name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
List.set_eq_take_append_cons_drop
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/TakeDrop.lean
theorem set_eq_take_append_cons_drop (l : List α) (n : Nat) (a : α) : l.set n a = if n < l.length then l.take n ++ a :: l.drop (n + 1) else l
case pos α : Type u_1 l : List α a : α m : Nat h : m < l.length h' : ¬m < m ⊢ min m l.length ≤ m
exact Nat.min_le_left m l.length
no goals
9fb4c99baced165c
Irreducible.dvd_iff
Mathlib/Algebra/GroupWithZero/Associated.lean
theorem Irreducible.dvd_iff [Monoid M] {x y : M} (hx : Irreducible x) : y ∣ x ↔ IsUnit y ∨ Associated x y
case mp.intro.inr M : Type u_1 inst✝ : Monoid M x y : M hx : Irreducible x z : M hz : x = y * z h : IsUnit z ⊢ IsUnit y ∨ y * z ~ᵤ y
exact Or.inr (associated_mul_unit_left _ _ h)
no goals
6a7560cd158385cb
PerfectClosure.mul_aux_left
Mathlib/FieldTheory/PerfectClosure.lean
theorem mul_aux_left (x1 x2 y : ℕ × K) (H : R K p x1 x2) : mk K p (x1.1 + y.1, (frobenius K p)^[y.1] x1.2 * (frobenius K p)^[x1.1] y.2) = mk K p (x2.1 + y.1, (frobenius K p)^[y.1] x2.2 * (frobenius K p)^[x2.1] y.2) := match x1, x2, H with | _, _, R.intro n x => Quot.sound <| by rw [← iterate_succ_apply, iterate_succ_apply', iterate_succ_apply', ← frobenius_mul, Nat.succ_add] apply R.intro
K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x1 x2 y : ℕ × K H : R K p x1 x2 n : ℕ x : K ⊢ R K p ((n, x).1 + y.1, (⇑(frobenius K p))^[y.1] (n, x).2 * (⇑(frobenius K p))^[(n, x).1] y.2) ((n + 1, (frobenius K p) x).1 + y.1, (⇑(frobenius K p))^[y.1] (n + 1, (frobenius K p) x).2 * (⇑(frobenius K p))^[(n + 1, (frobenius K p) x).1] y.2)
rw [← iterate_succ_apply, iterate_succ_apply', iterate_succ_apply', ← frobenius_mul, Nat.succ_add]
K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x1 x2 y : ℕ × K H : R K p x1 x2 n : ℕ x : K ⊢ R K p ((n, x).1 + y.1, (⇑(frobenius K p))^[y.1] (n, x).2 * (⇑(frobenius K p))^[(n, x).1] y.2) ((n + y.1).succ, (frobenius K p) ((⇑(frobenius K p))^[y.1] x * (⇑(frobenius K p))^[n] y.2))
94c5cb7db1618291
ENNReal.inv_strictAnti
Mathlib/Data/ENNReal/Inv.lean
theorem inv_strictAnti : StrictAnti (Inv.inv : ℝ≥0∞ → ℝ≥0∞)
⊢ StrictAnti Inv.inv
intro a b h
a b : ℝ≥0∞ h : a < b ⊢ b⁻¹ < a⁻¹
f6f8b260e5951a17
finprod_mem_finset_product
Mathlib/Algebra/BigOperators/Finprod.lean
theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M) : (∏ᶠ (ab) (_ : ab ∈ s), f ab) = ∏ᶠ (a) (b) (_ : (a, b) ∈ s), f (a, b)
α : Type u_1 β : Type u_2 M : Type u_5 inst✝ : CommMonoid M s : Finset (α × β) f : α × β → M ⊢ ∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab = ∏ᶠ (a : α) (b : β) (_ : (a, b) ∈ s), f (a, b)
classical rw [finprod_mem_finset_product'] simp
no goals
504da8f09a85ffae
IsTorsion.of_surjective
Mathlib/GroupTheory/Torsion.lean
theorem IsTorsion.of_surjective {f : G →* H} (hf : Function.Surjective f) (tG : IsTorsion G) : IsTorsion H := fun h => by obtain ⟨g, hg⟩ := hf h rw [← hg] exact f.isOfFinOrder (tG g)
G : Type u_1 H : Type u_2 inst✝¹ : Group G inst✝ : Group H f : G →* H hf : Function.Surjective ⇑f tG : IsTorsion G h : H ⊢ IsOfFinOrder h
obtain ⟨g, hg⟩ := hf h
case intro G : Type u_1 H : Type u_2 inst✝¹ : Group G inst✝ : Group H f : G →* H hf : Function.Surjective ⇑f tG : IsTorsion G h : H g : G hg : f g = h ⊢ IsOfFinOrder h
a18faf93d772be26
MeasureTheory.Measure.rnDeriv_smul_right'
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem rnDeriv_smul_right' (ν μ : Measure α) [SigmaFinite ν] [SigmaFinite μ] {r : ℝ≥0} (hr : r ≠ 0) : ν.rnDeriv (r • μ) =ᵐ[μ] r⁻¹ • ν.rnDeriv μ
α : Type u_1 m : MeasurableSpace α ν μ : Measure α inst✝¹ : SigmaFinite ν inst✝ : SigmaFinite μ r : ℝ≥0 hr : r ≠ 0 this : ν.singularPart (r • μ) + (r • μ).withDensity (ν.rnDeriv (r • μ)) = ν.singularPart (r • μ) + r⁻¹ • (r • μ).withDensity (ν.rnDeriv μ) ⊢ (↑r • μ).withDensity (ν.rnDeriv (↑r • μ)) = ↑r⁻¹ • (↑r • μ).withDensity (ν.rnDeriv μ)
rwa [add_right_inj] at this
no goals
c2338dd04dba20c8
CategoryTheory.frobeniusMorphism_mate
Mathlib/CategoryTheory/Closed/Functor.lean
theorem frobeniusMorphism_mate (h : L ⊣ F) (A : C) : conjugateEquiv (h.comp (exp.adjunction A)) ((exp.adjunction (F.obj A)).comp h) (frobeniusMorphism F h A).natTrans = (expComparison F A).natTrans
case e_w.h.h.inv_hom_id C : Type u inst✝⁶ : Category.{v, u} C D : Type u' inst✝⁵ : Category.{v, u'} D inst✝⁴ : ChosenFiniteProducts C inst✝³ : ChosenFiniteProducts D F : C ⥤ D L : D ⥤ C inst✝² : CartesianClosed C inst✝¹ : CartesianClosed D inst✝ : Limits.PreservesLimitsOfShape (Discrete Limits.WalkingPair) F h : L ⊣ F A : C conjeq : ((mateEquiv (exp.adjunction A) (exp.adjunction (F.obj A))) ((mateEquiv h h) (prodComparisonNatTrans L (F.obj A) ≫ whiskerLeft L ((curriedTensor C).map (h.counit.app A))))).natTrans = (conjugateEquiv (h.comp (exp.adjunction A)) ((exp.adjunction (F.obj A)).comp h)) (prodComparisonNatTrans L (F.obj A) ≫ whiskerLeft L ((curriedTensor C).map (h.counit.app A))) B : C ⊢ h.unit.app (F.obj A ⊗ F.obj B) ≫ F.map (prodComparison L (F.obj A) (F.obj B)) ≫ F.map (h.counit.app A ▷ L.obj (F.obj B)) ≫ F.map (A ◁ h.counit.app B) ≫ prodComparison F A B = 𝟙 (F.obj A ⊗ F.obj B)
rw [prodComparison_natural_whiskerLeft, prodComparison_natural_whiskerRight_assoc]
case e_w.h.h.inv_hom_id C : Type u inst✝⁶ : Category.{v, u} C D : Type u' inst✝⁵ : Category.{v, u'} D inst✝⁴ : ChosenFiniteProducts C inst✝³ : ChosenFiniteProducts D F : C ⥤ D L : D ⥤ C inst✝² : CartesianClosed C inst✝¹ : CartesianClosed D inst✝ : Limits.PreservesLimitsOfShape (Discrete Limits.WalkingPair) F h : L ⊣ F A : C conjeq : ((mateEquiv (exp.adjunction A) (exp.adjunction (F.obj A))) ((mateEquiv h h) (prodComparisonNatTrans L (F.obj A) ≫ whiskerLeft L ((curriedTensor C).map (h.counit.app A))))).natTrans = (conjugateEquiv (h.comp (exp.adjunction A)) ((exp.adjunction (F.obj A)).comp h)) (prodComparisonNatTrans L (F.obj A) ≫ whiskerLeft L ((curriedTensor C).map (h.counit.app A))) B : C ⊢ h.unit.app (F.obj A ⊗ F.obj B) ≫ F.map (prodComparison L (F.obj A) (F.obj B)) ≫ prodComparison F (L.obj (F.obj A)) (L.obj (F.obj B)) ≫ F.map (h.counit.app A) ▷ F.obj (L.obj (F.obj B)) ≫ F.obj A ◁ F.map (h.counit.app B) = 𝟙 (F.obj A ⊗ F.obj B)
19328243aea6bbf8
isPathConnected_pathComponent
Mathlib/Topology/Connected/PathConnected.lean
theorem isPathConnected_pathComponent : IsPathConnected (pathComponent x)
X : Type u_1 inst✝ : TopologicalSpace X x : X ⊢ IsPathConnected (pathComponent x)
rw [← pathComponentIn_univ]
X : Type u_1 inst✝ : TopologicalSpace X x : X ⊢ IsPathConnected (pathComponentIn x univ)
7722fd5252f34002
hasFDerivAt_integral_of_dominated_loc_of_lip'
Mathlib/Analysis/Calculus/ParametricIntegral.lean
theorem hasFDerivAt_integral_of_dominated_loc_of_lip' {F' : α → H →L[𝕜] E} (ε_pos : 0 < ε) (hF_meas : ∀ x ∈ ball x₀ ε, AEStronglyMeasurable (F x) μ) (hF_int : Integrable (F x₀) μ) (hF'_meas : AEStronglyMeasurable F' μ) (h_lipsch : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖) (bound_integrable : Integrable (bound : α → ℝ) μ) (h_diff : ∀ᵐ a ∂μ, HasFDerivAt (F · a) (F' a) x₀) : Integrable F' μ ∧ HasFDerivAt (fun x ↦ ∫ a, F x a ∂μ) (∫ a, F' a ∂μ) x₀
α : Type u_1 inst✝⁶ : MeasurableSpace α μ : Measure α 𝕜 : Type u_2 inst✝⁵ : RCLike 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedSpace 𝕜 E H : Type u_4 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H F : H → α → E x₀ : H bound : α → ℝ ε : ℝ F' : α → H →L[𝕜] E ε_pos : 0 < ε hF_meas : ∀ x ∈ ball x₀ ε, AEStronglyMeasurable (F x) μ hF_int : Integrable (F x₀) μ hF'_meas : AEStronglyMeasurable F' μ bound_integrable : Integrable bound μ h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀ x₀_in : x₀ ∈ ball x₀ ε nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹ b : α → ℝ := fun a => |bound a| b_int : Integrable b μ b_nonneg : ∀ (a : α), 0 ≤ b a h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖ hF_int' : ∀ x ∈ ball x₀ ε, Integrable (F x) μ hF'_int : Integrable F' μ hE : CompleteSpace E h_ball : ball x₀ ε ∈ 𝓝 x₀ this : ∀ᶠ (x : H) in 𝓝 x₀, ‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - (∫ (a : α), F' a ∂μ) (x - x₀)‖ = ‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - (F' a) (x - x₀)) ∂μ‖ a : α ha : HasFDerivAt (fun x => F x a) (F' a) x₀ ⊢ (fun x => ‖x - x₀‖⁻¹ * ‖F x a - F x₀ a - (F' a) (x - x₀)‖) = fun x => ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - (F' a) (x - x₀))‖
ext x
case h α : Type u_1 inst✝⁶ : MeasurableSpace α μ : Measure α 𝕜 : Type u_2 inst✝⁵ : RCLike 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedSpace 𝕜 E H : Type u_4 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H F : H → α → E x₀ : H bound : α → ℝ ε : ℝ F' : α → H →L[𝕜] E ε_pos : 0 < ε hF_meas : ∀ x ∈ ball x₀ ε, AEStronglyMeasurable (F x) μ hF_int : Integrable (F x₀) μ hF'_meas : AEStronglyMeasurable F' μ bound_integrable : Integrable bound μ h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀ x₀_in : x₀ ∈ ball x₀ ε nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹ b : α → ℝ := fun a => |bound a| b_int : Integrable b μ b_nonneg : ∀ (a : α), 0 ≤ b a h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖ hF_int' : ∀ x ∈ ball x₀ ε, Integrable (F x) μ hF'_int : Integrable F' μ hE : CompleteSpace E h_ball : ball x₀ ε ∈ 𝓝 x₀ this : ∀ᶠ (x : H) in 𝓝 x₀, ‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - (∫ (a : α), F' a ∂μ) (x - x₀)‖ = ‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - (F' a) (x - x₀)) ∂μ‖ a : α ha : HasFDerivAt (fun x => F x a) (F' a) x₀ x : H ⊢ ‖x - x₀‖⁻¹ * ‖F x a - F x₀ a - (F' a) (x - x₀)‖ = ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - (F' a) (x - x₀))‖
