearMap_apply, LinearMap.domRestrict_apply, LinearEquiv.coe_coe, Basis.restrictScalars_apply, LinearMap.coe_restrictScalars]
no goals
d8b491e6b35d79e7
LieModule.nilpotencyLength_eq_succ_iff
Mathlib/Algebra/Lie/Nilpotent.lean
theorem nilpotencyLength_eq_succ_iff (k : ℕ) : nilpotencyLength L M = k + 1 ↔ lowerCentralSeries R L M (k + 1) = ⊥ ∧ lowerCentralSeries R L M k ≠ ⊥
R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ k : ℕ ⊢ lowerCentralSeries R L M k = ⊥ ↔ lowerCentralSeries ℤ L M k = ⊥
simp [SetLike.ext'_iff, coe_lowerCentralSeries_eq_int R L M]
no goals
ed799dc48a9168c3
deriv_norm_ofReal_cpow
Mathlib/Analysis/SpecialFunctions/Pow/Deriv.lean
theorem deriv_norm_ofReal_cpow (c : ℂ) {t : ℝ} (ht : 0 < t) : (deriv fun x : ℝ ↦ ‖(x : ℂ) ^ c‖) t = c.re * t ^ (c.re - 1)
c : ℂ t : ℝ ht : 0 < t ⊢ (fun x => ‖↑x ^ c‖) =ᶠ[𝓝 t] fun x => x ^ c.re
filter_upwards [eventually_gt_nhds ht] with x hx
case h c : ℂ t : ℝ ht : 0 < t x : ℝ hx : 0 < x ⊢ ‖↑x ^ c‖ = x ^ c.re
d2fb34ba57b68f3a
nhdset_of_mem_uniformity
Mathlib/Topology/UniformSpace/Basic.lean
theorem nhdset_of_mem_uniformity {d : Set (α × α)} (s : Set (α × α)) (hd : d ∈ 𝓤 α) : ∃ t : Set (α × α), IsOpen t ∧ s ⊆ t ∧ t ⊆ { p | ∃ x y, (p.1, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.2) ∈ d }
α : Type ua inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α ⊢ ∃ t, IsOpen t ∧ s ⊆ t ∧ t ⊆ {p | ∃ x y, (p.1, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.2) ∈ d}
let cl_d := { p : α × α | ∃ x y, (p.1, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.2) ∈ d }
α : Type ua inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α cl_d : Set (α × α) := {p | ∃ x y, (p.1, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.2) ∈ d} ⊢ ∃ t, IsOpen t ∧ s ⊆ t ∧ t ⊆ {p | ∃ x y, (p.1, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.2) ∈ d}
eb17f65275ef735d
Array.flatten_eq_push_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem flatten_eq_push_iff {xs : Array (Array α)} {ys : Array α} {y : α} : xs.flatten = ys.push y ↔ ∃ (as : Array (Array α)) (bs : Array α) (cs : Array (Array α)), xs = as.push (bs.push y) ++ cs ∧ (∀ l, l ∈ cs → l = #[]) ∧ ys = as.flatten ++ bs
case of.mk α : Type u_1 y : α xs : List (List α) ys : List α ⊢ (List.map List.toArray xs).toArray.flatten = { toList := ys }.push y ↔ ∃ as bs cs, (List.map List.toArray xs).toArray = as.push (bs.push y) ++ cs ∧ (∀ (l : Array α), l ∈ cs → l = #[]) ∧ { toList := ys } = as.flatten ++ bs
rw [flatten_toArray_map, List.push_toArray, mk.injEq, List.flatten_eq_append_iff]
case of.mk α : Type u_1 y : α xs : List (List α) ys : List α ⊢ ((∃ as bs, xs = as ++ bs ∧ ys = as.flatten ∧ [y] = bs.flatten) ∨ ∃ as bs c cs ds, xs = as ++ (bs ++ c :: cs) :: ds ∧ ys = as.flatten ++ bs ∧ [y] = c :: cs ++ ds.flatten) ↔ ∃ as bs cs, (List.map List.toArray xs).toArray = as.push (bs.push y) ++ cs ∧ (∀ (l : Array α), l ∈ cs → l = #[]) ∧ { toList := ys } = as.flatten ++ bs
dbe592481896286a
Bimod.AssociatorBimod.hom_right_act_hom'
Mathlib/CategoryTheory/Monoidal/Bimod.lean
theorem hom_right_act_hom' : ((P.tensorBimod Q).tensorBimod L).actRight ≫ hom P Q L = (hom P Q L ▷ U.X) ≫ (P.tensorBimod (Q.tensorBimod L)).actRight
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) R S T U : Mon_ C P : Bimod R S Q : Bimod S T L : Bimod T U ⊢ (tensorRight U.X).map (coequalizer.π ((P.tensorBimod Q).actRight ▷ L.X) ((α_ (P.tensorBimod Q).X T.X L.X).hom ≫ (P.tensorBimod Q).X ◁ L.actLeft)) ≫ TensorBimod.actRight (P.tensorBimod Q) L ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight L.X) (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)).inv ≫ coequalizer.desc ((α_ P.X Q.X L.X).hom ≫ P.X ◁ coequalizer.π (Q.actRight ▷ L.X) ((α_ Q.X T.X L.X).hom ≫ Q.X ◁ L.actLeft) ≫ coequalizer.π (P.actRight ▷ TensorBimod.X Q L) ((α_ P.X S.X (TensorBimod.X Q L)).hom ≫ P.X ◁ TensorBimod.actLeft Q L)) ⋯) ⋯ = (tensorRight U.X).map (coequalizer.π ((P.tensorBimod Q).actRight ▷ L.X) ((α_ (P.tensorBimod Q).X T.X L.X).hom ≫ (P.tensorBimod Q).X ◁ L.actLeft)) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight L.X) (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)).inv ≫ coequalizer.desc ((α_ P.X Q.X L.X).hom ≫ P.X ◁ coequalizer.π (Q.actRight ▷ L.X) ((α_ Q.X T.X L.X).hom ≫ Q.X ◁ L.actLeft) ≫ coequalizer.π (P.actRight ▷ TensorBimod.X Q L) ((α_ P.X S.X (TensorBimod.X Q L)).hom ≫ P.X ◁ TensorBimod.actLeft Q L)) ⋯) ⋯ ▷ U.X ≫ TensorBimod.actRight P (Q.tensorBimod L)
rw [tensorRight_map]
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) R S T U : Mon_ C P : Bimod R S Q : Bimod S T L : Bimod T U ⊢ coequalizer.π ((P.tensorBimod Q).actRight ▷ L.X) ((α_ (P.tensorBimod Q).X T.X L.X).hom ≫ (P.tensorBimod Q).X ◁ L.actLeft) ▷ U.X ≫ TensorBimod.actRight (P.tensorBimod Q) L ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight L.X) (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)).inv ≫ coequalizer.desc ((α_ P.X Q.X L.X).hom ≫ P.X ◁ coequalizer.π (Q.actRight ▷ L.X) ((α_ Q.X T.X L.X).hom ≫ Q.X ◁ L.actLeft) ≫ coequalizer.π (P.actRight ▷ TensorBimod.X Q L) ((α_ P.X S.X (TensorBimod.X Q L)).hom ≫ P.X ◁ TensorBimod.actLeft Q L)) ⋯) ⋯ = coequalizer.π ((P.tensorBimod Q).actRight ▷ L.X) ((α_ (P.tensorBimod Q).X T.X L.X).hom ≫ (P.tensorBimod Q).X ◁ L.actLeft) ▷ U.X ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight L.X) (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)).inv ≫ coequalizer.desc ((α_ P.X Q.X L.X).hom ≫ P.X ◁ coequalizer.π (Q.actRight ▷ L.X) ((α_ Q.X T.X L.X).hom ≫ Q.X ◁ L.actLeft) ≫ coequalizer.π (P.actRight ▷ TensorBimod.X Q L) ((α_ P.X S.X (TensorBimod.X Q L)).hom ≫ P.X ◁ TensorBimod.actLeft Q L)) ⋯) ⋯ ▷ U.X ≫ TensorBimod.actRight P (Q.tensorBimod L)
26e7cbaccdd0f16e
MeasureTheory.IntegrableAtFilter.add
Mathlib/MeasureTheory/Integral/IntegrableOn.lean
theorem IntegrableAtFilter.add {f g : α → E} (hf : IntegrableAtFilter f l μ) (hg : IntegrableAtFilter g l μ) : IntegrableAtFilter (f + g) l μ
α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E μ : Measure α l : Filter α f g : α → E hf : IntegrableAtFilter f l μ hg : IntegrableAtFilter g l μ ⊢ IntegrableAtFilter (f + g) l μ
rcases hf with ⟨s, sl, hs⟩
case intro.intro α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E μ : Measure α l : Filter α f g : α → E hg : IntegrableAtFilter g l μ s : Set α sl : s ∈ l hs : IntegrableOn f s μ ⊢ IntegrableAtFilter (f + g) l μ