a8f4bcb6e23b7fde
FermatLastTheoremForThreeGen.Solution.lambda_sq_not_dvd_a_add_eta_sq_mul_b
Mathlib/NumberTheory/FLT/Three.lean
/-- Given `(S : Solution)`, we have that `λ ^ 2` does not divide `S.a + η ^ 2 * S.b`. -/ lemma lambda_sq_not_dvd_a_add_eta_sq_mul_b : ¬ λ ^ 2 ∣ (S.a + η ^ 2 * S.b)
case intro K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S : Solution hζ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K k : 𝓞 K hk : S.a + ↑η ^ 2 * S.b = λ ^ 2 * k k' : 𝓞 K hk' : S.a + S.b = λ ^ 2 * k' ⊢ False
refine S.hb ⟨(k - k') * (-η), ?_⟩
case intro K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S : Solution hζ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K k : 𝓞 K hk : S.a + ↑η ^ 2 * S.b = λ ^ 2 * k k' : 𝓞 K hk' : S.a + S.b = λ ^ 2 * k' ⊢ S.b = λ * ((k - k') * -↑η)
75f6387d00024605
DvdNotUnit.not_unit
Mathlib/Algebra/Prime/Lemmas.lean
theorem DvdNotUnit.not_unit [CommMonoidWithZero M] {p q : M} (hp : DvdNotUnit p q) : ¬IsUnit q
M : Type u_1 inst✝ : CommMonoidWithZero M p q : M hp : DvdNotUnit p q ⊢ ¬IsUnit q
obtain ⟨-, x, hx, rfl⟩ := hp
case intro.intro.intro M : Type u_1 inst✝ : CommMonoidWithZero M p x : M hx : ¬IsUnit x ⊢ ¬IsUnit (p * x)
370ad7c277381bb2
Real.ediam_eq
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
theorem ediam_eq {s : Set ℝ} (h : Bornology.IsBounded s) : EMetric.diam s = ENNReal.ofReal (sSup s - sInf s)
case inr.refine_2.h s : Set ℝ h : Bornology.IsBounded s hne : s.Nonempty ⊢ sSup s - sInf s ≤ (EMetric.diam s).toReal
rw [← Metric.diam, ← Metric.diam_closure]
case inr.refine_2.h s : Set ℝ h : Bornology.IsBounded s hne : s.Nonempty ⊢ sSup s - sInf s ≤ Metric.diam (closure s)
d6382336badce924
Std.Tactic.BVDecide.BVExpr.bitblast.denote_blastUdiv
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Udiv.lean
theorem denote_blastUdiv (aig : AIG α) (lhs rhs : BitVec w) (assign : α → Bool) (input : BinaryRefVec aig w) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, input.lhs.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, input.rhs.get idx hidx, assign⟧ = rhs.getLsbD idx) : ∀ (idx : Nat) (hidx : idx < w), ⟦(blastUdiv aig input).aig, (blastUdiv aig input).vec.get idx hidx, assign⟧ = (lhs / rhs).getLsbD idx
case hright α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α lhs rhs : BitVec w assign : α → Bool input : aig.BinaryRefVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.lhs.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.rhs.get idx hidx }⟧ = rhs.getLsbD idx idx✝ : Nat hidx : idx✝ < w hdiscr✝ : ¬⟦assign, { aig := (blastUdiv.go (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).aig w { gate := ((blastConst aig 0#w).aig.mkConstCached false).ref.gate, hgate := ⋯ } { gate := (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).ref.gate, hgate := ⋯ } ((((input.cast ⋯).cast ⋯).cast ⋯).lhs.cast ⋯) ((((input.cast ⋯).cast ⋯).cast ⋯).rhs.cast ⋯) w 0 ((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯) ((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯)).aig, ref := { gate := (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).ref.gate, hgate := ⋯ } }⟧ = true hdiscr : ¬⟦assign, { aig := (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).aig, ref := { gate := (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).ref.gate, hgate := ⋯ } }⟧ = true idx : Nat hdix : idx < w ⊢ ⟦assign, { aig := (blastConst aig 0#w).aig, ref := { gate := ((blastConst aig 0#w).vec.get idx hdix).gate, hgate := ⋯ } }⟧ = false
rw [denote_blastConst]
case hright α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α lhs rhs : BitVec w assign : α → Bool input : aig.BinaryRefVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.lhs.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.rhs.get idx hidx }⟧ = rhs.getLsbD idx idx✝ : Nat hidx : idx✝ < w hdiscr✝ : ¬⟦assign, { aig := (blastUdiv.go (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).aig w { gate := ((blastConst aig 0#w).aig.mkConstCached false).ref.gate, hgate := ⋯ } { gate := (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).ref.gate, hgate := ⋯ } ((((input.cast ⋯).cast ⋯).cast ⋯).lhs.cast ⋯) ((((input.cast ⋯).cast ⋯).cast ⋯).rhs.cast ⋯) w 0 ((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯) ((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯)).aig, ref := { gate := (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).ref.gate, hgate := ⋯ } }⟧ = true hdiscr : ¬⟦assign, { aig := (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).aig, ref := { gate := (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).ref.gate, hgate := ⋯ } }⟧ = true idx : Nat hdix : idx < w ⊢ (0#w).getLsbD idx = false
1e06923b53c4a62f
QuadraticForm.comp_tensorLId_eq
Mathlib/LinearAlgebra/QuadraticForm/TensorProduct/Isometries.lean
theorem comp_tensorLId_eq (Q₂ : QuadraticForm R M₂) : Q₂.comp (TensorProduct.lid R M₂) = QuadraticForm.tmul (sq (R := R)) Q₂
R : Type uR M₂ : Type uM₂ inst✝³ : CommRing R inst✝² : AddCommGroup M₂ inst✝¹ : Module R M₂ inst✝ : Invertible 2 Q₂ : QuadraticForm R M₂ ⊢ comp Q₂ ↑(TensorProduct.lid R M₂) = QuadraticForm.tmul QuadraticMap.sq Q₂
refine (QuadraticMap.associated_rightInverse R).injective ?_
R : Type uR M₂ : Type uM₂ inst✝³ : CommRing R inst✝² : AddCommGroup M₂ inst✝¹ : Module R M₂ inst✝ : Invertible 2 Q₂ : QuadraticForm R M₂ ⊢ (associatedHom R) (comp Q₂ ↑(TensorProduct.lid R M₂)) = (associatedHom R) (QuadraticForm.tmul QuadraticMap.sq Q₂)
eb603c56582839d7
LinearIsometry.toAffineIsometry_linearIsometry
Mathlib/Analysis/Normed/Affine/Isometry.lean
theorem toAffineIsometry_linearIsometry : f.toAffineIsometry.linearIsometry = f
case h 𝕜 : Type u_1 V : Type u_2 V₂ : Type u_5 inst✝⁴ : NormedField 𝕜 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace 𝕜 V inst✝¹ : SeminormedAddCommGroup V₂ inst✝ : NormedSpace 𝕜 V₂ f : V →ₗᵢ[𝕜] V₂ x✝ : V ⊢ f.toAffineIsometry.linearIsometry x✝ = f x✝
rfl
no goals
f0503555f6166a82
Ideal.isPrime_map_of_isLocalizationAtPrime
Mathlib/RingTheory/Localization/AtPrime.lean
lemma Ideal.isPrime_map_of_isLocalizationAtPrime {p : Ideal R} [p.IsPrime] (hpq : p ≤ q) : (p.map (algebraMap R S)).IsPrime
R : Type u_4 inst✝⁵ : CommRing R q : Ideal R inst✝⁴ : q.IsPrime S : Type u_5 inst✝³ : CommRing S inst✝² : Algebra R S inst✝¹ : IsLocalization.AtPrime S q p : Ideal R inst✝ : p.IsPrime hpq : p ≤ q ⊢ Disjoint ↑q.primeCompl ↑p
simp [Ideal.primeCompl, ← le_compl_iff_disjoint_left, hpq]
no goals
a57ec231823a0625
mem_ball_one_iff
Mathlib/Analysis/Normed/Group/Basic.lean
theorem mem_ball_one_iff : a ∈ ball (1 : E) r ↔ ‖a‖ < r
E : Type u_5 inst✝ : SeminormedGroup E a : E r : ℝ ⊢ a ∈ ball 1 r ↔ ‖a‖ < r
rw [mem_ball, dist_one_right]
no goals
e499b9b96775cf93
Basis.mk_coord_apply
Mathlib/LinearAlgebra/Basis/Basic.lean
theorem mk_coord_apply [DecidableEq ι] {i j : ι} : (Basis.mk hli hsp).coord i (v j) = if j = i then 1 else 0
case inl ι : Type u_1 R : Type u_3 M : Type u_5 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (range v) inst✝ : DecidableEq ι i j : ι h : j = i ⊢ ((Basis.mk hli hsp).coord i) (v j) = if j = i then 1 else 0
simp only [h, if_true, eq_self_iff_true, mk_coord_apply_eq i]
no goals
ca6b42d63a5d696c
CategoryTheory.Subobject.map_comp
Mathlib/CategoryTheory/Subobject/Basic.lean
theorem map_comp (f : X ⟶ Y) (g : Y ⟶ Z) [Mono f] [Mono g] (x : Subobject X) : (map (f ≫ g)).obj x = (map g).obj ((map f).obj x)
case h C : Type u₁ inst✝² : Category.{v₁, u₁} C X Y Z : C f : X ⟶ Y g : Y ⟶ Z inst✝¹ : Mono f inst✝ : Mono g t : MonoOver X ⊢ (map (f ≫ g)).obj (Quotient.mk'' t) = (map g).obj ((map f).obj (Quotient.mk'' t))
exact Quotient.sound ⟨(MonoOver.mapComp _ _).app t⟩
no goals
2912982149610594
Polynomial.aeval_apply_smul_mem_of_le_comap'
Mathlib/Algebra/Polynomial/AlgebraMap.lean
lemma aeval_apply_smul_mem_of_le_comap' [Semiring A] [Algebra R A] [Module A M] [IsScalarTower R A M] (hm : m ∈ q) (p : R[X]) (a : A) (hq : q ≤ q.comap (Algebra.lsmul R R M a)) : aeval a p • m ∈ q
case refine_2 R : Type u A : Type z M : Type u_3 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M q : Submodule R M m : M inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : Module A M inst✝ : IsScalarTower R A M hm : m ∈ q p : R[X] a : A hq : q ≤ Submodule.comap ((Algebra.lsmul R R M) a) q n : ℕ t : R hmq : (aeval a) (C t * X ^ n) • m ∈ q ⊢ (aeval a) (C t * X ^ (n + 1)) • m ∈ q
rw [pow_succ', mul_left_comm, map_mul, aeval_X, mul_smul]
case refine_2 R : Type u A : Type z M : Type u_3 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M q : Submodule R M m : M inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : Module A M inst✝ : IsScalarTower R A M hm : m ∈ q p : R[X] a : A hq : q ≤ Submodule.comap ((Algebra.lsmul R R M) a) q n : ℕ t : R hmq : (aeval a) (C t * X ^ n) • m ∈ q ⊢ a • (aeval a) (C t * X ^ n) • m ∈ q
ea53fdc1c4b58698
LinearOrderedAddCommGroup.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete
Mathlib/GroupTheory/ArchimedeanDensely.lean
lemma LinearOrderedAddCommGroup.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete {G : Type*} [LinearOrderedAddCommGroup G] [Nontrivial G] {g : G} : Set.WellFoundedOn {x : G | g ≤ x} (· < ·) ↔ Nonempty (G ≃+o ℤ)
case pos.intro.inr.refine_2 G : Type u_2 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Nontrivial G g : G h : ∀ (s : Set ↑{x | 0 ≤ x}), s.Nonempty → ∃ m ∈ s, ∀ x ∈ s, ¬x < m H : Archimedean G hd : DenselyOrdered G y : G hy : y ≠ 0 this : ∀ (y : G), y ≠ 0 → 0 < y → False hy' : y ≤ 0 ⊢ 0 < -y
simp [lt_of_le_of_ne hy' hy]
no goals
59c60e31ffce1071
IsLocalRing.quotient_span_eq_top_iff_span_eq_top
Mathlib/RingTheory/LocalRing/Quotient.lean
theorem quotient_span_eq_top_iff_span_eq_top (s : Set S) : span (R ⧸ p) ((Ideal.Quotient.mk (I := pS)) '' s) = ⊤ ↔ span R s = ⊤
case mp R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S inst✝¹ : IsLocalRing R inst✝ : Module.Finite R S s : Set S H : restrictScalars R (span (R ⧸ p) (⇑(Ideal.Quotient.mk pS) '' s)) = map (IsScalarTower.toAlgHom R S (S ⧸ pS)) (span R s) hs : span (R ⧸ p) (⇑(Ideal.Quotient.mk pS) '' s) = ⊤ ⊢ span R s = ⊤
rw [← top_le_iff]
case mp R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S inst✝¹ : IsLocalRing R inst✝ : Module.Finite R S s : Set S H : restrictScalars R (span (R ⧸ p) (⇑(Ideal.Quotient.mk pS) '' s)) = map (IsScalarTower.toAlgHom R S (S ⧸ pS)) (span R s) hs : span (R ⧸ p) (⇑(Ideal.Quotient.mk pS) '' s) = ⊤ ⊢ ⊤ ≤ span R s
c2f006104663815d
pow_add_pow_le
Mathlib/Algebra/Order/Ring/Basic.lean
theorem pow_add_pow_le (hx : 0 ≤ x) (hy : 0 ≤ y) (hn : n ≠ 0) : x ^ n + y ^ n ≤ (x + y) ^ n
R : Type u_3 inst✝ : OrderedSemiring R x y : R hx : 0 ≤ x hy : 0 ≤ y k : ℕ ih : k + 1 ≠ 0 → x ^ (k + 1) + y ^ (k + 1) ≤ (x + y) ^ (k + 1) hn : k + 1 + 1 ≠ 0 n : ℕ := k.succ h1 : 0 ≤ x * y ^ n + y * x ^ n h2 : 0 ≤ x + y ⊢ (x + y) * (x ^ n + y ^ n) ≤ (x + y) ^ (n + 1)
rw [pow_succ' _ n]
R : Type u_3 inst✝ : OrderedSemiring R x y : R hx : 0 ≤ x hy : 0 ≤ y k : ℕ ih : k + 1 ≠ 0 → x ^ (k + 1) + y ^ (k + 1) ≤ (x + y) ^ (k + 1) hn : k + 1 + 1 ≠ 0 n : ℕ := k.succ h1 : 0 ≤ x * y ^ n + y * x ^ n h2 : 0 ≤ x + y ⊢ (x + y) * (x ^ n + y ^ n) ≤ (x + y) * (x + y) ^ n
1b4313a1aa17f256
QPF.Wequiv.symm
Mathlib/Data/QPF/Univariate/Basic.lean
theorem Wequiv.symm (x y : q.P.W) : Wequiv x y → Wequiv y x
case trans F : Type u → Type u q : QPF F x✝ y✝ x y z : (P F).W a✝¹ : Wequiv x y a✝ : Wequiv y z ih₁ : Wequiv y x ih₂ : Wequiv z y ⊢ Wequiv z x
exact QPF.Wequiv.trans _ _ _ ih₂ ih₁
no goals
45cc86f6cee0bf26
PiToModule.fromEnd_injective
Mathlib/LinearAlgebra/Matrix/Charpoly/LinearMap.lean
theorem PiToModule.fromEnd_injective (hb : Submodule.span R (Set.range b) = ⊤) : Function.Injective (PiToModule.fromEnd R b)
case h ι : Type u_1 inst✝³ : Fintype ι M : Type u_2 inst✝² : AddCommGroup M R : Type u_3 inst✝¹ : CommRing R inst✝ : Module R M b : ι → M hb : Submodule.span R (Set.range b) = ⊤ x y : Module.End R M e : (fromEnd R b) x = (fromEnd R b) y m : M ⊢ x m = y m
obtain ⟨m, rfl⟩ : m ∈ LinearMap.range (Fintype.linearCombination R R b) := by rw [(Fintype.range_linearCombination R b).trans hb] exact Submodule.mem_top
case h.intro ι : Type u_1 inst✝³ : Fintype ι M : Type u_2 inst✝² : AddCommGroup M R : Type u_3 inst✝¹ : CommRing R inst✝ : Module R M b : ι → M hb : Submodule.span R (Set.range b) = ⊤ x y : Module.End R M e : (fromEnd R b) x = (fromEnd R b) y m : ι → R ⊢ x (((Fintype.linearCombination R R) b) m) = y (((Fintype.linearCombination R R) b) m)
34d5df3896496ac3
blimsup_cthickening_ae_le_of_eventually_mul_le_aux
Mathlib/MeasureTheory/Covering/LiminfLimsup.lean
theorem blimsup_cthickening_ae_le_of_eventually_mul_le_aux (p : ℕ → Prop) {s : ℕ → Set α} (hs : ∀ i, IsClosed (s i)) {r₁ r₂ : ℕ → ℝ} (hr : Tendsto r₁ atTop (𝓝[>] 0)) (hrp : 0 ≤ r₁) {M : ℝ} (hM : 0 < M) (hM' : M < 1) (hMr : ∀ᶠ i in atTop, M * r₁ i ≤ r₂ i) : (blimsup (fun i => cthickening (r₁ i) (s i)) atTop p : Set α) ≤ᵐ[μ] (blimsup (fun i => cthickening (r₂ i) (s i)) atTop p : Set α)
α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ p : ℕ → Prop s : ℕ → Set α hs : ∀ (i : ℕ), IsClosed (s i) r₁ r₂ : ℕ → ℝ hr : Tendsto r₁ atTop (𝓝[>] 0) hrp : 0 ≤ r₁ M : ℝ hM : 0 < M hM' : M < 1 hMr : ∀ᶠ (i : ℕ) in atTop, M * r₁ i ≤ r₂ i Y₁ : ℕ → Set α := fun i => cthickening (r₁ i) (s i) Y₂ : ℕ → Set α := fun i => cthickening (r₂ i) (s i) Z : ℕ → Set α := fun i => ⋃ j, ⋃ (_ : p j ∧ i ≤ j), Y₂ j i : ℕ W : Set α := blimsup Y₁ atTop p \ Z i contra : ¬μ W = 0 ⊢ False
obtain ⟨d, hd, hd'⟩ : ∃ d, d ∈ W ∧ ∀ {ι : Type _} {l : Filter ι} (w : ι → α) (δ : ι → ℝ), Tendsto δ l (𝓝[>] 0) → (∀ᶠ j in l, d ∈ closedBall (w j) (2 * δ j)) → Tendsto (fun j => μ (W ∩ closedBall (w j) (δ j)) / μ (closedBall (w j) (δ j))) l (𝓝 1) := Measure.exists_mem_of_measure_ne_zero_of_ae contra (IsUnifLocDoublingMeasure.ae_tendsto_measure_inter_div μ W 2)
case intro.intro α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ p : ℕ → Prop s : ℕ → Set α hs : ∀ (i : ℕ), IsClosed (s i) r₁ r₂ : ℕ → ℝ hr : Tendsto r₁ atTop (𝓝[>] 0) hrp : 0 ≤ r₁ M : ℝ hM : 0 < M hM' : M < 1 hMr : ∀ᶠ (i : ℕ) in atTop, M * r₁ i ≤ r₂ i Y₁ : ℕ → Set α := fun i => cthickening (r₁ i) (s i) Y₂ : ℕ → Set α := fun i => cthickening (r₂ i) (s i) Z : ℕ → Set α := fun i => ⋃ j, ⋃ (_ : p j ∧ i ≤ j), Y₂ j i : ℕ W : Set α := blimsup Y₁ atTop p \ Z i contra : ¬μ W = 0 d : α hd : d ∈ W hd' : ∀ {ι : Type ?u.5905} {l : Filter ι} (w : ι → α) (δ : ι → ℝ), Tendsto δ l (𝓝[>] 0) → (∀ᶠ (j : ι) in l, d ∈ closedBall (w j) (2 * δ j)) → Tendsto (fun j => μ (W ∩ closedBall (w j) (δ j)) / μ (closedBall (w j) (δ j))) l (𝓝 1) ⊢ False
f93df810108e5d67
measurableSet_pi_of_nonempty
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
theorem measurableSet_pi_of_nonempty {s : Set δ} {t : ∀ i, Set (π i)} (hs : s.Countable) (h : (pi s t).Nonempty) : MeasurableSet (pi s t) ↔ ∀ i ∈ s, MeasurableSet (t i)
case intro δ : Type u_4 π : δ → Type u_6 inst✝ : (a : δ) → MeasurableSpace (π a) s : Set δ t : (i : δ) → Set (π i) hs : s.Countable f : (i : δ) → π i hf : f ∈ s.pi t hst : MeasurableSet (s.pi t) i : δ hi : i ∈ s ⊢ MeasurableSet (t i)
convert measurable_update f (a := i) hst
case h.e'_3 δ : Type u_4 π : δ → Type u_6 inst✝ : (a : δ) → MeasurableSpace (π a) s : Set δ t : (i : δ) → Set (π i) hs : s.Countable f : (i : δ) → π i hf : f ∈ s.pi t hst : MeasurableSet (s.pi t) i : δ hi : i ∈ s ⊢ t i = update f i ⁻¹' s.pi t
63724aeb23e83fb6
ZMod.completedLFunction_def_even
Mathlib/NumberTheory/LSeries/ZMod.lean
lemma completedLFunction_def_even (hΦ : Φ.Even) (s : ℂ) : completedLFunction Φ s = N ^ (-s) * ∑ j, Φ j * completedHurwitzZetaEven (toAddCircle j) s
N : ℕ inst✝ : NeZero N Φ : ZMod N → ℂ hΦ : Function.Even Φ s : ℂ this : ∑ j : ZMod N, Φ j * completedHurwitzZetaOdd (toAddCircle j) s = 0 ⊢ completedLFunction Φ s = ↑N ^ (-s) * ∑ j : ZMod N, Φ j * completedHurwitzZetaEven (toAddCircle j) s
rw [completedLFunction, this, mul_zero, add_zero]
no goals
ddd683e2a7dbb180
ProbabilityTheory.measure_ge_le_exp_mul_mgf
Mathlib/Probability/Moments/Basic.lean
theorem measure_ge_le_exp_mul_mgf [IsFiniteMeasure μ] (ε : ℝ) (ht : 0 ≤ t) (h_int : Integrable (fun ω => exp (t * X ω)) μ) : (μ {ω | ε ≤ X ω}).toReal ≤ exp (-t * ε) * mgf X μ t
case inl.hb Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable (fun ω => rexp (t * X ω)) μ ht_zero_eq : 0 = t ⊢ μ Set.univ ≠ ⊤ case inl.h.h Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable (fun ω => rexp (t * X ω)) μ ht_zero_eq : 0 = t ⊢ {ω | ε ≤ X ω} ⊆ Set.univ
exacts [measure_ne_top _ _, Set.subset_univ _]
no goals
d0b4656bb63daebb
measurable_from_prod_countable'
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
theorem measurable_from_prod_countable' [Countable β] {_ : MeasurableSpace γ} {f : α × β → γ} (hf : ∀ y, Measurable fun x => f (x, y)) (h'f : ∀ y y' x, y' ∈ measurableAtom y → f (x, y') = f (x, y)) : Measurable f := fun s hs => by have : f ⁻¹' s = ⋃ y, ((fun x => f (x, y)) ⁻¹' s) ×ˢ (measurableAtom y : Set β)
α : Type u_1 β : Type u_2 γ : Type u_3 m : MeasurableSpace α mβ : MeasurableSpace β inst✝ : Countable β x✝ : MeasurableSpace γ f : α × β → γ hf : ∀ (y : β), Measurable fun x => f (x, y) h'f : ∀ (y y' : β) (x : α), y' ∈ measurableAtom y → f (x, y') = f (x, y) s : Set γ hs : MeasurableSet s ⊢ MeasurableSet (f ⁻¹' s)
have : f ⁻¹' s = ⋃ y, ((fun x => f (x, y)) ⁻¹' s) ×ˢ (measurableAtom y : Set β) := by ext1 ⟨x, y⟩ simp only [mem_preimage, mem_iUnion, mem_prod] refine ⟨fun h ↦ ⟨y, h, mem_measurableAtom_self y⟩, ?_⟩ rintro ⟨y', hy's, hy'⟩ rwa [h'f y' y x hy']
α : Type u_1 β : Type u_2 γ : Type u_3 m : MeasurableSpace α mβ : MeasurableSpace β inst✝ : Countable β x✝ : MeasurableSpace γ f : α × β → γ hf : ∀ (y : β), Measurable fun x => f (x, y) h'f : ∀ (y y' : β) (x : α), y' ∈ measurableAtom y → f (x, y') = f (x, y) s : Set γ hs : MeasurableSet s this : f ⁻¹' s = ⋃ y, ((fun x => f (x, y)) ⁻¹' s) ×ˢ measurableAtom y ⊢ MeasurableSet (f ⁻¹' s)
8c2048365dc7fee7
Polynomial.cyclotomic_expand_eq_cyclotomic_mul
Mathlib/RingTheory/Polynomial/Cyclotomic/Expand.lean
theorem cyclotomic_expand_eq_cyclotomic_mul {p n : ℕ} (hp : Nat.Prime p) (hdiv : ¬p ∣ n) (R : Type*) [CommRing R] : expand R p (cyclotomic n R) = cyclotomic (n * p) R * cyclotomic n R
case inr.refine_1.refine_3 p n : ℕ hp : Nat.Prime p hdiv : ¬p ∣ n R : Type u_1 inst✝ : CommRing R hnpos : n > 0 this : NeZero n hprim : IsPrimitiveRoot (Complex.exp (2 * ↑Real.pi * Complex.I / ↑n)) n ⊢ (aeval (Complex.exp (2 * ↑Real.pi * Complex.I / ↑n))) ((expand ℚ p) (minpoly ℚ (Complex.exp (2 * ↑Real.pi * Complex.I / ↑n)))) = 0