0153623a59ae8a3c
PiTensorProduct.mapL_id
Mathlib/Analysis/NormedSpace/PiTensorProduct/InjectiveSeminorm.lean
theorem mapL_id : mapL (fun i ↦ ContinuousLinearMap.id 𝕜 (E i)) = ContinuousLinearMap.id _ _
ι : Type uι inst✝³ : Fintype ι 𝕜 : Type u𝕜 inst✝² : NontriviallyNormedField 𝕜 E : ι → Type uE inst✝¹ : (i : ι) → SeminormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) ⊢ (mapL fun i => ContinuousLinearMap.id 𝕜 (E i)) = ContinuousLinearMap.id 𝕜 (⨂[𝕜] (i : ι), E i)
apply ContinuousLinearMap.coe_injective
case a ι : Type uι inst✝³ : Fintype ι 𝕜 : Type u𝕜 inst✝² : NontriviallyNormedField 𝕜 E : ι → Type uE inst✝¹ : (i : ι) → SeminormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) ⊢ ↑(mapL fun i => ContinuousLinearMap.id 𝕜 (E i)) = ↑(ContinuousLinearMap.id 𝕜 (⨂[𝕜] (i : ι), E i))
917b0e4be81d5c73
CategoryTheory.MonoidalCategory.tensor_left_unitality
Mathlib/CategoryTheory/Monoidal/Braided/Basic.lean
theorem tensor_left_unitality (X₁ X₂ : C) : (λ_ (X₁ ⊗ X₂)).hom = ((λ_ (𝟙_ C)).inv ▷ (X₁ ⊗ X₂)) ≫ tensorμ (𝟙_ C) (𝟙_ C) X₁ X₂ ≫ ((λ_ X₁).hom ⊗ (λ_ X₂).hom)
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C X₁ X₂ : C ⊢ (λ_ (X₁ ⊗ X₂)).hom = (λ_ (𝟙_ C)).inv ▷ (X₁ ⊗ X₂) ≫ tensorμ (𝟙_ C) (𝟙_ C) X₁ X₂ ≫ ((λ_ X₁).hom ⊗ (λ_ X₂).hom)
dsimp only [tensorμ]
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C X₁ X₂ : C ⊢ (λ_ (X₁ ⊗ X₂)).hom = (λ_ (𝟙_ C)).inv ▷ (X₁ ⊗ X₂) ≫ ((α_ (𝟙_ C) (𝟙_ C) (X₁ ⊗ X₂)).hom ≫ 𝟙_ C ◁ (α_ (𝟙_ C) X₁ X₂).inv ≫ 𝟙_ C ◁ (β_ (𝟙_ C) X₁).hom ▷ X₂ ≫ 𝟙_ C ◁ (α_ X₁ (𝟙_ C) X₂).hom ≫ (α_ (𝟙_ C) X₁ (𝟙_ C ⊗ X₂)).inv) ≫ ((λ_ X₁).hom ⊗ (λ_ X₂).hom)
530d3eb02dfe571c
Nat.nth_strictMonoOn
Mathlib/Data/Nat/Nth.lean
theorem nth_strictMonoOn (hf : (setOf p).Finite) : StrictMonoOn (nth p) (Set.Iio #hf.toFinset)
p : ℕ → Prop hf : (setOf p).Finite m : ℕ hm : m < #hf.toFinset n : ℕ hn : n < #hf.toFinset h : m < n ⊢ (hf.toFinset.orderEmbOfFin ⋯) ⟨m, hm⟩ < (hf.toFinset.orderEmbOfFin ⋯) ⟨n, hn⟩
exact OrderEmbedding.strictMono _ h
no goals
2b86549b9bed1189
Cubic.map_roots
Mathlib/Algebra/CubicDiscriminant.lean
theorem map_roots [IsDomain S] : (map φ P).roots = (Polynomial.map φ P.toPoly).roots
R : Type u_1 S : Type u_2 P : Cubic R inst✝² : CommRing R inst✝¹ : CommRing S φ : R →+* S inst✝ : IsDomain S ⊢ (map φ P).roots = (Polynomial.map φ P.toPoly).roots
rw [roots, map_toPoly]
no goals
a8a262f157779147
AnalyticAt.order_mul
Mathlib/Analysis/Analytic/Order.lean
theorem order_mul {f g : 𝕜 → 𝕜} (hf : AnalyticAt 𝕜 f z₀) (hg : AnalyticAt 𝕜 g z₀) : (hf.mul hg).order = hf.order + hg.order
case neg 𝕜 : Type u_1 inst✝ : NontriviallyNormedField 𝕜 z₀ : 𝕜 f g : 𝕜 → 𝕜 hf : AnalyticAt 𝕜 f z₀ hg : AnalyticAt 𝕜 g z₀ h₂f : ¬hf.order = ⊤ ⊢ ⋯.order = hf.order + hg.order
by_cases h₂g : hg.order = ⊤
case pos 𝕜 : Type u_1 inst✝ : NontriviallyNormedField 𝕜 z₀ : 𝕜 f g : 𝕜 → 𝕜 hf : AnalyticAt 𝕜 f z₀ hg : AnalyticAt 𝕜 g z₀ h₂f : ¬hf.order = ⊤ h₂g : hg.order = ⊤ ⊢ ⋯.order = hf.order + hg.order case neg 𝕜 : Type u_1 inst✝ : NontriviallyNormedField 𝕜 z₀ : 𝕜 f g : 𝕜 → 𝕜 hf : AnalyticAt 𝕜 f z₀ hg : AnalyticAt 𝕜 g z₀ h₂f : ¬hf.order = ⊤ h₂g : ¬hg.order = ⊤ ⊢ ⋯.order = hf.order + hg.order
9c09f7b0bc9e51ba
groupCohomology.cocyclesMap_comp_isoTwoCocycles_hom
Mathlib/RepresentationTheory/GroupCohomology/Functoriality.lean
@[reassoc (attr := simp), elementwise (attr := simp)] lemma cocyclesMap_comp_isoTwoCocycles_hom : cocyclesMap f φ 2 ≫ (isoTwoCocycles B).hom = (isoTwoCocycles A).hom ≫ mapTwoCocycles f φ
k G H : Type u inst✝² : CommRing k inst✝¹ : Group G inst✝ : Group H A : Rep k H B : Rep k G f : G →* H φ : (Action.res (ModuleCat k) f).obj A ⟶ B ⊢ (cocyclesMap f φ 2 ≫ (HomologicalComplex.cyclesIsoSc' (inhomogeneousCochains B) 1 2 3 isoTwoCocycles.proof_3 isoTwoCocycles.proof_4 ≪≫ cyclesMapIso (shortComplexH2Iso B) ≪≫ (shortComplexH2 B).moduleCatCyclesIso).hom) ≫ (shortComplexH2 B).moduleCatLeftHomologyData.i = ((HomologicalComplex.cyclesIsoSc' (inhomogeneousCochains A) 1 2 3 isoTwoCocycles.proof_3 isoTwoCocycles.proof_4 ≪≫ cyclesMapIso (shortComplexH2Iso A) ≪≫ (shortComplexH2 A).moduleCatCyclesIso).hom ≫ (shortComplexH2 A).moduleCatLeftHomologyData.i) ≫ (mapShortComplexH2 f φ).τ₂
simp [cochainsMap_f_2_comp_twoCochainsLequiv f, mapShortComplexH2, ← LinearEquiv.toModuleIso_hom]
no goals
5cb5c18d367809f6
exists_sSupIndep_isCompl_sSup_atoms
Mathlib/Order/CompactlyGenerated/Basic.lean
theorem exists_sSupIndep_isCompl_sSup_atoms (h : sSup { a : α | IsAtom a } = ⊤) (b : α) : ∃ s : Set α, sSupIndep s ∧ IsCompl b (sSup s) ∧ ∀ ⦃a⦄, a ∈ s → IsAtom a
case inr α : Type u_2 inst✝² : CompleteLattice α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h✝ : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ ⦃t : Set α⦄, t ∈ {s | sSupIndep s ∧ Disjoint b (sSup s) ∧ ∀ a ∈ s, IsAtom a} → s ⊆ t → s = t s_ind : sSupIndep s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ a ∈ s, IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a h : (s ∪ {a}) \ {x} = s \ {x} ∪ {a} ⊢ Disjoint x (sSup (s \ {x}) ⊔ a)
apply (s_ind (hx.resolve_right xa)).disjoint_sup_right_of_disjoint_sup_left (a_dis_Sup_s.mono_right _).symm
α : Type u_2 inst✝² : CompleteLattice α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h✝ : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ ⦃t : Set α⦄, t ∈ {s | sSupIndep s ∧ Disjoint b (sSup s) ∧ ∀ a ∈ s, IsAtom a} → s ⊆ t → s = t s_ind : sSupIndep s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ a ∈ s, IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a h : (s ∪ {a}) \ {x} = s \ {x} ∪ {a} ⊢ x ⊔ sSup (s \ {x}) ≤ sSup s
04808f5eaf22927f
lt_compl_self
Mathlib/Order/Heyting/Basic.lean
theorem lt_compl_self [Nontrivial α] : a < aᶜ ↔ a = ⊥
α : Type u_2 inst✝¹ : HeytingAlgebra α a : α inst✝ : Nontrivial α ⊢ a ≤ aᶜ ∧ a ≠ aᶜ ↔ a = ⊥
simp
no goals
8be366699de466fc
RootPairing.RootPositiveForm.zero_lt_posForm_iff
Mathlib/LinearAlgebra/RootSystem/RootPositive.lean
lemma zero_lt_posForm_iff {x y : span S (range P.root)} : 0 < B.posForm x y ↔ ∃ s > 0, algebraMap S R s = B.form x y
ι : Type u_1 R : Type u_2 S : Type u_3 M : Type u_4 N : Type u_5 inst✝¹⁰ : LinearOrderedCommRing S inst✝⁹ : CommRing R inst✝⁸ : Algebra S R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N P : RootPairing ι R M N inst✝³ : P.IsValuedIn S B : RootPositiveForm S P inst✝² : FaithfulSMul S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M x y : ↥(span S (range ⇑P.root)) x✝ : ∃ s > 0, (algebraMap S R) s = (B.form ↑x) ↑y s : S h : s > 0 h' : (algebraMap S R) s = (B.form ↑x) ↑y ⊢ 0 < (B.posForm x) y