rw [aeval_def, ← eval_map, map_expand, expand_eval, ← IsRoot.def, ← cyclotomic_eq_minpoly_rat hprim hnpos, map_cyclotomic, @isRoot_cyclotomic_iff]
case inr.refine_1.refine_3 p n : ℕ hp : Nat.Prime p hdiv : ¬p ∣ n R : Type u_1 inst✝ : CommRing R hnpos : n > 0 this : NeZero n hprim : IsPrimitiveRoot (Complex.exp (2 * ↑Real.pi * Complex.I / ↑n)) n ⊢ IsPrimitiveRoot (Complex.exp (2 * ↑Real.pi * Complex.I / ↑n) ^ p) n
48914059214e6ed1
MeasureTheory.IsFundamentalDomain.mk_of_measure_univ_le
Mathlib/MeasureTheory/Group/FundamentalDomain.lean
theorem mk_of_measure_univ_le [IsFiniteMeasure μ] [Countable G] (h_meas : NullMeasurableSet s μ) (h_ae_disjoint : ∀ g ≠ (1 : G), AEDisjoint μ (g • s) s) (h_qmp : ∀ g : G, QuasiMeasurePreserving (g • · : α → α) μ μ) (h_measure_univ_le : μ (univ : Set α) ≤ ∑' g : G, μ (g • s)) : IsFundamentalDomain G s μ := have aedisjoint : Pairwise (AEDisjoint μ on fun g : G => g • s) := pairwise_aedisjoint_of_aedisjoint_forall_ne_one h_ae_disjoint h_qmp { nullMeasurableSet := h_meas aedisjoint ae_covers
G : Type u_1 α : Type u_3 inst✝⁴ : Group G inst✝³ : MulAction G α inst✝² : MeasurableSpace α s : Set α μ : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : Countable G h_meas : NullMeasurableSet s μ h_ae_disjoint : ∀ (g : G), g ≠ 1 → AEDisjoint μ (g • s) s h_qmp : ∀ (g : G), QuasiMeasurePreserving (fun x => g • x) μ μ h_measure_univ_le : μ univ ≤ ∑' (g : G), μ (g • s) aedisjoint : Pairwise (AEDisjoint μ on fun g => g • s) ⊢ ∀ᵐ (x : α) ∂μ, ∃ g, g • x ∈ s
replace h_meas : ∀ g : G, NullMeasurableSet (g • s) μ := fun g => by rw [← inv_inv g, ← preimage_smul]; exact h_meas.preimage (h_qmp g⁻¹)
G : Type u_1 α : Type u_3 inst✝⁴ : Group G inst✝³ : MulAction G α inst✝² : MeasurableSpace α s : Set α μ : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : Countable G h_ae_disjoint : ∀ (g : G), g ≠ 1 → AEDisjoint μ (g • s) s h_qmp : ∀ (g : G), QuasiMeasurePreserving (fun x => g • x) μ μ h_measure_univ_le : μ univ ≤ ∑' (g : G), μ (g • s) aedisjoint : Pairwise (AEDisjoint μ on fun g => g • s) h_meas : ∀ (g : G), NullMeasurableSet (g • s) μ ⊢ ∀ᵐ (x : α) ∂μ, ∃ g, g • x ∈ s
32e90416e0da9c0b
Polynomial.natDegree_taylor
Mathlib/Algebra/Polynomial/Taylor.lean
theorem natDegree_taylor (p : R[X]) (r : R) : natDegree (taylor r p) = natDegree p
R : Type u_1 inst✝ : Semiring R p : R[X] r : R ⊢ ((taylor r) p).natDegree = p.natDegree
refine map_natDegree_eq_natDegree _ ?_
R : Type u_1 inst✝ : Semiring R p : R[X] r : R ⊢ ∀ (n : ℕ) (c : R), c ≠ 0 → ((taylor r) ((monomial n) c)).natDegree = n
0c43348d43be43ae
List.findIdx?_eq_some_iff_getElem
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem findIdx?_eq_some_iff_getElem {xs : List α} {p : α → Bool} {i : Nat} : xs.findIdx? p = some i ↔ ∃ h : i < xs.length, p xs[i] ∧ ∀ j (hji : j < i), ¬p (xs[j]'(Nat.lt_trans hji h))
case cons.isTrue.succ α : Type u_1 p : α → Bool x : α xs : List α ih : ∀ {i : Nat}, findIdx? p xs = some i ↔ ∃ h, p xs[i] = true ∧ ∀ (j : Nat) (hji : j < i), ¬p xs[j] = true h✝ : p x = true i : Nat x✝ : i + 1 < xs.length + 1 a✝ : p xs[i] = true ⊢ ∃ x_1 h, p (x :: xs)[x_1] = true
refine ⟨0, zero_lt_succ i, ‹_›⟩
no goals
6fc8c2dbd0d1ea38
ProbabilityTheory.IndepFun.integral_mul
Mathlib/Probability/Integration.lean
theorem IndepFun.integral_mul (hXY : IndepFun X Y μ) (hX : AEStronglyMeasurable X μ) (hY : AEStronglyMeasurable Y μ) : integral μ (X * Y) = integral μ X * integral μ Y
case intro Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω X Y : Ω → ℝ hXY : IndepFun X Y μ hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᶠ[ae μ] 0 h'Y : ¬Y =ᶠ[ae μ] 0 h : ¬Integrable (X * Y) μ HX : Integrable X μ HY : Integrable Y μ ⊢ False
exact h (hXY.integrable_mul HX HY)
no goals
d5b07299b613cdd4
List.map_permutationsAux2'
Mathlib/Data/List/Permutation.lean
theorem map_permutationsAux2' {α' β'} (g : α → α') (g' : β → β') (t : α) (ts ys : List α) (r : List β) (f : List α → β) (f' : List α' → β') (H : ∀ a, g' (f a) = f' (map g a)) : map g' (permutationsAux2 t ts r ys f).2 = (permutationsAux2 (g t) (map g ts) (map g' r) (map g ys) f').2
case cons α : Type u_1 β : Type u_2 α' : Type u_3 β' : Type u_4 g : α → α' g' : β → β' t : α ts : List α r : List β ys_hd : α tail✝ : List α ys_ih : ∀ (f : List α → β) (f' : List α' → β'), (∀ (a : List α), g' (f a) = f' (map g a)) → map g' (permutationsAux2 t ts r tail✝ f).2 = (permutationsAux2 (g t) (map g ts) (map g' r) (map g tail✝) f').2 f : List α → β f' : List α' → β' H : ∀ (a : List α), g' (f a) = f' (map g a) ⊢ g' (f (t :: ys_hd :: (tail✝ ++ ts))) = f' (g t :: g ys_hd :: (map g tail✝ ++ map g ts)) ∧ map g' (permutationsAux2 t ts r tail✝ fun x => f (ys_hd :: x)).2 = (permutationsAux2 (g t) (map g ts) (map g' r) (map g tail✝) fun x => f' (g ys_hd :: x)).2
rw [ys_ih]
case cons α : Type u_1 β : Type u_2 α' : Type u_3 β' : Type u_4 g : α → α' g' : β → β' t : α ts : List α r : List β ys_hd : α tail✝ : List α ys_ih : ∀ (f : List α → β) (f' : List α' → β'), (∀ (a : List α), g' (f a) = f' (map g a)) → map g' (permutationsAux2 t ts r tail✝ f).2 = (permutationsAux2 (g t) (map g ts) (map g' r) (map g tail✝) f').2 f : List α → β f' : List α' → β' H : ∀ (a : List α), g' (f a) = f' (map g a) ⊢ g' (f (t :: ys_hd :: (tail✝ ++ ts))) = f' (g t :: g ys_hd :: (map g tail✝ ++ map g ts)) ∧ (permutationsAux2 (g t) (map g ts) (map g' r) (map g tail✝) ?cons.f').2 = (permutationsAux2 (g t) (map g ts) (map g' r) (map g tail✝) fun x => f' (g ys_hd :: x)).2 case cons.f' α : Type u_1 β : Type u_2 α' : Type u_3 β' : Type u_4 g : α → α' g' : β → β' t : α ts : List α r : List β ys_hd : α tail✝ : List α ys_ih : ∀ (f : List α → β) (f' : List α' → β'), (∀ (a : List α), g' (f a) = f' (map g a)) → map g' (permutationsAux2 t ts r tail✝ f).2 = (permutationsAux2 (g t) (map g ts) (map g' r) (map g tail✝) f').2 f : List α → β f' : List α' → β' H : ∀ (a : List α), g' (f a) = f' (map g a) ⊢ List α' → β' case cons.H α : Type u_1 β : Type u_2 α' : Type u_3 β' : Type u_4 g : α → α' g' : β → β' t : α ts : List α r : List β ys_hd : α tail✝ : List α ys_ih : ∀ (f : List α → β) (f' : List α' → β'), (∀ (a : List α), g' (f a) = f' (map g a)) → map g' (permutationsAux2 t ts r tail✝ f).2 = (permutationsAux2 (g t) (map g ts) (map g' r) (map g tail✝) f').2 f : List α → β f' : List α' → β' H : ∀ (a : List α), g' (f a) = f' (map g a) ⊢ ∀ (a : List α), g' (f (ys_hd :: a)) = ?cons.f' (map g a)
0a78be6fc0d59c01
Nat.Linear.PolyCnstr.denote_combine
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean
theorem PolyCnstr.denote_combine {ctx : Context} {c₁ c₂ : PolyCnstr} (h₁ : c₁.denote ctx) (h₂ : c₂.denote ctx) : (c₁.combine c₂).denote ctx
case neg ctx : Context eq₁ : Bool lhs₁ rhs₁ : Poly eq₂ : Bool lhs₂ rhs₂ : Poly he₁ : eq₁ = true he₂ : ¬eq₂ = true h₁ : Poly.denote_eq ctx (lhs₁, rhs₁) h₂ : Poly.denote_le ctx (lhs₂, rhs₂) ⊢ Poly.denote_le ctx (lhs₁.combine lhs₂, rhs₁.combine rhs₂)
simp [Poly.denote_eq, Poly.denote_le] at h₁ h₂ |-
case neg ctx : Context eq₁ : Bool lhs₁ rhs₁ : Poly eq₂ : Bool lhs₂ rhs₂ : Poly he₁ : eq₁ = true he₂ : ¬eq₂ = true h₁ : Poly.denote ctx lhs₁ = Poly.denote ctx rhs₁ h₂ : Poly.denote ctx lhs₂ ≤ Poly.denote ctx rhs₂ ⊢ Poly.denote ctx lhs₁ + Poly.denote ctx lhs₂ ≤ Poly.denote ctx rhs₁ + Poly.denote ctx rhs₂
7f92a3920c333c32
logDeriv_mul_const
Mathlib/Analysis/Calculus/LogDeriv.lean
theorem logDeriv_mul_const {f : 𝕜 → 𝕜'} (x : 𝕜) (a : 𝕜') (ha : a ≠ 0): logDeriv (fun z => f z * a) x = logDeriv f x
𝕜 : Type u_1 𝕜' : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NontriviallyNormedField 𝕜' inst✝ : NormedAlgebra 𝕜 𝕜' f : 𝕜 → 𝕜' x : 𝕜 a : 𝕜' ha : a ≠ 0 ⊢ logDeriv (fun z => f z * a) x = logDeriv f x
simp only [logDeriv_apply, deriv_mul_const_field, mul_div_mul_right _ _ ha]
no goals
9693af55c83fb31e
ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_prod_of_not_mem
Mathlib/Probability/Independence/Kernel.lean
theorem iIndepFun.indepFun_finset_prod_of_not_mem (hf_Indep : iIndepFun (fun _ ↦ m) f κ μ) (hf_meas : ∀ i, Measurable (f i)) {s : Finset ι} {i : ι} (hi : i ∉ s) : IndepFun (∏ j ∈ s, f j) (f i) κ μ
α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α β : Type u_8 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ μ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : i ∉ s h_right : f i = (fun p => p ⟨i, ⋯⟩) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p ⟨i, ⋯⟩ ⊢ ∏ j ∈ s, f j = (fun p => ∏ j : { x // x ∈ s }, p j) ∘ fun a j => f (↑j) a
ext1 a
case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α β : Type u_8 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ μ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : i ∉ s h_right : f i = (fun p => p ⟨i, ⋯⟩) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p ⟨i, ⋯⟩ a : Ω ⊢ (∏ j ∈ s, f j) a = ((fun p => ∏ j : { x // x ∈ s }, p j) ∘ fun a j => f (↑j) a) a
ee69eed743c3c705
isSeparable_range_derivWithin
Mathlib/Analysis/Calculus/Deriv/Slope.lean
theorem isSeparable_range_derivWithin [SeparableSpace 𝕜] (f : 𝕜 → F) (s : Set 𝕜) : IsSeparable (range (derivWithin f s))
𝕜 : Type u inst✝³ : NontriviallyNormedField 𝕜 F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : SeparableSpace 𝕜 f : 𝕜 → F s t : Set 𝕜 ts : t ⊆ s t_count : t.Countable ht : s ⊆ closure t this : s ⊆ closure (s ∩ t) ⊢ IsSeparable (closure ↑(Submodule.span 𝕜 (f '' t)))