rw [← B.algebraMap_posForm] at h'
ι : Type u_1 R : Type u_2 S : Type u_3 M : Type u_4 N : Type u_5 inst✝¹⁰ : LinearOrderedCommRing S inst✝⁹ : CommRing R inst✝⁸ : Algebra S R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N P : RootPairing ι R M N inst✝³ : P.IsValuedIn S B : RootPositiveForm S P inst✝² : FaithfulSMul S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M x y : ↥(span S (range ⇑P.root)) x✝ : ∃ s > 0, (algebraMap S R) s = (B.form ↑x) ↑y s : S h : s > 0 h' : (algebraMap S R) s = (algebraMap S R) ((B.posForm x) y) ⊢ 0 < (B.posForm x) y
55dad1190b9db425
ODE_solution_unique_of_mem_Icc_left
Mathlib/Analysis/ODE/Gronwall.lean
theorem ODE_solution_unique_of_mem_Icc_left (hv : ∀ t ∈ Ioc a b, LipschitzOnWith K (v t) (s t)) (hf : ContinuousOn f (Icc a b)) (hf' : ∀ t ∈ Ioc a b, HasDerivWithinAt f (v t (f t)) (Iic t) t) (hfs : ∀ t ∈ Ioc a b, f t ∈ s t) (hg : ContinuousOn g (Icc a b)) (hg' : ∀ t ∈ Ioc a b, HasDerivWithinAt g (v t (g t)) (Iic t) t) (hgs : ∀ t ∈ Ioc a b, g t ∈ s t) (hb : f b = g b) : EqOn f g (Icc a b)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E v : ℝ → E → E s : ℝ → Set E K : ℝ≥0 f g : ℝ → E a b : ℝ hv : ∀ t ∈ Ioc a b, LipschitzOnWith K (v t) (s t) hf : ContinuousOn f (Icc a b) hf' : ∀ t ∈ Ioc a b, HasDerivWithinAt f (v t (f t)) (Iic t) t hfs : ∀ t ∈ Ioc a b, f t ∈ s t hg : ContinuousOn g (Icc a b) hg' : ∀ t ∈ Ioc a b, HasDerivWithinAt g (v t (g t)) (Iic t) t hgs : ∀ t ∈ Ioc a b, g t ∈ s t hb : f b = g b ⊢ ∀ t ∈ Ico (-b) (-a), LipschitzOnWith K (Neg.neg ∘ v (-t)) (s (-t))
intro t ht
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E v : ℝ → E → E s : ℝ → Set E K : ℝ≥0 f g : ℝ → E a b : ℝ hv : ∀ t ∈ Ioc a b, LipschitzOnWith K (v t) (s t) hf : ContinuousOn f (Icc a b) hf' : ∀ t ∈ Ioc a b, HasDerivWithinAt f (v t (f t)) (Iic t) t hfs : ∀ t ∈ Ioc a b, f t ∈ s t hg : ContinuousOn g (Icc a b) hg' : ∀ t ∈ Ioc a b, HasDerivWithinAt g (v t (g t)) (Iic t) t hgs : ∀ t ∈ Ioc a b, g t ∈ s t hb : f b = g b t : ℝ ht : t ∈ Ico (-b) (-a) ⊢ LipschitzOnWith K (Neg.neg ∘ v (-t)) (s (-t))
e339fe18a4eedd24
Polynomial.content_zero
Mathlib/RingTheory/Polynomial/Content.lean
theorem content_zero : content (0 : R[X]) = 0
R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R ⊢ content 0 = 0
rw [← C_0, content_C, normalize_zero]
no goals
22f3269c82d8fb66
Ordinal.nadd_assoc
Mathlib/SetTheory/Ordinal/NaturalOps.lean
theorem nadd_assoc (a b c) : a ♯ b ♯ c = a ♯ (b ♯ c)
a b c : Ordinal.{u_1} ⊢ a ♯ b ♯ c = a ♯ (b ♯ c)
unfold nadd
a b c : Ordinal.{u_1} ⊢ (⨆ x, succ (↑x ♯ c)) ⊔ ⨆ x, succ (a ♯ b ♯ ↑x) = (⨆ x, succ (↑x ♯ (b ♯ c))) ⊔ ⨆ x, succ (a ♯ ↑x)
69808cbedaf10244
Primrec.pair
Mathlib/Computability/Primrec.lean
theorem pair {α β γ} [Primcodable α] [Primcodable β] [Primcodable γ] {f : α → β} {g : α → γ} (hf : Primrec f) (hg : Primrec g) : Primrec fun a => (f a, g a) := ((casesOn1 0 (Nat.Primrec.succ.comp <| .pair (Nat.Primrec.pred.comp hf) (Nat.Primrec.pred.comp hg))).comp (@Primcodable.prim α _)).of_eq fun n => by cases @decode α _ n <;> simp [encodek]
α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ f : α → β g : α → γ hf : Primrec f hg : Primrec g n : ℕ ⊢ (Nat.casesOn (encode (decode n)) 0 fun n => (Nat.pair (encode (Option.map f (decode n))).pred (encode (Option.map g (decode n))).pred).succ) = encode (Option.map (fun a => (f a, g a)) (decode n))
cases @decode α _ n <;> simp [encodek]
no goals
9d921bf73b8d3c6c
sign_eq_of_affineCombination_mem_affineSpan_single_lineMap
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
theorem sign_eq_of_affineCombination_mem_affineSpan_single_lineMap {p : ι → P} (h : AffineIndependent k p) {w : ι → k} {s : Finset ι} (hw : ∑ i ∈ s, w i = 1) {i₁ i₂ i₃ : ι} (h₁ : i₁ ∈ s) (h₂ : i₂ ∈ s) (h₃ : i₃ ∈ s) (h₁₂ : i₁ ≠ i₂) (h₁₃ : i₁ ≠ i₃) (h₂₃ : i₂ ≠ i₃) {c : k} (hc0 : 0 < c) (hc1 : c < 1) (hs : s.affineCombination k p w ∈ line[k, p i₁, AffineMap.lineMap (p i₂) (p i₃) c]) : SignType.sign (w i₂) = SignType.sign (w i₃)
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : LinearOrderedRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w : ι → k s : Finset ι hw : ∑ i ∈ s, w i = 1 i₁ i₂ i₃ : ι h₁ : i₁ ∈ s h₂ : i₂ ∈ s h₃ : i₃ ∈ s h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ c : k hc0 : 0 < c hc1 : c < 1 hs : (affineCombination k s p) w ∈ affineSpan k {(affineCombination k s p) (affineCombinationSingleWeights k i₁), (affineCombination k s p) (affineCombinationLineMapWeights i₂ i₃ c)} ⊢ SignType.sign (w i₂) = SignType.sign (w i₃)
refine sign_eq_of_affineCombination_mem_affineSpan_pair h hw (s.sum_affineCombinationSingleWeights k h₁) (s.sum_affineCombinationLineMapWeights h₂ h₃ c) hs h₂ h₃ (Finset.affineCombinationSingleWeights_apply_of_ne k h₁₂.symm) (Finset.affineCombinationSingleWeights_apply_of_ne k h₁₃.symm) ?_
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : LinearOrderedRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w : ι → k s : Finset ι hw : ∑ i ∈ s, w i = 1 i₁ i₂ i₃ : ι h₁ : i₁ ∈ s h₂ : i₂ ∈ s h₃ : i₃ ∈ s h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ c : k hc0 : 0 < c hc1 : c < 1 hs : (affineCombination k s p) w ∈ affineSpan k {(affineCombination k s p) (affineCombinationSingleWeights k i₁), (affineCombination k s p) (affineCombinationLineMapWeights i₂ i₃ c)} ⊢ SignType.sign (affineCombinationLineMapWeights i₂ i₃ c i₂) = SignType.sign (affineCombinationLineMapWeights i₂ i₃ c i₃)
27de1096852a9a0f
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.sat_of_insertRup
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem sat_of_insertRup {n : Nat} (f : DefaultFormula n) (f_readyForRupAdd : ReadyForRupAdd f) (c : DefaultClause n) (p : PosFin n → Bool) (pf : p ⊨ f) : (insertRupUnits f (negate c)).2 = true → p ⊨ c
case intro.inr.inl.intro.intro.intro.intro.intro.intro.intro.inl.intro.intro.h n : Nat f : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd c : DefaultClause n p : PosFin n → Bool pf : p ⊨ f insertUnit_fold_success : (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).2.snd = true false_imp : false = true → ∃ i, f.assignments[i.val] = both i : PosFin n hboth : (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).snd.fst[i.val] = both i_in_bounds : i.val < f.assignments.size h0 : InsertUnitInvariant f.assignments ⋯ f.rupUnits f.assignments ⋯ insertUnit_fold_satisfies_invariant : let update_res := List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate; let_fun update_res_size := ⋯; InsertUnitInvariant f.assignments ⋯ update_res.fst update_res.snd.fst update_res_size j : Fin (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).fst.size b : Bool i_gt_zero : ↑⟨i.val, ⋯⟩ > 0 h1 : (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).fst[j] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, b) h2 : both = addAssignment b f.assignments[↑⟨i.val, ⋯⟩] h3 : ¬hasAssignment b f.assignments[↑⟨i.val, ⋯⟩] = true h4 : ∀ (k : Fin (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).fst.size), k ≠ j → (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).fst[k].fst.val ≠ ↑⟨i.val, ⋯⟩ ib_in_insertUnit_fold : (i, b) ∈ (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).fst.toList i' : PosFin n i_false_in_c : (i, false) ∈ c.clause i'_eq_i : i' = i b_eq_true : true = b ⊢ decide (p i = false) = true
simp only [addAssignment, ← b_eq_true, addPosAssignment, ite_true] at h2
case intro.inr.inl.intro.intro.intro.intro.intro.intro.intro.inl.intro.intro.h n : Nat f : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd c : DefaultClause n p : PosFin n → Bool pf : p ⊨ f insertUnit_fold_success : (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).2.snd = true false_imp : false = true → ∃ i, f.assignments[i.val] = both i : PosFin n hboth : (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).snd.fst[i.val] = both i_in_bounds : i.val < f.assignments.size h0 : InsertUnitInvariant f.assignments ⋯ f.rupUnits f.assignments ⋯ insertUnit_fold_satisfies_invariant : let update_res := List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate; let_fun update_res_size := ⋯; InsertUnitInvariant f.assignments ⋯ update_res.fst update_res.snd.fst update_res_size j : Fin (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).fst.size b : Bool i_gt_zero : ↑⟨i.val, ⋯⟩ > 0 h1 : (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).fst[j] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, b) h3 : ¬hasAssignment b f.assignments[↑⟨i.val, ⋯⟩] = true h4 : ∀ (k : Fin (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).fst.size), k ≠ j → (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).fst[k].fst.val ≠ ↑⟨i.val, ⋯⟩ ib_in_insertUnit_fold : (i, b) ∈ (List.foldl insertUnit (f.rupUnits, f.assignments, false) c.negate).fst.toList i' : PosFin n i_false_in_c : (i, false) ∈ c.clause i'_eq_i : i' = i b_eq_true : true = b h2 : both = match f.assignments[i.val] with | pos => pos | neg => both | both => both | unassigned => pos ⊢ decide (p i = false) = true
6b3be4f74b21096f
CategoryTheory.Sieve.le_pullback_bind
Mathlib/CategoryTheory/Sites/Sieves.lean
theorem le_pullback_bind (S : Presieve X) (R : ∀ ⦃Y : C⦄ ⦃f : Y ⟶ X⦄, S f → Sieve Y) (f : Y ⟶ X) (h : S f) : R h ≤ (bind S R).pullback f
C : Type u₁ inst✝ : Category.{v₁, u₁} C X Y : C S : Presieve X R : ⦃Y : C⦄ → ⦃f : Y ⟶ X⦄ → S f → Sieve Y f : Y ⟶ X h : S f ⊢ pushforward f (R h) ≤ bind S R
apply pushforward_le_bind_of_mem
no goals
7772b2f5a5e0254b
Array.foldlM_filter
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Monadic.lean
theorem foldlM_filter [Monad m] [LawfulMonad m] (p : α → Bool) (g : β → α → m β) (l : Array α) (init : β) (w : stop = (l.filter p).size) : (l.filter p).foldlM g init 0 stop = l.foldlM (fun x y => if p y then g x y else pure x) init
case mk m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m p : α → Bool g : β → α → m β init : β toList✝ : List α ⊢ foldlM g init (filter p { toList := toList✝ }) = foldlM (fun x y => if p y = true then g x y else pure x) init { toList := toList✝ }
simp [List.foldlM_filter]
no goals
54c58a709caed831
CategoryTheory.IsUniversalColimit.of_iso
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem IsUniversalColimit.of_iso {F : J ⥤ C} {c c' : Cocone F} (hc : IsUniversalColimit c) (e : c ≅ c') : IsUniversalColimit c'
J : Type v' inst✝¹ : Category.{u', v'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ C c c' : Cocone F hc : IsUniversalColimit c e : c ≅ c' F' : J ⥤ C c'' : Cocone F' α : F' ⟶ F f : c''.pt ⟶ c'.pt h : α ≫ c'.ι = c''.ι ≫ (Functor.const J).map f hα : NatTrans.Equifibered α H : ∀ (j : J), IsPullback (c''.ι.app j) (α.app j) f (c'.ι.app j) this : c'.ι ≫ (Functor.const J).map e.inv.hom = c.ι j : J ⊢ IsPullback (c''.ι.app j) (α.app j) (f ≫ e.inv.hom) (c.ι.app j)
rw [← Category.comp_id (α.app j)]
J : Type v' inst✝¹ : Category.{u', v'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ C c c' : Cocone F hc : IsUniversalColimit c e : c ≅ c' F' : J ⥤ C c'' : Cocone F' α : F' ⟶ F f : c''.pt ⟶ c'.pt h : α ≫ c'.ι = c''.ι ≫ (Functor.const J).map f hα : NatTrans.Equifibered α H : ∀ (j : J), IsPullback (c''.ι.app j) (α.app j) f (c'.ι.app j) this : c'.ι ≫ (Functor.const J).map e.inv.hom = c.ι j : J ⊢ IsPullback (c''.ι.app j) (α.app j ≫ 𝟙 (F.obj j)) (f ≫ e.inv.hom) (c.ι.app j)
fd31397d213202fc
FermatLastTheoremForThreeGen.a_cube_b_cube_congr_one_or_neg_one
Mathlib/NumberTheory/FLT/Three.lean
/-- Given `S' : Solution'`, then `S'.a` and `S'.b` are both congruent to `1` modulo `λ ^ 4` or are both congruent to `-1`. -/ lemma a_cube_b_cube_congr_one_or_neg_one : λ ^ 4 ∣ S'.a ^ 3 - 1 ∧ λ ^ 4 ∣ S'.b ^ 3 + 1 ∨ λ ^ 4 ∣ S'.a ^ 3 + 1 ∧ λ ^ 4 ∣ S'.b ^ 3 - 1
case intro.inr.intro.inr.intro K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S' : Solution' hζ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K z : 𝓞 K hz : S'.c = λ * z x : 𝓞 K hx : S'.a ^ 3 + 1 = λ ^ 4 * x y : 𝓞 K hy : S'.b ^ 3 + 1 = λ ^ 4 * y ⊢ λ ^ 4 ∣ S'.a ^ 3 - 1 ∧ λ ^ 4 ∣ S'.b ^ 3 + 1 ∨ λ ^ 4 ∣ S'.a ^ 3 + 1 ∧ λ ^ 4 ∣ S'.b ^ 3 - 1
exfalso
case intro.inr.intro.inr.intro K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S' : Solution' hζ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K z : 𝓞 K hz : S'.c = λ * z x : 𝓞 K hx : S'.a ^ 3 + 1 = λ ^ 4 * x y : 𝓞 K hy : S'.b ^ 3 + 1 = λ ^ 4 * y ⊢ False
7f0bf19b77a2dee2