exact (Countable.image t_count f).isSeparable.span.closure
no goals
ccec9f827683d379
iSupIndep_iff_supIndep_of_injOn
Mathlib/Order/CompactlyGenerated/Basic.lean
lemma iSupIndep_iff_supIndep_of_injOn {ι : Type*} {f : ι → α} (hf : InjOn f {i | f i ≠ ⊥}) : iSupIndep f ↔ ∀ (s : Finset ι), s.SupIndep f
α : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α ι : Type u_3 f : ι → α hf : InjOn f {i | f i ≠ ⊥} h : ∀ (s : Finset ι), s.SupIndep f i : ι ⊢ ∀ (i_1 : Finset α), ↑i_1 ⊆ f '' {j | j ≠ i} → Disjoint (f i) (i_1.sup id)
intro s hs
α : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α ι : Type u_3 f : ι → α hf : InjOn f {i | f i ≠ ⊥} h : ∀ (s : Finset ι), s.SupIndep f i : ι s : Finset α hs : ↑s ⊆ f '' {j | j ≠ i} ⊢ Disjoint (f i) (s.sup id)
ab45b25ee8be9f47
CategoryTheory.Limits.biprod.ext_to_iff
Mathlib/CategoryTheory/Preadditive/Biproducts.lean
lemma biprod.ext_to_iff {f g : Z ⟶ X ⊞ Y} : f = g ↔ f ≫ biprod.fst = g ≫ biprod.fst ∧ f ≫ biprod.snd = g ≫ biprod.snd
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C X Y : C inst✝ : HasBinaryBiproduct X Y Z : C f g : Z ⟶ X ⊞ Y ⊢ f = g ↔ f ≫ fst = g ≫ fst ∧ f ≫ snd = g ≫ snd
aesop
no goals
d554989469926e92
MeasureTheory.addContent_union_le
Mathlib/MeasureTheory/Measure/AddContent.lean
lemma addContent_union_le (hC : IsSetRing C) (hs : s ∈ C) (ht : t ∈ C) : m (s ∪ t) ≤ m s + m t
α : Type u_1 C : Set (Set α) s t : Set α m : AddContent C hC : IsSetRing C hs : s ∈ C ht : t ∈ C ⊢ m s + m (t \ s) ≤ m s + m t
exact add_le_add le_rfl (addContent_mono hC.isSetSemiring (hC.diff_mem ht hs) ht diff_subset)
no goals
0dc54ff19c7efe9a
RingCon.ringConGen_le
Mathlib/RingTheory/Congruence/Basic.lean
theorem ringConGen_le {r : R → R → Prop} {c : RingCon R} (h : ∀ x y, r x y → c x y) : ringConGen r ≤ c
R : Type u_2 inst✝¹ : Add R inst✝ : Mul R r : R → R → Prop c : RingCon R h : ∀ (x y : R), r x y → c x y ⊢ ringConGen r ≤ c
rw [ringConGen_eq]
R : Type u_2 inst✝¹ : Add R inst✝ : Mul R r : R → R → Prop c : RingCon R h : ∀ (x y : R), r x y → c x y ⊢ sInf {s | ∀ (x y : R), r x y → s x y} ≤ c
7d48517f785fc022
Std.Tactic.BVDecide.ofBoolExprCached.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BoolExpr/Circuit.lean
theorem go_decl_eq (idx) (aig : AIG β) (h : idx < aig.decls.size) (hbounds) : (ofBoolExprCached.go aig expr atomHandler).val.aig.decls[idx]'hbounds = aig.decls[idx]
case gate.or α β : Type inst✝² : Hashable β inst✝¹ : DecidableEq β atomHandler : AIG β → α → Entrypoint β inst✝ : LawfulOperator β (fun x => α) atomHandler idx : Nat lhs rhs : BoolExpr α aig : AIG β h : idx < aig.decls.size this✝ : aig.decls.size ≤ (go aig lhs atomHandler).val.aig.decls.size this : (go aig lhs atomHandler).val.aig.decls.size ≤ (go (go aig lhs atomHandler).val.aig rhs atomHandler).val.aig.decls.size hbounds : idx < (go aig (BoolExpr.gate Gate.or lhs rhs) atomHandler).val.aig.decls.size lih : (go aig lhs atomHandler).val.aig.decls[idx] = aig.decls[idx] rih : (go (go aig lhs atomHandler).val.aig rhs atomHandler).val.aig.decls[idx] = (go aig lhs atomHandler).val.aig.decls[idx] ⊢ (go aig (BoolExpr.gate Gate.or lhs rhs) atomHandler).val.aig.decls[idx] = aig.decls[idx]
simp only [go]
case gate.or α β : Type inst✝² : Hashable β inst✝¹ : DecidableEq β atomHandler : AIG β → α → Entrypoint β inst✝ : LawfulOperator β (fun x => α) atomHandler idx : Nat lhs rhs : BoolExpr α aig : AIG β h : idx < aig.decls.size this✝ : aig.decls.size ≤ (go aig lhs atomHandler).val.aig.decls.size this : (go aig lhs atomHandler).val.aig.decls.size ≤ (go (go aig lhs atomHandler).val.aig rhs atomHandler).val.aig.decls.size hbounds : idx < (go aig (BoolExpr.gate Gate.or lhs rhs) atomHandler).val.aig.decls.size lih : (go aig lhs atomHandler).val.aig.decls[idx] = aig.decls[idx] rih : (go (go aig lhs atomHandler).val.aig rhs atomHandler).val.aig.decls[idx] = (go aig lhs atomHandler).val.aig.decls[idx] ⊢ ((go (go aig lhs atomHandler).1.aig rhs atomHandler).1.aig.mkOrCached { lhs := (go aig lhs atomHandler).1.ref.cast ⋯, rhs := (go (go aig lhs atomHandler).1.aig rhs atomHandler).1.ref }).aig.decls[idx] = aig.decls[idx]
5157b7e15af3800b
NumberField.house.asiegel_remark
Mathlib/NumberTheory/NumberField/House.lean
theorem asiegel_remark : ‖asiegel K a‖ ≤ c₂ K * A
case calc_3 K : Type u_1 inst✝⁴ : Field K inst✝³ : NumberField K α : Type u_2 β : Type u_3 a : Matrix α β (𝓞 K) inst✝² : Fintype β A : ℝ habs : ∀ (k : α) (l : β), house ((algebraMap (𝓞 K) K) (a k l)) ≤ A inst✝¹ : DecidableEq (K →+* ℂ) inst✝ : Fintype α Apos : 0 ≤ A kr : α × (K →+* ℂ) lu : β × (K →+* ℂ) ⊢ NumberField.house.c K * house ((algebraMap (𝓞 K) K) (a kr.1 lu.1 * (NumberField.house.newBasis K) lu.2)) ≤ NumberField.house.c K * house ((algebraMap (𝓞 K) K) (a kr.1 lu.1)) * house ((algebraMap (𝓞 K) K) ((NumberField.house.newBasis K) lu.2))
simp only [house, _root_.map_mul, mul_assoc]
case calc_3 K : Type u_1 inst✝⁴ : Field K inst✝³ : NumberField K α : Type u_2 β : Type u_3 a : Matrix α β (𝓞 K) inst✝² : Fintype β A : ℝ habs : ∀ (k : α) (l : β), house ((algebraMap (𝓞 K) K) (a k l)) ≤ A inst✝¹ : DecidableEq (K →+* ℂ) inst✝ : Fintype α Apos : 0 ≤ A kr : α × (K →+* ℂ) lu : β × (K →+* ℂ) ⊢ NumberField.house.c K * ‖(canonicalEmbedding K) ((algebraMap (𝓞 K) K) (a kr.1 lu.1)) * (canonicalEmbedding K) ((algebraMap (𝓞 K) K) ((NumberField.house.newBasis K) lu.2))‖ ≤ NumberField.house.c K * (‖(canonicalEmbedding K) ((algebraMap (𝓞 K) K) (a kr.1 lu.1))‖ * ‖(canonicalEmbedding K) ((algebraMap (𝓞 K) K) ((NumberField.house.newBasis K) lu.2))‖)
dc11ee49ed4757e5
FractionalIdeal.count_prod
Mathlib/RingTheory/DedekindDomain/Factorization.lean
theorem count_prod {ι} (s : Finset ι) (I : ι → FractionalIdeal R⁰ K) (hS : ∀ i ∈ s, I i ≠ 0) : count K v (∏ i ∈ s, I i) = ∑ i ∈ s, count K v (I i)
case insert R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsDedekindDomain R v : HeightOneSpectrum R ι : Type u_3 I : ι → FractionalIdeal R⁰ K i : ι s : Finset ι hi : i ∉ s hrec : (∀ i ∈ s, I i ≠ 0) → count K v (∏ i ∈ s, I i) = ∑ i ∈ s, count K v (I i) hS : ∀ i_1 ∈ insert i s, I i_1 ≠ 0 hS' : ∀ i ∈ s, I i ≠ 0 hS0 : ∏ i ∈ s, I i ≠ 0 ⊢ count K v (∏ i ∈ insert i s, I i) = ∑ i ∈ insert i s, count K v (I i)
have hi0 : I i ≠ 0 := hS i (Finset.mem_insert_self i s)
case insert R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsDedekindDomain R v : HeightOneSpectrum R ι : Type u_3 I : ι → FractionalIdeal R⁰ K i : ι s : Finset ι hi : i ∉ s hrec : (∀ i ∈ s, I i ≠ 0) → count K v (∏ i ∈ s, I i) = ∑ i ∈ s, count K v (I i) hS : ∀ i_1 ∈ insert i s, I i_1 ≠ 0 hS' : ∀ i ∈ s, I i ≠ 0 hS0 : ∏ i ∈ s, I i ≠ 0 hi0 : I i ≠ 0 ⊢ count K v (∏ i ∈ insert i s, I i) = ∑ i ∈ insert i s, count K v (I i)
1035c991cce4fe30
HallMarriageTheorem.hall_cond_of_compl
Mathlib/Combinatorics/Hall/Finite.lean
theorem hall_cond_of_compl {ι : Type u} {t : ι → Finset α} {s : Finset ι} (hus : #s = #(s.biUnion t)) (ht : ∀ s : Finset ι, #s ≤ #(s.biUnion t)) (s' : Finset (sᶜ : Set ι)) : #s' ≤ #(s'.biUnion fun x' => t x' \ s.biUnion t)
α : Type v inst✝ : DecidableEq α ι : Type u t : ι → Finset α s : Finset ι hus : #s = #(s.biUnion t) ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) s' : Finset ↑(↑s)ᶜ ⊢ #s' ≤ #(s'.biUnion fun x' => t ↑x' \ s.biUnion t)
haveI := Classical.decEq ι
α : Type v inst✝ : DecidableEq α ι : Type u t : ι → Finset α s : Finset ι hus : #s = #(s.biUnion t) ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) s' : Finset ↑(↑s)ᶜ this : DecidableEq ι ⊢ #s' ≤ #(s'.biUnion fun x' => t ↑x' \ s.biUnion t)
633ed149d2eeb7d3
MeasureTheory.rnDeriv_tilted_right
Mathlib/MeasureTheory/Measure/Tilted.lean
lemma rnDeriv_tilted_right (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] (hf : Integrable (fun x ↦ exp (f x)) ν) : μ.rnDeriv (ν.tilted f) =ᵐ[ν] fun x ↦ ENNReal.ofReal (exp (- f x) * ∫ x, exp (f x) ∂ν) * μ.rnDeriv ν x
case inr.refine_4.h α : Type u_1 mα : MeasurableSpace α f : α → ℝ μ ν : Measure α inst✝¹ : SigmaFinite μ inst✝ : SigmaFinite ν hf : Integrable (fun x => rexp (f x)) ν h0 : NeZero ν x : α ⊢ (ENNReal.ofReal (rexp (f x) / ∫ (x : α), rexp (f x) ∂ν))⁻¹ * μ.rnDeriv ν x = ENNReal.ofReal (rexp (-f x) * ∫ (x : α), rexp (f x) ∂ν) * μ.rnDeriv ν x
congr
case inr.refine_4.h.e_a α : Type u_1 mα : MeasurableSpace α f : α → ℝ μ ν : Measure α inst✝¹ : SigmaFinite μ inst✝ : SigmaFinite ν hf : Integrable (fun x => rexp (f x)) ν h0 : NeZero ν x : α ⊢ (ENNReal.ofReal (rexp (f x) / ∫ (x : α), rexp (f x) ∂ν))⁻¹ = ENNReal.ofReal (rexp (-f x) * ∫ (x : α), rexp (f x) ∂ν)
4634d04eea4db0da
ite_some_none_eq_none
Mathlib/.lake/packages/lean4/src/lean/Init/ByCases.lean
theorem ite_some_none_eq_none [Decidable P] : (if P then some x else none) = none ↔ ¬ P
P : Prop α✝ : Type u_1 x : α✝ inst✝ : Decidable P ⊢ P → False ↔ ¬P
rfl
no goals
0b7185669c0c3453
Cardinal.mk_subtype_le_of_countable_eventually_mem_aux
Mathlib/SetTheory/Cardinal/CountableCover.lean
/-- If a set `t` is eventually covered by a countable family of sets, all with cardinality at most `a`, then the cardinality of `t` is also bounded by `a`. Superseded by `mk_le_of_countable_eventually_mem` which does not assume that the indexing set lives in the same universe. -/ lemma mk_subtype_le_of_countable_eventually_mem_aux {α ι : Type u} {a : Cardinal} [Countable ι] {f : ι → Set α} {l : Filter ι} [NeBot l] {t : Set α} (ht : ∀ x ∈ t, ∀ᶠ i in l, x ∈ f i) (h'f : ∀ i, #(f i) ≤ a) : #t ≤ a