Vector.append_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem append_eq_append_iff {a : Vector α n} {b : Vector α m} {c : Vector α k} {d : Vector α l} (w : k + l = n + m) : a ++ b = (c ++ d).cast w ↔ if h : n ≤ k then ∃ a' : Vector α (k - n), c = (a ++ a').cast (by omega) ∧ b = (a' ++ d).cast (by omega) else ∃ c' : Vector α (n - k), a = (c ++ c').cast (by omega) ∧ d = (c' ++ b).cast (by omega)
α : Type u_1 a d a' : Array α w : (a ++ a').size + d.size = a.size + (a' ++ d).size ⊢ a'.size = a.size + a'.size - a.size
omega
no goals
6aa03c7084d30f0e
IsFreeGroup.unique_lift
Mathlib/GroupTheory/FreeGroup/IsFreeGroup.lean
theorem unique_lift (f : Generators G → H) : ∃! F : G →* H, ∀ a, F (of a) = f a
G : Type u_1 inst✝² : Group G inst✝¹ : IsFreeGroup G H : Type u_2 inst✝ : Group H f : Generators G → H ⊢ ∃! F, ∀ (a : Generators G), F (of a) = f a
simpa only [funext_iff] using lift.symm.bijective.existsUnique f
no goals
efa62bbdc31c4642
Polynomial.le_natTrailingDegree
Mathlib/Algebra/Polynomial/Degree/TrailingDegree.lean
theorem le_natTrailingDegree (hp : p ≠ 0) (hn : ∀ m < n, p.coeff m = 0) : n ≤ p.natTrailingDegree
R : Type u n : ℕ inst✝ : Semiring R p : R[X] hp : p ≠ 0 hn : ∀ m < n, p.coeff m = 0 ⊢ n ≤ p.natTrailingDegree
rw [natTrailingDegree_eq_support_min' hp]
R : Type u n : ℕ inst✝ : Semiring R p : R[X] hp : p ≠ 0 hn : ∀ m < n, p.coeff m = 0 ⊢ n ≤ p.support.min' ⋯
e6daf4dd4d532f5b
Finset.mem_sym2_iff
Mathlib/Data/Finset/Sym.lean
theorem mem_sym2_iff {m : Sym2 α} : m ∈ s.sym2 ↔ ∀ a ∈ m, a ∈ s
α : Type u_1 s : Finset α m : Sym2 α ⊢ m ∈ s.sym2 ↔ ∀ a ∈ m, a ∈ s
rw [mem_mk, sym2_val, Multiset.mem_sym2_iff]
α : Type u_1 s : Finset α m : Sym2 α ⊢ (∀ y ∈ m, y ∈ s.val) ↔ ∀ a ∈ m, a ∈ s
39cae625fbd64a4b
PartENat.toWithTop_natCast'
Mathlib/Data/Nat/PartENat.lean
theorem toWithTop_natCast' (n : ℕ) {_ : Decidable (n : PartENat).Dom} : toWithTop (n : PartENat) = n
n : ℕ x✝ : Decidable (↑n).Dom ⊢ (↑n).toWithTop = ↑n
rw [toWithTop_natCast n]
no goals
648ebb49f72dfd9c
Fintype.exists_disjointed_le
Mathlib/Order/Disjointed.lean
/-- For any finite family of elements `f : ι → α`, we can find a pairwise-disjoint family `g` bounded above by `f` and having the same supremum. This is non-canonical, depending on an arbitrary choice of ordering of `ι`. -/ lemma Fintype.exists_disjointed_le {ι : Type*} [Fintype ι] {f : ι → α} : ∃ g, g ≤ f ∧ univ.sup g = univ.sup f ∧ Pairwise (Disjoint on g)
case inr.refine_1 α : Type u_1 inst✝¹ : GeneralizedBooleanAlgebra α ι : Type u_3 inst✝ : Fintype ι f : ι → α hι : Nonempty ι R : ι ≃ Fin (card ι) := equivFin ι f' : Fin (card ι) → α := f ∘ ⇑R.symm hf' : f = f' ∘ ⇑R ⊢ disjointed f' ∘ ⇑R ≤ f
intro n
case inr.refine_1 α : Type u_1 inst✝¹ : GeneralizedBooleanAlgebra α ι : Type u_3 inst✝ : Fintype ι f : ι → α hι : Nonempty ι R : ι ≃ Fin (card ι) := equivFin ι f' : Fin (card ι) → α := f ∘ ⇑R.symm hf' : f = f' ∘ ⇑R n : ι ⊢ (disjointed f' ∘ ⇑R) n ≤ f n
1d891d5bbcf4019d
dotProduct_add
Mathlib/Data/Matrix/Mul.lean
theorem dotProduct_add : u ⬝ᵥ (v + w) = u ⬝ᵥ v + u ⬝ᵥ w
m : Type u_2 α : Type v inst✝¹ : Fintype m inst✝ : NonUnitalNonAssocSemiring α u v w : m → α ⊢ u ⬝ᵥ (v + w) = u ⬝ᵥ v + u ⬝ᵥ w
simp [dotProduct, mul_add, Finset.sum_add_distrib]
no goals
30ce262c5167f2ad
AlgebraicGeometry.RingedSpace.exists_res_eq_zero_of_germ_eq_zero
Mathlib/Geometry/RingedSpace/Basic.lean
/-- If the germ of a section `f` is zero in the stalk at `x`, then `f` is zero on some neighbourhood around `x`. -/ lemma exists_res_eq_zero_of_germ_eq_zero (U : Opens X) (f : X.presheaf.obj (op U)) (x : U) (h : X.presheaf.germ U x.val x.property f = 0) : ∃ (V : Opens X) (i : V ⟶ U) (_ : x.1 ∈ V), X.presheaf.map i.op f = 0
case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : ↥U h : (ConcreteCategory.hom (X.presheaf.germ U ↑x ⋯)) f = 0 h1 : (ConcreteCategory.hom (X.presheaf.germ U ↑x ⋯)) f = (ConcreteCategory.hom (X.presheaf.germ U ↑x ⋯)) 0 V : Opens ↑↑X.toPresheafedSpace hv : ↑x ∈ V i w✝ : V ⟶ U hv4 : (ConcreteCategory.hom (X.presheaf.map i.op)) f = (ConcreteCategory.hom (X.presheaf.map w✝.op)) 0 ⊢ (ConcreteCategory.hom (X.presheaf.map i.op)) f = 0
simpa using hv4
no goals
9e8595fdf9450948
IsLocalRing.of_surjective'
Mathlib/RingTheory/LocalRing/Basic.lean
theorem of_surjective' [Ring S] [Nontrivial S] (f : R →+* S) (hf : Function.Surjective f) : IsLocalRing S := of_isUnit_or_isUnit_one_sub_self (by intro b obtain ⟨a, rfl⟩ := hf b apply (isUnit_or_isUnit_one_sub_self a).imp <| RingHom.isUnit_map _ rw [← f.map_one, ← f.map_sub] apply f.isUnit_map)
R : Type u_1 S : Type u_2 inst✝³ : CommRing R inst✝² : IsLocalRing R inst✝¹ : Ring S inst✝ : Nontrivial S f : R →+* S hf : Function.Surjective ⇑f ⊢ ∀ (a : S), IsUnit a ∨ IsUnit (1 - a)
intro b
R : Type u_1 S : Type u_2 inst✝³ : CommRing R inst✝² : IsLocalRing R inst✝¹ : Ring S inst✝ : Nontrivial S f : R →+* S hf : Function.Surjective ⇑f b : S ⊢ IsUnit b ∨ IsUnit (1 - b)
7d91f66c74fa2a9b
IsNilpotent.exp_add_of_commute
Mathlib/RingTheory/Nilpotent/Exp.lean
theorem exp_add_of_commute {a b : A} (h₁ : Commute a b) (h₂ : IsNilpotent a) (h₃ : IsNilpotent b) : exp (a + b) = exp a * exp b
A : Type u_1 inst✝¹ : Ring A inst✝ : Algebra ℚ A a b : A h₁ : Commute a b n₁ : ℕ hn₁ : a ^ n₁ = 0 n₂ : ℕ hn₂ : b ^ n₂ = 0 N : ℕ := n₁ ⊔ n₂ h₄ : a ^ (N + 1) = 0 h₅ : b ^ (N + 1) = 0 R2N : Finset ℕ := range (2 * N + 1) hR2N : R2N = range (2 * N + 1) RN : Finset ℕ := range (N + 1) hRN : RN = range (N + 1) i : ℕ hi : i ∈ R2N j : ℕ hj : j ≤ i this : (↑i !)⁻¹ * ↑(i.choose j) = (↑j !)⁻¹ * (↑(i - j)!)⁻¹ ⊢ (↑i !)⁻¹ • (a ^ j * b ^ (i - j) * ↑(i.choose j)) = ((↑j !)⁻¹ * (↑(i - j)!)⁻¹) • (a ^ j * b ^ (i - j))
rw [← Nat.cast_commute (i.choose j), ← this, ← Algebra.mul_smul_comm, ← nsmul_eq_mul, mul_smul, ← smul_assoc, smul_comm, smul_assoc]
A : Type u_1 inst✝¹ : Ring A inst✝ : Algebra ℚ A a b : A h₁ : Commute a b n₁ : ℕ hn₁ : a ^ n₁ = 0 n₂ : ℕ hn₂ : b ^ n₂ = 0 N : ℕ := n₁ ⊔ n₂ h₄ : a ^ (N + 1) = 0 h₅ : b ^ (N + 1) = 0 R2N : Finset ℕ := range (2 * N + 1) hR2N : R2N = range (2 * N + 1) RN : Finset ℕ := range (N + 1) hRN : RN = range (N + 1) i : ℕ hi : i ∈ R2N j : ℕ hj : j ≤ i this : (↑i !)⁻¹ * ↑(i.choose j) = (↑j !)⁻¹ * (↑(i - j)!)⁻¹ ⊢ i.choose j • (↑i !)⁻¹ • (a ^ j * b ^ (i - j)) = ↑(i.choose j) • (↑i !)⁻¹ • (a ^ j * b ^ (i - j))
925becc4d11e37f5
MulChar.IsQuadratic.inv
Mathlib/NumberTheory/MulChar/Basic.lean
theorem IsQuadratic.inv {χ : MulChar R R'} (hχ : χ.IsQuadratic) : χ⁻¹ = χ