α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : l.NeBot t : Set α ht : ∀ x ∈ t, ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ x ∈ s, ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ x ∈ s, x ∈ f i i : ι hi : ∀ x ∈ s, x ∈ f i this : (i : ι) → Fintype ↑(f i) u : Finset α := (f i).toFinset I1 : s.card ≤ u.card ⊢ ↑u.card ≤ ↑n
convert h'f i
case h.e'_3 α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : l.NeBot t : Set α ht : ∀ x ∈ t, ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ x ∈ s, ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ x ∈ s, x ∈ f i i : ι hi : ∀ x ∈ s, x ∈ f i this : (i : ι) → Fintype ↑(f i) u : Finset α := (f i).toFinset I1 : s.card ≤ u.card ⊢ ↑u.card = #↑(f i)
984a2747d98b97ba
MeasureTheory.integrableOn_iUnion_of_summable_integral_norm
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem integrableOn_iUnion_of_summable_integral_norm {f : X → E} {s : ι → Set X} (hs : ∀ i : ι, MeasurableSet (s i)) (hi : ∀ i : ι, IntegrableOn f (s i) μ) (h : Summable fun i : ι => ∫ x : X in s i, ‖f x‖ ∂μ) : IntegrableOn f (iUnion s) μ
X : Type u_1 E : Type u_3 mX : MeasurableSpace X ι : Type u_5 inst✝¹ : Countable ι μ : Measure X inst✝ : NormedAddCommGroup E f : X → E s : ι → Set X hs : ∀ (i : ι), MeasurableSet (s i) hi : ∀ (i : ι), IntegrableOn f (s i) μ h : Summable fun i => ∫ (x : X) in s i, ‖f x‖ ∂μ B : ∀ (i : ι), ∫⁻ (a : X) in s i, ↑‖f a‖₊ ∂μ = ENNReal.ofReal (∫ (a : X) in s i, ↑‖f a‖₊ ∂μ) ⊢ ∑' (b : ι), ENNReal.ofReal (∫ (a : X) in s b, ↑‖f a‖₊ ∂μ) < ⊤
have S' : Summable fun i : ι => (⟨∫ x : X in s i, ‖f x‖₊ ∂μ, setIntegral_nonneg (hs i) fun x _ => NNReal.coe_nonneg _⟩ : NNReal) := by rw [← NNReal.summable_coe]; exact h
X : Type u_1 E : Type u_3 mX : MeasurableSpace X ι : Type u_5 inst✝¹ : Countable ι μ : Measure X inst✝ : NormedAddCommGroup E f : X → E s : ι → Set X hs : ∀ (i : ι), MeasurableSet (s i) hi : ∀ (i : ι), IntegrableOn f (s i) μ h : Summable fun i => ∫ (x : X) in s i, ‖f x‖ ∂μ B : ∀ (i : ι), ∫⁻ (a : X) in s i, ↑‖f a‖₊ ∂μ = ENNReal.ofReal (∫ (a : X) in s i, ↑‖f a‖₊ ∂μ) S' : Summable fun i => ⟨∫ (x : X) in s i, ↑‖f x‖₊ ∂μ, ⋯⟩ ⊢ ∑' (b : ι), ENNReal.ofReal (∫ (a : X) in s b, ↑‖f a‖₊ ∂μ) < ⊤
1b9eef9dd9f111f9
AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToΓ_ΓToStalk
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean
lemma awayToΓ_ΓToStalk (f) (x) : awayToΓ 𝒜 f ≫ (Proj| pbo f).presheaf.Γgerm x = CommRingCat.ofHom (HomogeneousLocalization.mapId 𝒜 (Submonoid.powers_le.mpr x.2)) ≫ (Proj.stalkIso' 𝒜 x.1).toCommRingCatIso.inv ≫ ((Proj.toLocallyRingedSpace 𝒜).restrictStalkIso (Opens.isOpenEmbedding _) x).inv
R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A x : ↑↑(Proj.restrict ⋯).toPresheafedSpace ⊢ awayToSection 𝒜 f ≫ (structureSheaf 𝒜).val.map (homOfLE ⋯).op ≫ Proj.presheaf.germ (⋯.functor.obj ⊤) ((ConcreteCategory.hom (pbo f).inclusion') x) ⋯ = CommRingCat.ofHom (HomogeneousLocalization.mapId 𝒜 ⋯) ≫ («Proj».stalkIso' 𝒜 ↑x).toCommRingCatIso.inv
simp only [Proj.toLocallyRingedSpace, Proj.toSheafedSpace]
R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A x : ↑↑(Proj.restrict ⋯).toPresheafedSpace ⊢ awayToSection 𝒜 f ≫ (structureSheaf 𝒜).val.map (homOfLE ⋯).op ≫ Presheaf.germ (structureSheaf 𝒜).val (⋯.functor.obj ⊤) ((ConcreteCategory.hom (pbo f).inclusion') x) ⋯ = CommRingCat.ofHom (HomogeneousLocalization.mapId 𝒜 ⋯) ≫ («Proj».stalkIso' 𝒜 ↑x).toCommRingCatIso.inv
20e6bafa8e9595b7
Finsupp.apply_single'
Mathlib/Data/Finsupp/Single.lean
lemma apply_single' [Zero N] [Zero P] (e : N → P) (he : e 0 = 0) (a : α) (n : N) (b : α) : e ((single a n) b) = single a (e n) b
α : Type u_1 N : Type u_7 P : Type u_8 inst✝¹ : Zero N inst✝ : Zero P e : N → P he : e 0 = 0 a : α n : N b : α ⊢ e ((single a n) b) = (single a (e n)) b
simp only [single_apply]
α : Type u_1 N : Type u_7 P : Type u_8 inst✝¹ : Zero N inst✝ : Zero P e : N → P he : e 0 = 0 a : α n : N b : α ⊢ e (if a = b then n else 0) = if a = b then e n else 0
9c4fe3566f120cc2
Std.DHashMap.Internal.Raw.WF.out
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem WF.out [BEq α] [Hashable α] [i₁ : EquivBEq α] [i₂ : LawfulHashable α] {m : Raw α β} (h : m.WF) : Raw.WFImp m
case empty₀ α : Type u β : α → Type v inst✝³ : BEq α inst✝² : Hashable α m : Raw α β β✝ : α → Type v inst✝¹ : BEq α inst✝ : Hashable α c✝ : Nat i₁ : EquivBEq α i₂ : LawfulHashable α ⊢ WFImp (Raw₀.empty c✝).val
exact Raw₀.wfImp_empty
no goals
a5a1f4748871aa23
sign_finRotate
Mathlib/GroupTheory/Perm/Fin.lean
theorem sign_finRotate (n : ℕ) : Perm.sign (finRotate (n + 1)) = (-1) ^ n
case succ n : ℕ ih : sign (finRotate (n + 1)) = (-1) ^ n ⊢ sign (decomposeFin.symm (1, finRotate (n + 1))) = (-1) ^ (n + 1)
simp [ih, pow_succ]
no goals
f9f2177ec4cba59d
ProbabilityTheory.sum_prob_mem_Ioc_le
Mathlib/Probability/StrongLaw.lean
theorem sum_prob_mem_Ioc_le {X : Ω → ℝ} (hint : Integrable X) (hnonneg : 0 ≤ X) {K : ℕ} {N : ℕ} (hKN : K ≤ N) : ∑ j ∈ range K, ℙ {ω | X ω ∈ Set.Ioc (j : ℝ) N} ≤ ENNReal.ofReal (𝔼[X] + 1)
Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X ℙ hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N I : ↑i ≤ ↑(i + 1) ⊢ (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤ ∫ (x : ℝ) in ↑i..↑(i + 1), x + 1 ∂ρ
simp_rw [intervalIntegral.integral_of_le I, ← integral_mul_left]
Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X ℙ hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N I : ↑i ≤ ↑(i + 1) ⊢ ∫ (a : ℝ) in Set.Ioc ↑i ↑(i + 1), (↑i + 1) * 1 ∂ρ ≤ ∫ (x : ℝ) in Set.Ioc ↑i ↑(i + 1), x + 1 ∂ρ
eee258637f6277e6
nhdsLE_sup_nhdsGE
Mathlib/Topology/Order/LeftRight.lean
theorem nhdsLE_sup_nhdsGE (a : α) : 𝓝[≤] a ⊔ 𝓝[≥] a = 𝓝 a
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : LinearOrder α a : α ⊢ 𝓝[≤] a ⊔ 𝓝[≥] a = 𝓝 a
rw [← nhdsWithin_union, Iic_union_Ici, nhdsWithin_univ]
no goals
8101ce80549b9cb7
unique_topology_of_t2
Mathlib/Topology/Algebra/Module/FiniteDimension.lean
theorem unique_topology_of_t2 {t : TopologicalSpace 𝕜} (h₁ : @IsTopologicalAddGroup 𝕜 t _) (h₂ : @ContinuousSMul 𝕜 𝕜 _ hnorm.toUniformSpace.toTopologicalSpace t) (h₃ : @T2Space 𝕜 t) : t = hnorm.toUniformSpace.toTopologicalSpace
case refine_1 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 t : TopologicalSpace 𝕜 h₁ : IsTopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ⊢ Metric.closedBall 0 ε ∈ 𝓝 0
rcases NormedField.exists_norm_lt 𝕜 hε with ⟨ξ₀, hξ₀, hξ₀ε⟩
case refine_1.intro.intro 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 t : TopologicalSpace 𝕜 h₁ : IsTopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε ⊢ Metric.closedBall 0 ε ∈ 𝓝 0
fe6a4018e5de36d9
AlgebraicGeometry.ι_sigmaIsoGlued_inv
Mathlib/AlgebraicGeometry/Limits.lean
@[reassoc (attr := simp)] lemma ι_sigmaIsoGlued_inv (i) : (disjointGlueData f).ι i ≫ (sigmaIsoGlued f).inv = Sigma.ι f i
ι : Type u f : ι → Scheme i : (disjointGlueData f).J ⊢ (disjointGlueData f).ι i ≫ (sigmaIsoGlued f).inv = Sigma.ι f i
apply Scheme.forgetToLocallyRingedSpace.map_injective
case a ι : Type u f : ι → Scheme i : (disjointGlueData f).J ⊢ Scheme.forgetToLocallyRingedSpace.map ((disjointGlueData f).ι i ≫ (sigmaIsoGlued f).inv) = Scheme.forgetToLocallyRingedSpace.map (Sigma.ι f i)
e703f9b449707fcf
Finsupp.lex_lt_iff_of_unique
Mathlib/Data/Finsupp/Lex.lean
theorem lex_lt_iff_of_unique [Preorder α] [LT N] [Unique α] {a b : Lex (α →₀ N)} : a < b ↔ ofLex a default < ofLex b default
α : Type u_1 N : Type u_2 inst✝³ : Zero N inst✝² : Preorder α inst✝¹ : LT N inst✝ : Unique α a b : Lex (α →₀ N) ⊢ a < b ↔ (ofLex a) default < (ofLex b) default
simp only [lex_lt_iff, Unique.exists_iff, and_iff_right_iff_imp]
α : Type u_1 N : Type u_2 inst✝³ : Zero N inst✝² : Preorder α inst✝¹ : LT N inst✝ : Unique α a b : Lex (α →₀ N) ⊢ (ofLex a) default < (ofLex b) default → ∀ j < default, (ofLex a) j = (ofLex b) j
eaddb5247c90979c
neg_one_pow_expChar
Mathlib/Algebra/CharP/Lemmas.lean
lemma neg_one_pow_expChar : (-1 : R) ^ p = -1
R : Type u_1 inst✝ : Ring R p : ℕ hR : ExpChar R p ⊢ (-1) ^ p + 1 ^ p = 0
rw [← add_pow_expChar_of_commute _ (Commute.one_right _), neg_add_cancel, zero_pow (expChar_ne_zero R p)]
no goals
2fe32e6ee22521e8
pow_three
Mathlib/Algebra/Group/Defs.lean
@[to_additive three_nsmul] lemma pow_three (a : M) : a ^ 3 = a * (a * a)
M : Type u_2 inst✝ : Monoid M a : M ⊢ a ^ 3 = a * (a * a)
rw [pow_succ', pow_two]
no goals
e34341b09e060e4f
TypeVec.const_append1
Mathlib/Data/TypeVec.lean
theorem const_append1 {β γ} (x : γ) {n} (α : TypeVec n) : TypeVec.const x (α ::: β) = appendFun (TypeVec.const x α) fun _ => x
β : Type u_1 γ : Type u_2 x : γ n : ℕ α : TypeVec.{u_1} n ⊢ TypeVec.const x (α ::: β) = (TypeVec.const x α ::: fun x_1 => x)
ext i : 1
case a β : Type u_1 γ : Type u_2 x : γ n : ℕ α : TypeVec.{u_1} n i : Fin2 (n + 1) ⊢ TypeVec.const x (α ::: β) i = (TypeVec.const x α ::: fun x_1 => x) i
9edd16b3ce182866
Std.DHashMap.Internal.List.getValue?_eq_some_getValue!
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getValue?_eq_some_getValue! [BEq α] [Inhabited β] {l : List ((_ : α) × β)} {a : α} (h : containsKey a l = true) : getValue? a l = some (getValue! a l)
α : Type u β : Type v inst✝¹ : BEq α inst✝ : Inhabited β l : List ((_ : α) × β) a : α h : containsKey a l = true ⊢ getValue? a l = some (getValue! a l)
rw [getValue?_eq_some_getValue h, getValue_eq_getValue!]