R : Type u_1 inst✝¹ : CommMonoid R R' : Type u_2 inst✝ : CommRing R' χ : MulChar R R' hχ : χ.IsQuadratic x : Rˣ h₂ : χ ↑x = -1 ⊢ -1 = ↑(-1)
rw [Units.val_neg, Units.val_one]
no goals
34a914133be0d6ed
meas_lt_essInf
Mathlib/MeasureTheory/Function/EssSup.lean
theorem meas_lt_essInf (hf : IsBoundedUnder (· ≥ ·) (ae μ) f
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝³ : ConditionallyCompleteLinearOrder β f : α → β inst✝² : TopologicalSpace β inst✝¹ : FirstCountableTopology β inst✝ : OrderTopology β hf : autoParam (IsBoundedUnder (fun x1 x2 => x1 ≥ x2) (ae μ) f) _auto✝ ⊢ μ {y | f y < essInf f μ} = 0
simp_rw [← not_le]
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝³ : ConditionallyCompleteLinearOrder β f : α → β inst✝² : TopologicalSpace β inst✝¹ : FirstCountableTopology β inst✝ : OrderTopology β hf : autoParam (IsBoundedUnder (fun x1 x2 => x1 ≥ x2) (ae μ) f) _auto✝ ⊢ μ {y | ¬essInf f μ ≤ f y} = 0
67c7ba092a45938c
PhragmenLindelof.right_half_plane_of_tendsto_zero_on_real
Mathlib/Analysis/Complex/PhragmenLindelof.lean
theorem right_half_plane_of_tendsto_zero_on_real (hd : DiffContOnCl ℂ f {z | 0 < z.re}) (hexp : ∃ c < (2 : ℝ), ∃ B, f =O[cobounded ℂ ⊓ 𝓟 {z | 0 < z.re}] fun z => expR (B * ‖z‖ ^ c)) (hre : Tendsto (fun x : ℝ => f x) atTop (𝓝 0)) (him : ∀ x : ℝ, ‖f (x * I)‖ ≤ C) (hz : 0 ≤ z.re) : ‖f z‖ ≤ C
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E C : ℝ f : ℂ → E hd : DiffContOnCl ℂ f {z | 0 < z.re} hexp : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 {z | 0 < z.re}] fun z => expR (B * ‖z‖ ^ c) hre : Tendsto (fun x => f ↑x) atTop (𝓝 0) him : ∀ (x : ℝ), ‖f (↑x * I)‖ ≤ C hle : ∀ (C' : ℝ), (∀ (x : ℝ), 0 ≤ x → ‖f ↑x‖ ≤ C') → ∀ (z : ℂ), 0 ≤ z.re → ‖f z‖ ≤ C ⊔ C' hfc : ContinuousOn (fun x => f ↑x) (Ici 0) ⊢ ∃ x, 0 ≤ x ∧ ∀ (y : ℝ), 0 ≤ y → ‖f ↑y‖ ≤ ‖f ↑x‖
by_cases h₀ : ∀ x : ℝ, 0 ≤ x → f x = 0
case pos E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E C : ℝ f : ℂ → E hd : DiffContOnCl ℂ f {z | 0 < z.re} hexp : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 {z | 0 < z.re}] fun z => expR (B * ‖z‖ ^ c) hre : Tendsto (fun x => f ↑x) atTop (𝓝 0) him : ∀ (x : ℝ), ‖f (↑x * I)‖ ≤ C hle : ∀ (C' : ℝ), (∀ (x : ℝ), 0 ≤ x → ‖f ↑x‖ ≤ C') → ∀ (z : ℂ), 0 ≤ z.re → ‖f z‖ ≤ C ⊔ C' hfc : ContinuousOn (fun x => f ↑x) (Ici 0) h₀ : ∀ (x : ℝ), 0 ≤ x → f ↑x = 0 ⊢ ∃ x, 0 ≤ x ∧ ∀ (y : ℝ), 0 ≤ y → ‖f ↑y‖ ≤ ‖f ↑x‖ case neg E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E C : ℝ f : ℂ → E hd : DiffContOnCl ℂ f {z | 0 < z.re} hexp : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 {z | 0 < z.re}] fun z => expR (B * ‖z‖ ^ c) hre : Tendsto (fun x => f ↑x) atTop (𝓝 0) him : ∀ (x : ℝ), ‖f (↑x * I)‖ ≤ C hle : ∀ (C' : ℝ), (∀ (x : ℝ), 0 ≤ x → ‖f ↑x‖ ≤ C') → ∀ (z : ℂ), 0 ≤ z.re → ‖f z‖ ≤ C ⊔ C' hfc : ContinuousOn (fun x => f ↑x) (Ici 0) h₀ : ¬∀ (x : ℝ), 0 ≤ x → f ↑x = 0 ⊢ ∃ x, 0 ≤ x ∧ ∀ (y : ℝ), 0 ≤ y → ‖f ↑y‖ ≤ ‖f ↑x‖
8c2477e37fa78449
CategoryTheory.SmallObject.πFunctorObj_eq
Mathlib/CategoryTheory/SmallObject/IsCardinalForSmallObjectArgument.lean
lemma πFunctorObj_eq (j : κ.ord.toType) : letI := hasColimitsOfShape_discrete I κ letI := hasPushouts I κ πFunctorObj I.homFamily (((iterationFunctor I κ).obj j).obj (Arrow.mk f)).hom = (relativeCellComplexιObjFObjSuccIso I κ f j).inv ≫ (relativeCellComplexιObj I κ f).incl.app (Order.succ j) ≫ πObj I κ f ≫ (iterationFunctorObjObjRightIso I κ (Arrow.mk f) j).inv
C : Type u inst✝³ : Category.{v, u} C I : MorphismProperty C κ : Cardinal.{w} inst✝² : Fact κ.IsRegular inst✝¹ : OrderBot κ.ord.toType inst✝ : I.IsCardinalForSmallObjectArgument κ X Y : C f : X ⟶ Y j : κ.ord.toType h₁ : (iterationFunctorMapSuccAppArrowIso I κ (Arrow.mk f) j).hom.right.left ≫ πFunctorObj I.homFamily (((iterationFunctor I κ).obj j).obj (Arrow.mk f)).hom = (((iterationFunctor I κ).obj (Order.succ j)).obj (Arrow.mk f)).hom ≫ (iterationFunctorMapSuccAppArrowIso I κ (Arrow.mk f) j).hom.right.right h₂ : (iterationFunctor I κ).map (homOfLE ⋯) ≫ (transfiniteCompositionOfShapeSuccStructPropιIteration I κ).incl.app (Order.succ j) = (transfiniteCompositionOfShapeSuccStructPropιIteration I κ).incl.app j ⊢ (iterationFunctorMapSuccAppArrowIso I κ (Arrow.mk f) j).hom.right.left ≫ πFunctorObj I.homFamily (((iterationFunctor I κ).obj j).obj (Arrow.mk f)).hom ≫ (((transfiniteCompositionOfShapeSuccStructPropιIteration I κ).incl.app j).app (Arrow.mk f)).right ≫ 𝟙 ((iteration I κ).obj (Arrow.mk f)).right = ((((transfiniteCompositionOfShapeSuccStructPropιIteration I κ).incl.app (Order.succ j)).app (Arrow.mk f)).left ≫ 𝟙 ((iteration I κ).obj (Arrow.mk f)).left) ≫ ((iteration I κ).obj (Arrow.mk f)).hom
simp only [reassoc_of% h₁, comp_id, comp_id, Arrow.w_mk_right, ← h₂, NatTrans.comp_app, Arrow.comp_right, iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc]
no goals
c49cad169646b8e7
ContMDiffFiberwiseLinear.locality_aux₁
Mathlib/Geometry/Manifold/VectorBundle/FiberwiseLinear.lean
theorem ContMDiffFiberwiseLinear.locality_aux₁ (n : WithTop ℕ∞) (e : PartialHomeomorph (B × F) (B × F)) (h : ∀ p ∈ e.source, ∃ s : Set (B × F), IsOpen s ∧ p ∈ s ∧ ∃ (φ : B → F ≃L[𝕜] F) (u : Set B) (hu : IsOpen u) (hφ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => (φ x : F →L[𝕜] F)) u) (h2φ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => ((φ x).symm : F →L[𝕜] F)) u), (e.restr s).EqOnSource (FiberwiseLinear.partialHomeomorph φ hu hφ.continuousOn h2φ.continuousOn)) : ∃ U : Set B, e.source = U ×ˢ univ ∧ ∀ x ∈ U, ∃ (φ : B → F ≃L[𝕜] F) (u : Set B) (hu : IsOpen u) (_huU : u ⊆ U) (_hux : x ∈ u), ∃ (hφ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => (φ x : F →L[𝕜] F)) u) (h2φ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => ((φ x).symm : F →L[𝕜] F)) u), (e.restr (u ×ˢ univ)).EqOnSource (FiberwiseLinear.partialHomeomorph φ hu hφ.continuousOn h2φ.continuousOn)
case a.mk.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝⁷ : TopologicalSpace B inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F EB : Type u_4 inst✝³ : NormedAddCommGroup EB inst✝² : NormedSpace 𝕜 EB HB : Type u_5 inst✝¹ : TopologicalSpace HB inst✝ : ChartedSpace HB B IB : ModelWithCorners 𝕜 EB HB n : WithTop ℕ∞ e : PartialHomeomorph (B × F) (B × F) s : ↑e.source → Set (B × F) hs : ∀ (x : ↑e.source), IsOpen (s x) hsp : ∀ (x : ↑e.source), ↑x ∈ s x φ : ↑e.source → B → F ≃L[𝕜] F u : ↑e.source → Set B hu : ∀ (x : ↑e.source), IsOpen (u x) hφ : ∀ (x : ↑e.source), ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x_1 => ↑(φ x x_1)) (u x) h2φ : ∀ (x : ↑e.source), ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x_1 => ↑(φ x x_1).symm) (u x) heφ : ∀ (x : ↑e.source), (e.restr (s x)).EqOnSource (FiberwiseLinear.partialHomeomorph (φ x) ⋯ ⋯ ⋯) hesu : ∀ (p : ↑e.source), e.source ∩ s p = u p ×ˢ univ hu' : ∀ (p : ↑e.source), (↑p).1 ∈ u p heu : ∀ (p : ↑e.source) (q : B × F), q.1 ∈ u p → q ∈ e.source v : F p : B × F hp : p ∈ e.source ⊢ (p.1, v) ∈ e.source
exact heu ⟨p, hp⟩ (p.fst, v) (hu' ⟨p, hp⟩)
no goals
70cae96477ef715a
BitVec.getLsbD_zero
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem getLsbD_zero : (0#w).getLsbD i = false
w i : Nat ⊢ (0#w).getLsbD i = false
simp [getLsbD]
no goals
01285b5eae552e07
Nat.dist.triangle_inequality
Mathlib/Data/Nat/Dist.lean
theorem dist.triangle_inequality (n m k : ℕ) : dist n k ≤ dist n m + dist m k
n m k : ℕ ⊢ n.dist k ≤ n.dist m + m.dist k
have : dist n m + dist m k = n - m + (m - k) + (k - m + (m - n)) := by simp [dist, add_comm, add_left_comm, add_assoc]
n m k : ℕ this : n.dist m + m.dist k = n - m + (m - k) + (k - m + (m - n)) ⊢ n.dist k ≤ n.dist m + m.dist k
8a85e9a9601b52ad
hasFDerivAt_exp_of_mem_ball
Mathlib/Analysis/SpecialFunctions/Exponential.lean
theorem hasFDerivAt_exp_of_mem_ball [CharZero 𝕂] {x : 𝔸} (hx : x ∈ EMetric.ball (0 : 𝔸) (expSeries 𝕂 𝔸).radius) : HasFDerivAt (exp 𝕂) (exp 𝕂 x • (1 : 𝔸 →L[𝕂] 𝔸)) x
𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (expSeries 𝕂 𝔸).radius ⊢ HasFDerivAt (exp 𝕂) (exp 𝕂 x • 1) x
have hpos : 0 < (expSeries 𝕂 𝔸).radius := (zero_le _).trans_lt hx
𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (expSeries 𝕂 𝔸).radius hpos : 0 < (expSeries 𝕂 𝔸).radius ⊢ HasFDerivAt (exp 𝕂) (exp 𝕂 x • 1) x
b912975acf3383c5
LieModuleHom.comp_ker_incl
Mathlib/Algebra/Lie/Submodule.lean
theorem comp_ker_incl : f.comp f.ker.incl = 0
R : Type u L : Type v M : Type w N : Type w₁ inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : LieRingModule L N f : M →ₗ⁅R,L⁆ N ⊢ f.comp f.ker.incl = 0
ext ⟨m, hm⟩
case h.mk R : Type u L : Type v M : Type w N : Type w₁ inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : LieRingModule L N f : M →ₗ⁅R,L⁆ N m : M hm : m ∈ f.ker ⊢ (f.comp f.ker.incl) ⟨m, hm⟩ = 0 ⟨m, hm⟩
dfebb799e6e2d8c7
ProbabilityTheory.Kernel.measurable_densityProcess_countableFiltration_aux
Mathlib/Probability/Kernel/Disintegration/Density.lean
lemma measurable_densityProcess_countableFiltration_aux (κ : Kernel α (γ × β)) (ν : Kernel α γ) (n : ℕ) {s : Set β} (hs : MeasurableSet s) : Measurable[mα.prod (countableFiltration γ n)] (fun (p : α × γ) ↦ κ p.1 (countablePartitionSet n p.2 ×ˢ s) / ν p.1 (countablePartitionSet n p.2))
case refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝ : CountablyGenerated γ κ : Kernel α (γ × β) ν : Kernel α γ n : ℕ s : Set β hs : MeasurableSet s ⊢ ∀ (y : ↑(countablePartition γ n)), Measurable fun x => (ν (x, y).1) ↑(x, y).2
rintro ⟨t, ht⟩
case refine_2.mk α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝ : CountablyGenerated γ κ : Kernel α (γ × β) ν : Kernel α γ n : ℕ s : Set β hs : MeasurableSet s t : Set γ ht : t ∈ countablePartition γ n ⊢ Measurable fun x => (ν (x, ⟨t, ht⟩).1) ↑(x, ⟨t, ht⟩).2
f6b26e3ef3304fb0
IsAlgebraic.exists_smul_eq_mul
Mathlib/RingTheory/Algebraic/Basic.lean
theorem IsAlgebraic.exists_smul_eq_mul (a : S) {b : S} (hRb : IsAlgebraic R b) (hb : b ∈ nonZeroDivisors S) : ∃ᵉ (c : S) (d ≠ (0 : R)), d • a = b * c := have ⟨r, hr, s, h⟩ := hRb.exists_nonzero_dvd hb ⟨s * a, r, hr, by rw [Algebra.smul_def, h, mul_assoc]⟩
R : Type u_1 S : Type u_2 inst✝² : CommRing R inst✝¹ : Ring S inst✝ : Algebra R S a b : S hRb : IsAlgebraic R b hb : b ∈ nonZeroDivisors S r : R hr : r ≠ 0 s : S h : (algebraMap R S) r = b * s ⊢ r • a = b * (s * a)
rw [Algebra.smul_def, h, mul_assoc]
no goals
10ab4f7d13b76032
NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis
Mathlib/NumberTheory/NumberField/Discriminant/Basic.lean
theorem _root_.NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis : volume (fundamentalDomain (latticeBasis K)) = (2 : ℝ≥0∞)⁻¹ ^ nrComplexPlaces K * sqrt ‖discr K‖₊
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K f : Free.ChooseBasisIndex ℤ (𝓞 K) ≃ (K →+* ℂ) := (canonicalEmbedding.latticeBasis K).indexEquiv (Pi.basisFun ℂ (K →+* ℂ)) e : index K ≃ Free.ChooseBasisIndex ℤ (𝓞 K) := (indexEquiv K).trans f.symm M : Matrix (index K) (index K) ℝ := (mixedEmbedding.stdBasis K).toMatrix ⇑((latticeBasis K).reindex e.symm) N : Matrix (K →+* ℂ) (K →+* ℂ) ℂ := Algebra.embeddingsMatrixReindex ℚ ℂ (⇑(integralBasis K) ∘ ⇑f.symm) RingHom.equivRatAlgHom this : M.map ⇑ofRealHom = matrixToStdBasis K * ((reindex (indexEquiv K).symm (indexEquiv K).symm) N)ᵀ ⊢ ‖I‖₊ = 1
rw [← norm_toNNReal, norm_I, Real.toNNReal_one]
no goals
0fabcb321045abbb
NumberField.mixedEmbedding.fundamentalCone.torsion_unitSMul_mem_integerSet
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/FundamentalCone.lean
theorem torsion_unitSMul_mem_integerSet {x : mixedSpace K} {ζ : (𝓞 K)ˣ} (hζ : ζ ∈ torsion K) (hx : x ∈ integerSet K) : ζ • x ∈ integerSet K
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K x : mixedSpace K ζ : (𝓞 K)ˣ hζ : ζ ∈ torsion K hx : x ∈ integerSet K ⊢ ζ • x ∈ integerSet K
obtain ⟨a, ⟨_, rfl⟩, rfl⟩ := (mem_integerSet.mp hx).2
case intro.refl K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K ζ : (𝓞 K)ˣ hζ : ζ ∈ torsion K a : 𝓞 K hx : (mixedEmbedding K) ↑a ∈ integerSet K ⊢ ζ • (mixedEmbedding K) ↑a ∈ integerSet K
114477dbad2b3ce8
IsGreatest.norm_cfc
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Isometric.lean
lemma IsGreatest.norm_cfc [Nontrivial A] (f : 𝕜 → 𝕜) (a : A) (hf : ContinuousOn f (σ 𝕜 a)
𝕜 : Type u_1 A : Type u_2 p : outParam (A → Prop) inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedRing A inst✝³ : StarRing A inst✝² : NormedAlgebra 𝕜 A inst✝¹ : IsometricContinuousFunctionalCalculus 𝕜 A p inst✝ : Nontrivial A f : 𝕜 → 𝕜 a : A hf : autoParam (ContinuousOn f (σ 𝕜 a)) _auto✝ ha : autoParam (p a) _auto✝ ⊢ IsGreatest ((fun x => ‖f x‖) '' σ 𝕜 a) ‖cfc f a‖
obtain ⟨x, hx⟩ := ContinuousFunctionalCalculus.isCompact_spectrum a |>.image_of_continuousOn hf.norm |>.exists_isGreatest <| (ContinuousFunctionalCalculus.spectrum_nonempty a ha).image _