no goals
1fa8844bd88f5a74
CategoryTheory.Localization.Construction.morphismProperty_is_top
Mathlib/CategoryTheory/Localization/Construction.lean
theorem morphismProperty_is_top (P : MorphismProperty W.Localization) [P.IsStableUnderComposition] (hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f)) (hP₂ : ∀ ⦃X Y : C⦄ (w : X ⟶ Y) (hw : W w), P (wInv w hw)) : P = ⊤
case h.h.h.a.mpr.nil C : Type uC inst✝¹ : Category.{uC', uC} C W : MorphismProperty C P : MorphismProperty W.Localization inst✝ : P.IsStableUnderComposition hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f) hP₂ : ∀ ⦃X Y : C⦄ (w : X ⟶ Y) (hw : W w), P (wInv w hw) X Y : W.Localization f : X ⟶ Y a✝ : ⊤ f G : Paths (LocQuiver W) ⥤ W.Localization := Quotient.functor (relations W) this : G.Full X₁ X₂ : Paths (LocQuiver W) ⊢ P (G.map Quiver.Path.nil)
simpa only [Functor.map_id] using hP₁ (𝟙 X₁.obj)
no goals
bfd1f03091fbe383
Turing.TM1to1.tr_supports
Mathlib/Computability/PostTuringMachine.lean
theorem tr_supports [Inhabited Λ] {S : Finset Λ} (ss : Supports M S) : Supports (tr enc dec M) (trSupp M S) := ⟨Finset.mem_biUnion.2 ⟨_, ss.1, Finset.mem_insert_self _ _⟩, fun q h ↦ by suffices ∀ q, SupportsStmt S q → (∀ q' ∈ writes q, q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ q' ∈ writes q, SupportsStmt (trSupp M S) (tr enc dec M q') by rcases Finset.mem_biUnion.1 h with ⟨l, hl, h⟩ have := this _ (ss.2 _ hl) fun q' hq ↦ Finset.mem_biUnion.2 ⟨_, hl, Finset.mem_insert_of_mem hq⟩ rcases Finset.mem_insert.1 h with (rfl | h) exacts [this.1, this.2 _ h] intro q hs hw induction q with | move d q IH => unfold writes at hw ⊢ replace IH := IH hs hw; refine ⟨?_, IH.2⟩ cases d <;> simp only [trNormal, iterate, supportsStmt_move, IH] | write f q IH => unfold writes at hw ⊢ simp only [Finset.mem_image, Finset.mem_union, Finset.mem_univ, exists_prop, true_and] at hw ⊢ replace IH := IH hs fun q hq ↦ hw q (Or.inr hq) refine ⟨supportsStmt_read _ fun a _ s ↦ hw _ (Or.inl ⟨_, rfl⟩), fun q' hq ↦ ?_⟩ rcases hq with (⟨a, q₂, rfl⟩ | hq) · simp only [tr, supportsStmt_write, supportsStmt_move, IH.1] · exact IH.2 _ hq | load a q IH => unfold writes at hw ⊢ replace IH := IH hs hw exact ⟨supportsStmt_read _ fun _ ↦ IH.1, IH.2⟩ | branch p q₁ q₂ IH₁ IH₂ => unfold writes at hw ⊢ simp only [Finset.mem_union] at hw ⊢ replace IH₁ := IH₁ hs.1 fun q hq ↦ hw q (Or.inl hq) replace IH₂ := IH₂ hs.2 fun q hq ↦ hw q (Or.inr hq) exact ⟨supportsStmt_read _ fun _ ↦ ⟨IH₁.1, IH₂.1⟩, fun q ↦ Or.rec (IH₁.2 _) (IH₂.2 _)⟩ | goto l => simp only [writes, Finset.not_mem_empty]; refine ⟨?_, fun _ ↦ False.elim⟩ refine supportsStmt_read _ fun a _ s ↦ ?_ exact Finset.mem_biUnion.2 ⟨_, hs _ _, Finset.mem_insert_self _ _⟩ | halt => simp only [writes, Finset.not_mem_empty]; refine ⟨?_, fun _ ↦ False.elim⟩ simp only [SupportsStmt, supportsStmt_move, trNormal]⟩
case write Γ : Type u_1 Λ : Type u_2 σ : Type u_3 n : ℕ enc : Γ → List.Vector Bool n dec : List.Vector Bool n → Γ M : Λ → Stmt Γ Λ σ inst✝¹ : Fintype Γ inst✝ : Inhabited Λ S : Finset Λ ss : Supports M S q✝ : Λ' Γ Λ σ h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt Γ Λ σ hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ' Γ Λ σ), (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ q' ∈ writes q, SupportsStmt (trSupp M S) (tr enc dec M q') q' : Λ' Γ Λ σ hq : (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q ⊢ SupportsStmt (trSupp M S) (tr enc dec M q')
rcases hq with (⟨a, q₂, rfl⟩ | hq)
case write.inl.intro.refl Γ : Type u_1 Λ : Type u_2 σ : Type u_3 n : ℕ enc : Γ → List.Vector Bool n dec : List.Vector Bool n → Γ M : Λ → Stmt Γ Λ σ inst✝¹ : Fintype Γ inst✝ : Inhabited Λ S : Finset Λ ss : Supports M S q✝ : Λ' Γ Λ σ h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt Γ Λ σ hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ' Γ Λ σ), (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ q' ∈ writes q, SupportsStmt (trSupp M S) (tr enc dec M q') a : Γ ⊢ SupportsStmt (trSupp M S) (tr enc dec M (Λ'.write a q)) case write.inr Γ : Type u_1 Λ : Type u_2 σ : Type u_3 n : ℕ enc : Γ → List.Vector Bool n dec : List.Vector Bool n → Γ M : Λ → Stmt Γ Λ σ inst✝¹ : Fintype Γ inst✝ : Inhabited Λ S : Finset Λ ss : Supports M S q✝ : Λ' Γ Λ σ h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt Γ Λ σ hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ' Γ Λ σ), (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ q' ∈ writes q, SupportsStmt (trSupp M S) (tr enc dec M q') q' : Λ' Γ Λ σ hq : q' ∈ writes q ⊢ SupportsStmt (trSupp M S) (tr enc dec M q')
bea148d15df2302d
Polynomial.roots_C_mul_X_sub_C
Mathlib/Algebra/Polynomial/FieldDivision.lean
theorem roots_C_mul_X_sub_C (b : R) (ha : a ≠ 0) : (C a * X - C b).roots = {a⁻¹ * b}
R : Type u a : R inst✝ : Field R b : R ha : a ≠ 0 ⊢ (C a * X - C b).roots = {a⁻¹ * b}
simp [roots_C_mul_X_sub_C_of_IsUnit b ⟨a, a⁻¹, mul_inv_cancel₀ ha, inv_mul_cancel₀ ha⟩]
no goals
c47245df65c343d5
hofer
Mathlib/Analysis/Hofer.lean
theorem hofer {X : Type*} [MetricSpace X] [CompleteSpace X] (x : X) (ε : ℝ) (ε_pos : 0 < ε) {ϕ : X → ℝ} (cont : Continuous ϕ) (nonneg : ∀ y, 0 ≤ ϕ y) : ∃ ε' > 0, ∃ x' : X, ε' ≤ ε ∧ d x' x ≤ 2 * ε ∧ ε * ϕ x ≤ ε' * ϕ x' ∧ ∀ y, d x' y ≤ ε' → ϕ y ≤ 2 * ϕ x'
X : Type u_1 inst✝¹ : MetricSpace X inst✝ : CompleteSpace X x : X ε : ℝ ε_pos : 0 < ε ϕ : X → ℝ cont : Continuous ϕ nonneg : ∀ (y : X), 0 ≤ ϕ y reformulation : ∀ (x' : X) (k : ℕ), ε * ϕ x ≤ ε / 2 ^ k * ϕ x' ↔ 2 ^ k * ϕ x ≤ ϕ x' H : ∀ (k : ℕ) (x' : X), d x' x ≤ 2 * ε ∧ 2 ^ k * ϕ x ≤ ϕ x' → ∃ y, d x' y ≤ ε / 2 ^ k ∧ 2 * ϕ x' < ϕ y this : Nonempty X ⊢ False
choose! F hF using H
X : Type u_1 inst✝¹ : MetricSpace X inst✝ : CompleteSpace X x : X ε : ℝ ε_pos : 0 < ε ϕ : X → ℝ cont : Continuous ϕ nonneg : ∀ (y : X), 0 ≤ ϕ y reformulation : ∀ (x' : X) (k : ℕ), ε * ϕ x ≤ ε / 2 ^ k * ϕ x' ↔ 2 ^ k * ϕ x ≤ ϕ x' this : Nonempty X F : ℕ → X → X hF : ∀ (k : ℕ) (x' : X), d x' x ≤ 2 * ε ∧ 2 ^ k * ϕ x ≤ ϕ x' → d x' (F k x') ≤ ε / 2 ^ k ∧ 2 * ϕ x' < ϕ (F k x') ⊢ False
7989b2596caedc2b
Lean.Order.Array.monotone_findSomeRevM?
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Lemmas.lean
theorem monotone_findSomeRevM? (f : γ → α → m (Option β)) (xs : Array α) (hmono : monotone f) : monotone (fun x => xs.findSomeRevM? (f x))
case case1 m : Type u → Type v inst✝³ : Monad m inst✝² : (α : Type u) → PartialOrder (m α) inst✝¹ : MonoBind m α β : Type u γ : Type w inst✝ : PartialOrder γ f : γ → α → m (Option β) xs : Array α hmono : monotone f i : Nat x✝¹ x✝ : 0 ≤ xs.size ⊢ monotone fun x => pure none
apply monotone_const
no goals
e7f4b15caf8d55dc
Valuation.Integers.wellFounded_gt_on_v_iff_discrete_mrange
Mathlib/RingTheory/Valuation/Archimedean.lean
lemma wellFounded_gt_on_v_iff_discrete_mrange [Nontrivial (MonoidHom.mrange v)ˣ] (hv : Integers v O) : WellFounded ((· > ·) on (v ∘ algebraMap O F)) ↔ Nonempty (MonoidHom.mrange v ≃*o ℤₘ₀)
case refine_3 F : Type u_1 Γ₀ : Type u_2 O : Type u_3 inst✝⁴ : Field F inst✝³ : LinearOrderedCommGroupWithZero Γ₀ inst✝² : CommRing O inst✝¹ : Algebra O F v : Valuation F Γ₀ inst✝ : Nontrivial (↥(MonoidHom.mrange v))ˣ hv : v.Integers O h : {x | x ≤ 1}.WellFoundedOn fun x1 x2 => x1 > x2 x✝ : Γ₀ ⊢ x✝ ∈ Set.range (⇑v ∘ ⇑(algebraMap O F)) → (fun x => if hx : x ∈ MonoidHom.mrange v then ⟨x, hx⟩ else 1) x✝ ∈ {x | x ≤ 1}
simp only [Set.mem_range, Function.comp_apply, MonoidHom.mem_mrange, Set.mem_setOf_eq, forall_exists_index]
case refine_3 F : Type u_1 Γ₀ : Type u_2 O : Type u_3 inst✝⁴ : Field F inst✝³ : LinearOrderedCommGroupWithZero Γ₀ inst✝² : CommRing O inst✝¹ : Algebra O F v : Valuation F Γ₀ inst✝ : Nontrivial (↥(MonoidHom.mrange v))ˣ hv : v.Integers O h : {x | x ≤ 1}.WellFoundedOn fun x1 x2 => x1 > x2 x✝ : Γ₀ ⊢ ∀ (x : O), v ((algebraMap O F) x) = x✝ → (if h : ∃ x, v x = x✝ then ⟨x✝, ⋯⟩ else 1) ≤ 1
21ebccc05fad3ee9
tendsto_inf_principal_nhds_iff_of_forall_eq
Mathlib/Topology/Basic.lean
theorem tendsto_inf_principal_nhds_iff_of_forall_eq {f : α → X} {l : Filter α} {s : Set α} (h : ∀ a ∉ s, f a = x) : Tendsto f (l ⊓ 𝓟 s) (𝓝 x) ↔ Tendsto f l (𝓝 x)
X : Type u α : Type u_1 x : X inst✝ : TopologicalSpace X f : α → X l : Filter α s : Set α h : ∀ a ∉ s, f a = x ⊢ l ⊓ 𝓟 s ≤ comap f (𝓝 x) ↔ l ≤ comap f (𝓝 x)
replace h : 𝓟 sᶜ ≤ comap f (𝓝 x) := by rintro U ⟨t, ht, htU⟩ x hx have : f x ∈ t := (h x hx).symm ▸ mem_of_mem_nhds ht exact htU this
X : Type u α : Type u_1 x : X inst✝ : TopologicalSpace X f : α → X l : Filter α s : Set α h : 𝓟 sᶜ ≤ comap f (𝓝 x) ⊢ l ⊓ 𝓟 s ≤ comap f (𝓝 x) ↔ l ≤ comap f (𝓝 x)
9c6173df4d0ca04a
AlgebraicGeometry.Scheme.IdealSheafData.support_ofIdealTop
Mathlib/AlgebraicGeometry/IdealSheaf.lean
lemma support_ofIdealTop (I : Ideal Γ(X, ⊤)) : (ofIdealTop I).support = X.zeroLocus (U := ⊤) I
case h X : Scheme I : Ideal ↑Γ(X, ⊤) this : ∀ (U : ↑X.affineOpens), (ofIdealTop I).support ∩ ↑↑U = X.zeroLocus ↑I ∩ ↑↑U x : ↑↑X.toPresheafedSpace ⊢ x ∈ (ofIdealTop I).support ↔ x ∈ X.zeroLocus ↑I
obtain ⟨_, ⟨U, hU, rfl⟩, hxU, -⟩ := (isBasis_affine_open X).exists_subset_of_mem_open (Set.mem_univ x) isOpen_univ
case h.intro.intro.intro.intro.intro X : Scheme I : Ideal ↑Γ(X, ⊤) this : ∀ (U : ↑X.affineOpens), (ofIdealTop I).support ∩ ↑↑U = X.zeroLocus ↑I ∩ ↑↑U x : ↑↑X.toPresheafedSpace U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace hU : U ∈ X.affineOpens hxU : x ∈ ↑U ⊢ x ∈ (ofIdealTop I).support ↔ x ∈ X.zeroLocus ↑I
544a16b750e3fe38
TensorPower.mul_one
Mathlib/LinearAlgebra/TensorPower/Basic.lean
theorem mul_one {n} (a : ⨂[R]^n M) : cast R M (add_zero _) (a ₜ* ₜ1) = a
case add R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ x y : ⨂[R] (i : Fin n), M hx : (cast R M ⋯) (mulEquiv (x ⊗ₜ[R] (tprod R) Fin.elim0)) = x hy : (cast R M ⋯) (mulEquiv (y ⊗ₜ[R] (tprod R) Fin.elim0)) = y ⊢ (cast R M ⋯) (mulEquiv ((x + y) ⊗ₜ[R] (tprod R) Fin.elim0)) = x + y
rw [TensorProduct.add_tmul, map_add, map_add, hx, hy]
no goals
e803f9f54b1f406f
LinearMap.range_prod_eq
Mathlib/LinearAlgebra/Prod.lean
theorem range_prod_eq {f : M →ₗ[R] M₂} {g : M →ₗ[R] M₃} (h : ker f ⊔ ker g = ⊤) : range (prod f g) = (range f).prod (range g)
case intro.intro.intro.intro.refine_2 R : Type u M : Type v M₂ : Type w M₃ : Type y inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ x y : M this : y - x ∈ ker f ⊔ ker g x' : M hx' : x' ∈ ker f y' : M hy' : y' ∈ ker g H : x' + y' = y - x ⊢ g (x' + x) = g y