case intro 𝕜 : Type u_1 A : Type u_2 p : outParam (A → Prop) inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedRing A inst✝³ : StarRing A inst✝² : NormedAlgebra 𝕜 A inst✝¹ : IsometricContinuousFunctionalCalculus 𝕜 A p inst✝ : Nontrivial A f : 𝕜 → 𝕜 a : A hf : autoParam (ContinuousOn f (σ 𝕜 a)) _auto✝ ha : autoParam (p a) _auto✝ x : ℝ hx : IsGreatest ((fun x => ‖f x‖) '' σ 𝕜 a) x ⊢ IsGreatest ((fun x => ‖f x‖) '' σ 𝕜 a) ‖cfc f a‖
1af82689eab3dd89
IsPrimitiveRoot.exists_pow_or_neg_mul_pow_of_isOfFinOrder
Mathlib/NumberTheory/Cyclotomic/PrimitiveRoots.lean
theorem exists_pow_or_neg_mul_pow_of_isOfFinOrder [IsCyclotomicExtension {n} ℚ K] (hno : Odd (n : ℕ)) {ζ x : K} (hζ : IsPrimitiveRoot ζ n) (hx : IsOfFinOrder x) : ∃ r : ℕ, r < n ∧ (x = ζ ^ r ∨ x = -ζ ^ r) := by obtain ⟨r, hr⟩ := hζ.exists_neg_pow_of_isOfFinOrder hno hx refine ⟨r % n, Nat.mod_lt _ n.2, ?_⟩ rw [show ζ ^ (r % ↑n) = ζ ^ r from (IsPrimitiveRoot.eq_orderOf hζ).symm ▸ pow_mod_orderOf .., hr] rcases Nat.even_or_odd r with (h | h) <;> simp [neg_pow, h.neg_one_pow]
n : ℕ+ K : Type u inst✝² : Field K inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {n} ℚ K hno : Odd ↑n ζ x : K hζ : IsPrimitiveRoot ζ ↑n hx : IsOfFinOrder x ⊢ ∃ r < ↑n, x = ζ ^ r ∨ x = -ζ ^ r
obtain ⟨r, hr⟩ := hζ.exists_neg_pow_of_isOfFinOrder hno hx
case intro n : ℕ+ K : Type u inst✝² : Field K inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {n} ℚ K hno : Odd ↑n ζ x : K hζ : IsPrimitiveRoot ζ ↑n hx : IsOfFinOrder x r : ℕ hr : x = (-ζ) ^ r ⊢ ∃ r < ↑n, x = ζ ^ r ∨ x = -ζ ^ r
ccb44fcbe76a6a6b
RootPairing.injOn_dualMap_subtype_span_root_coroot
Mathlib/LinearAlgebra/RootSystem/Basic.lean
/-- Even though the roots may not span, coroots are distinguished by their pairing with the roots. The proof depends crucially on the fact that there are finitely-many roots. Modulo trivial generalisations, this statement is exactly Lemma 1.1.4 on page 87 of SGA 3 XXI. -/ lemma injOn_dualMap_subtype_span_root_coroot [NoZeroSMulDivisors ℤ M] : InjOn ((span R (range P.root)).subtype.dualMap ∘ₗ P.toLin.flip) (range P.coroot)
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : AddCommGroup N inst✝² : Module R N P : RootPairing ι R M N inst✝¹ : Finite ι inst✝ : NoZeroSMulDivisors ℤ M this : InjOn (⇑(span R (range ⇑P.root)).subtype.dualMap) (range (⇑P.toLin.flip ∘ ⇑P.coroot)) ⊢ InjOn (⇑((span R (range ⇑P.root)).subtype.dualMap ∘ₗ P.toLin.flip)) (range ⇑P.coroot)
rintro - ⟨i, rfl⟩ - ⟨j, rfl⟩ hij
case intro.intro ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : AddCommGroup N inst✝² : Module R N P : RootPairing ι R M N inst✝¹ : Finite ι inst✝ : NoZeroSMulDivisors ℤ M this : InjOn (⇑(span R (range ⇑P.root)).subtype.dualMap) (range (⇑P.toLin.flip ∘ ⇑P.coroot)) i j : ι hij : ((span R (range ⇑P.root)).subtype.dualMap ∘ₗ P.toLin.flip) (P.coroot i) = ((span R (range ⇑P.root)).subtype.dualMap ∘ₗ P.toLin.flip) (P.coroot j) ⊢ P.coroot i = P.coroot j
ffac3d487167573a
Finset.pow_eq_empty
Mathlib/Algebra/Group/Pointwise/Finset/Basic.lean
@[to_additive (attr := simp)] lemma pow_eq_empty : s ^ n = ∅ ↔ s = ∅ ∧ n ≠ 0
case mp α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Monoid α s : Finset α n : ℕ ⊢ s ^ n = ∅ → s = ∅ ∧ n ≠ 0
contrapose!
case mp α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Monoid α s : Finset α n : ℕ ⊢ s ≠ ∅ ∨ n = 0 → s ^ n ≠ ∅
930de7a778d262f5
Std.Tactic.BVDecide.BVExpr.eval_const
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Basic.lean
theorem eval_const : eval assign (.const val) = val
assign : Assignment w✝ : Nat val : BitVec w✝ ⊢ eval assign (const val) = val
rfl
no goals
a374970caff6fd4d
FDRep.Iso.conj_ρ
Mathlib/RepresentationTheory/FDRep.lean
theorem Iso.conj_ρ {V W : FDRep R G} (i : V ≅ W) (g : G) : W.ρ g = (FDRep.isoToLinearEquiv i).conj (V.ρ g)
R G : Type u inst✝¹ : CommRing R inst✝ : Monoid G V W : FDRep R G i : V ≅ W g : G ⊢ ((Action.forget (FGModuleCat R) G).mapIso i).hom ≫ ModuleCat.ofHom (W.ρ g) = V.ρ g ≫ ((Action.forget (FGModuleCat R) G).mapIso i).hom
exact (i.hom.comm g).symm
no goals
7c658e3e962ad586
CategoryTheory.FreeMonoidalCategory.Hom.inductionOn
Mathlib/CategoryTheory/Monoidal/Free/Basic.lean
theorem Hom.inductionOn {motive : {X Y : F C} → (X ⟶ Y) → Prop} {X Y : F C} (t : X ⟶ Y) (id : (X : F C) → motive (𝟙 X)) (α_hom : (X Y Z : F C) → motive (α_ X Y Z).hom) (α_inv : (X Y Z : F C) → motive (α_ X Y Z).inv) (l_hom : (X : F C) → motive (λ_ X).hom) (l_inv : (X : F C) → motive (λ_ X).inv) (ρ_hom : (X : F C) → motive (ρ_ X).hom) (ρ_inv : (X : F C) → motive (ρ_ X).inv) (comp : {X Y Z : F C} → (f : X ⟶ Y) → (g : Y ⟶ Z) → motive f → motive g → motive (f ≫ g)) (whiskerLeft : (X : F C) → {Y Z : F C} → (f : Y ⟶ Z) → motive f → motive (X ◁ f)) (whiskerRight : {X Y : F C} → (f : X ⟶ Y) → (Z : F C) → motive f → motive (f ▷ Z)) : motive t
case h.whiskerRight C : Type u motive : {X Y : F C} → (X ⟶ Y) → Prop X✝ Y : F C id : ∀ (X : F C), motive (𝟙 X) α_hom : ∀ (X Y Z : F C), motive (α_ X Y Z).hom α_inv : ∀ (X Y Z : F C), motive (α_ X Y Z).inv l_hom : ∀ (X : F C), motive (λ_ X).hom l_inv : ∀ (X : F C), motive (λ_ X).inv ρ_hom : ∀ (X : F C), motive (ρ_ X).hom ρ_inv : ∀ (X : F C), motive (ρ_ X).inv comp : ∀ {X Y Z : F C} (f : X ⟶ Y) (g : Y ⟶ Z), motive f → motive g → motive (f ≫ g) whiskerLeft : ∀ (X : F C) {Y Z : F C} (f : Y ⟶ Z), motive f → motive (X ◁ f) whiskerRight : ∀ {X Y : F C} (f : X ⟶ Y) (Z : F C), motive f → motive (f ▷ Z) X₁✝ X₂✝ : F C f : X₁✝ ⟶ᵐ X₂✝ X : F C hf : (X₁✝ ⟶ X₂✝) → motive ⟦f⟧ t : X₁✝.tensor X ⟶ X₂✝.tensor X ⊢ motive ⟦f.whiskerRight X⟧
exact whiskerRight _ X (hf ⟦f⟧)
no goals
628924983ac61dad
Finset.Colex.IsInitSeg.exists_initSeg
Mathlib/Combinatorics/Colex.lean
lemma IsInitSeg.exists_initSeg (h𝒜 : IsInitSeg 𝒜 r) (h𝒜₀ : 𝒜.Nonempty) : ∃ s : Finset α, #s = r ∧ 𝒜 = initSeg s
case h.refine_2.intro.inr α : Type u_1 inst✝¹ : LinearOrder α 𝒜 : Finset (Finset α) r : ℕ inst✝ : Fintype α h𝒜 : IsInitSeg 𝒜 r h𝒜₀ : 𝒜.Nonempty hs : 𝒜.sup' h𝒜₀ toColex ∈ ofColex ⁻¹' ↑𝒜 t : Finset α cards : #(𝒜.sup' h𝒜₀ toColex).ofColex = #t le : { ofColex := t } ≤ { ofColex := (𝒜.sup' h𝒜₀ toColex).ofColex } p : { ofColex := t } < { ofColex := (𝒜.sup' h𝒜₀ toColex).ofColex } ⊢ t ∈ 𝒜
exact h𝒜.2 hs ⟨p, cards ▸ h𝒜.1 hs⟩
no goals
784903b08b93058a