simp [← eq_sub_iff_add_eq.1 H, map_add, add_left_inj, self_eq_add_right, mem_ker.mp hy']
no goals
8c8d54532dff4081
ExistsContDiffBumpBase.y_le_one
Mathlib/Analysis/Calculus/BumpFunction/FiniteDimension.lean
theorem y_le_one {D : ℝ} (x : E) (Dpos : 0 < D) : y D x ≤ 1
E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E D : ℝ x : E Dpos : 0 < D A : (w D ⋆[lsmul ℝ ℝ, μ] φ) x ≤ (w D ⋆[lsmul ℝ ℝ, μ] 1) x B : (w D ⋆[lsmul ℝ ℝ, μ] fun x => 1) x = 1 ⊢ y D x ≤ 1
exact A.trans (le_of_eq B)
no goals
c45a6bd215d89453
Algebra.FinitePresentation.iff_quotient_mvPolynomial'
Mathlib/RingTheory/FinitePresentation.lean
theorem iff_quotient_mvPolynomial' : FinitePresentation R A ↔ ∃ (ι : Type*) (_ : Fintype ι) (f : MvPolynomial ι R →ₐ[R] A), Surjective f ∧ f.toRingHom.ker.FG
case mpr.intro.intro.intro R : Type w₁ A : Type w₂ inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A ι : Type u_1 hfintype : Fintype ι f : MvPolynomial ι R →ₐ[R] A hf : Surjective ⇑f ∧ (RingHom.ker f.toRingHom).FG ⊢ FinitePresentation R A
have equiv := MvPolynomial.renameEquiv R (Fintype.equivFin ι)
case mpr.intro.intro.intro R : Type w₁ A : Type w₂ inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A ι : Type u_1 hfintype : Fintype ι f : MvPolynomial ι R →ₐ[R] A hf : Surjective ⇑f ∧ (RingHom.ker f.toRingHom).FG equiv : MvPolynomial ι R ≃ₐ[R] MvPolynomial (Fin (Fintype.card ι)) R ⊢ FinitePresentation R A
ac8c7b9e721d66d4
EuclideanGeometry.Sphere.two_zsmul_oangle_eq
Mathlib/Geometry/Euclidean/Angle/Sphere.lean
theorem two_zsmul_oangle_eq {s : Sphere P} {p₁ p₂ p₃ p₄ : P} (hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) (hp₃ : p₃ ∈ s) (hp₄ : p₄ ∈ s) (hp₂p₁ : p₂ ≠ p₁) (hp₂p₄ : p₂ ≠ p₄) (hp₃p₁ : p₃ ≠ p₁) (hp₃p₄ : p₃ ≠ p₄) : (2 : ℤ) • ∡ p₁ p₂ p₄ = (2 : ℤ) • ∡ p₁ p₃ p₄
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) s : Sphere P p₁ p₂ p₃ p₄ : P hp₁ : ‖p₁ -ᵥ s.center‖ = s.radius hp₂ : ‖p₂ -ᵥ s.center‖ = s.radius hp₃ : ‖p₃ -ᵥ s.center‖ = s.radius hp₄ : ‖p₄ -ᵥ s.center‖ = s.radius hp₂p₁ : p₂ ≠ p₁ hp₂p₄ : p₂ ≠ p₄ hp₃p₁ : p₃ ≠ p₁ hp₃p₄ : p₃ ≠ p₄ ⊢ 2 • ∡ p₁ p₂ p₄ = 2 • ∡ p₁ p₃ p₄
rw [oangle, oangle, ← vsub_sub_vsub_cancel_right p₁ p₂ s.center, ← vsub_sub_vsub_cancel_right p₄ p₂ s.center, o.two_zsmul_oangle_sub_eq_two_zsmul_oangle_sub_of_norm_eq _ _ _ _ hp₂ hp₃ hp₁ hp₄] <;> simp [hp₂p₁, hp₂p₄, hp₃p₁, hp₃p₄]
no goals
cfd068165848c2fd
CategoryTheory.FreeBicategory.liftHom₂_congr
Mathlib/CategoryTheory/Bicategory/Free.lean
theorem liftHom₂_congr {a b : FreeBicategory B} {f g : a ⟶ b} {η θ : Hom₂ f g} (H : Rel η θ) : liftHom₂ F η = liftHom₂ F θ
B : Type u₁ inst✝¹ : Quiver B C : Type u₂ inst✝ : Bicategory C F : B ⥤q C a b : FreeBicategory B f g : a ⟶ b η θ : Hom₂ f g H : Rel η θ ⊢ liftHom₂ F η = liftHom₂ F θ
induction H <;> (dsimp [liftHom₂]; aesop_cat)
no goals
61a856aeb7cd21e3
Std.Sat.AIG.denote_congr
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/Lemmas.lean
theorem denote_congr (assign1 assign2 : α → Bool) (aig : AIG α) (idx : Nat) (hidx : idx < aig.decls.size) (h : ∀ a, a ∈ aig → assign1 a = assign2 a) : ⟦aig, ⟨idx, hidx⟩, assign1⟧ = ⟦aig, ⟨idx, hidx⟩, assign2⟧
case hconst α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α assign1 assign2 : α → Bool aig : AIG α idx : Nat hidx : idx < aig.decls.size h : ∀ (a : α), a ∈ aig → assign1 a = assign2 a b : Bool heq : aig.decls[idx] = Decl.const b ⊢ ⟦assign1, { aig := aig, ref := { gate := idx, hgate := hidx } }⟧ = ⟦assign2, { aig := aig, ref := { gate := idx, hgate := hidx } }⟧
simp [denote_idx_const heq]
no goals
4309a0099ebca30e
summable_mul_of_bigO_atTop'
Mathlib/NumberTheory/AbelSummation.lean
theorem summable_mul_of_bigO_atTop' (hf_diff : ∀ t ∈ Set.Ici 1, DifferentiableAt ℝ (fun x ↦ ‖f x‖) t) (hf_int : LocallyIntegrableOn (deriv (fun t ↦ ‖f t‖)) (Set.Ici 1)) (h_bdd : (fun n : ℕ ↦ ‖f n‖ * ∑ k ∈ Icc 1 n, ‖c k‖) =O[atTop] fun _ ↦ (1 : ℝ)) {g : ℝ → ℝ} (hg₁ : (fun t ↦ deriv (fun t ↦ ‖f t‖) t * ∑ k ∈ Icc 1 ⌊t⌋₊, ‖c k‖) =O[atTop] g) (hg₂ : IntegrableAtFilter g atTop) : Summable (fun n : ℕ ↦ f n * c n)
𝕜 : Type u_1 inst✝ : RCLike 𝕜 c : ℕ → 𝕜 f : ℝ → 𝕜 hf_diff : ∀ t ∈ Set.Ici 1, DifferentiableAt ℝ (fun x => ‖f x‖) t hf_int : LocallyIntegrableOn (deriv fun t => ‖f t‖) (Set.Ici 1) volume g : ℝ → ℝ hg₂ : IntegrableAtFilter g atTop volume h : ∀ (n : ℕ), ∑ k ∈ Icc 1 n, ‖c k‖ = ∑ k ∈ Icc 0 n, ‖(fun n => if n = 0 then 0 else c n) k‖ h_bdd : (fun n => ‖f ↑n‖ * ∑ x ∈ Icc 0 n, ‖if x = 0 then 0 else c x‖) =O[atTop] fun x => 1 hg₁ : (fun t => deriv (fun t => ‖f t‖) t * ∑ x ∈ Icc 0 ⌊t⌋₊, ‖if x = 0 then 0 else c x‖) =O[atTop] g n : ℕ ⊢ ‖(fun n => if n = 0 then 0 else c n) 0‖ = 0
simp only [reduceIte, norm_zero]
no goals
c2201db1ff4cce62
Real.Gamma_mul_add_mul_le_rpow_Gamma_mul_rpow_Gamma
Mathlib/Analysis/SpecialFunctions/Gamma/BohrMollerup.lean
theorem Gamma_mul_add_mul_le_rpow_Gamma_mul_rpow_Gamma {s t a b : ℝ} (hs : 0 < s) (ht : 0 < t) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) : Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b
s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : (1 / a).IsConjExponent (1 / b) hab' : b = 1 - a ⊢ 0 < a * s + b * t
positivity
no goals
3f18cd4d00bf972d
CategoryTheory.Equalizer.Presieve.Arrows.w
Mathlib/CategoryTheory/Sites/EqualizerSheafCondition.lean
theorem w : forkMap P X π ≫ firstMap P X π = forkMap P X π ≫ secondMap P X π
C : Type u inst✝¹ : Category.{v, u} C P : Cᵒᵖ ⥤ Type w B : C I : Type X : I → C π : (i : I) → X i ⟶ B inst✝ : (Presieve.ofArrows X π).hasPullbacks ⊢ forkMap P X π ≫ firstMap P X π = forkMap P X π ≫ secondMap P X π
ext x ij
case h.h C : Type u inst✝¹ : Category.{v, u} C P : Cᵒᵖ ⥤ Type w B : C I : Type X : I → C π : (i : I) → X i ⟶ B inst✝ : (Presieve.ofArrows X π).hasPullbacks x : P.obj (op B) ij : I × I ⊢ Pi.π (fun ij => P.obj (op (Limits.pullback (π ij.1) (π ij.2)))) ij ((forkMap P X π ≫ firstMap P X π) x) = Pi.π (fun ij => P.obj (op (Limits.pullback (π ij.1) (π ij.2)))) ij ((forkMap P X π ≫ secondMap P X π) x)
7a0faa4126f0b0be
Real.tendsto_sum_pi_div_four
Mathlib/Data/Real/Pi/Leibniz.lean
theorem tendsto_sum_pi_div_four : Tendsto (fun k => ∑ i ∈ range k, (-1 : ℝ) ^ i / (2 * i + 1)) atTop (𝓝 (π / 4))
case hf0 ⊢ Tendsto (fun i => (2 * ↑i + 1)⁻¹) atTop (𝓝 0)
apply Tendsto.inv_tendsto_atTop
case hf0.h ⊢ Tendsto (fun i => 2 * ↑i + 1) atTop atTop
a59a5c77321208c0
Complex.tan_arctan
Mathlib/Analysis/SpecialFunctions/Complex/Arctan.lean
theorem tan_arctan {z : ℂ} (h₁ : z ≠ I) (h₂ : z ≠ -I) : tan (arctan z) = z
z : ℂ h₁ : z ≠ I h₂ : z ≠ -I ⊢ tan z.arctan = z
unfold tan sin cos
z : ℂ h₁ : z ≠ I h₂ : z ≠ -I ⊢ (cexp (-z.arctan * I) - cexp (z.arctan * I)) * I / 2 / ((cexp (z.arctan * I) + cexp (-z.arctan * I)) / 2) = z
b2b39565dc385b44
limsup_finset_sup'
Mathlib/Order/LiminfLimsup.lean
theorem limsup_finset_sup' [ConditionallyCompleteLinearOrder β] {f : Filter α} {F : ι → α → β} {s : Finset ι} (hs : s.Nonempty) (h₁ : ∀ i ∈ s, f.IsCoboundedUnder (· ≤ ·) (F i)
case a α : Type u_1 β : Type u_2 ι : Type u_4 inst✝ : ConditionallyCompleteLinearOrder β f : Filter α F : ι → α → β s : Finset ι hs : s.Nonempty h₁ : autoParam (∀ i ∈ s, IsCoboundedUnder (fun x1 x2 => x1 ≤ x2) f (F i)) _auto✝ h₂ : autoParam (∀ i ∈ s, IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f (F i)) _auto✝ bddsup : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f fun a => s.sup' hs fun i => F i a h₃ : ∃ i ∈ s, IsCoboundedUnder (fun x1 x2 => x1 ≤ x2) f (F i) cobddsup : IsCoboundedUnder (fun x1 x2 => x1 ≤ x2) f fun a => s.sup' hs fun i => F i a b : β hb : b > s.sup' hs fun i => limsup (F i) f ⊢ ∀ᶠ (a : α) in f, (s.sup' hs fun i => F i a) < b
rw [eventually_iff_exists_mem]
case a α : Type u_1 β : Type u_2 ι : Type u_4 inst✝ : ConditionallyCompleteLinearOrder β f : Filter α F : ι → α → β s : Finset ι hs : s.Nonempty h₁ : autoParam (∀ i ∈ s, IsCoboundedUnder (fun x1 x2 => x1 ≤ x2) f (F i)) _auto✝ h₂ : autoParam (∀ i ∈ s, IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f (F i)) _auto✝ bddsup : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f fun a => s.sup' hs fun i => F i a h₃ : ∃ i ∈ s, IsCoboundedUnder (fun x1 x2 => x1 ≤ x2) f (F i) cobddsup : IsCoboundedUnder (fun x1 x2 => x1 ≤ x2) f fun a => s.sup' hs fun i => F i a b : β hb : b > s.sup' hs fun i => limsup (F i) f ⊢ ∃ v ∈ f, ∀ y ∈ v, (s.sup' hs fun i => F i y) < b
63b957bf23cf7390
exists_squarefree_dvd_pow_of_ne_zero
Mathlib/Algebra/Squarefree/Basic.lean
lemma _root_.exists_squarefree_dvd_pow_of_ne_zero {x : R} (hx : x ≠ 0) : ∃ (y : R) (n : ℕ), Squarefree y ∧ y ∣ x ∧ x ∣ y ^ n
case hi.intro.intro.intro.intro R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : UniqueFactorizationMonoid R z p : R hz : z ≠ 0 hp : Irreducible p ih : z ≠ 0 → ∃ y n, Squarefree y ∧ y ∣ z ∧ z ∣ y ^ n hx : p * z ≠ 0 y : R n : ℕ hy : Squarefree y hyx : y ∣ z hy' : z ∣ y ^ n ⊢ ∃ y n, Squarefree y ∧ y ∣ p * z ∧ p * z ∣ y ^ n
rcases n.eq_zero_or_pos with rfl | hn
case hi.intro.intro.intro.intro.inl R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : UniqueFactorizationMonoid R z p : R hz : z ≠ 0 hp : Irreducible p ih : z ≠ 0 → ∃ y n, Squarefree y ∧ y ∣ z ∧ z ∣ y ^ n hx : p * z ≠ 0 y : R hy : Squarefree y hyx : y ∣ z hy' : z ∣ y ^ 0 ⊢ ∃ y n, Squarefree y ∧ y ∣ p * z ∧ p * z ∣ y ^ n case hi.intro.intro.intro.intro.inr R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : UniqueFactorizationMonoid R z p : R hz : z ≠ 0 hp : Irreducible p ih : z ≠ 0 → ∃ y n, Squarefree y ∧ y ∣ z ∧ z ∣ y ^ n hx : p * z ≠ 0 y : R n : ℕ hy : Squarefree y hyx : y ∣ z hy' : z ∣ y ^ n hn : n > 0 ⊢ ∃ y n, Squarefree y ∧ y ∣ p * z ∧ p * z ∣ y ^ n
2f11f1533d70f050
Nat.primeFactorsList_count_eq
Mathlib/Data/Nat/Factorization/Defs.lean
theorem primeFactorsList_count_eq {n p : ℕ} : n.primeFactorsList.count p = n.factorization p
case inr n p : ℕ hn0 : n > 0 pp : Prime p ⊢ count p n.primeFactorsList = n.factorization p
simp only [factorization_def _ pp]
case inr n p : ℕ hn0 : n > 0 pp : Prime p ⊢ count p n.primeFactorsList = padicValNat p n
742c414288dd44f1
AddMonoidAlgebra.supDegree_sub_lt_of_leadingCoeff_eq
Mathlib/Algebra/MonoidAlgebra/Degree.lean
lemma supDegree_sub_lt_of_leadingCoeff_eq (hD : D.Injective) {R} [CommRing R] {p q : R[A]} (hd : p.supDegree D = q.supDegree D) (hc : p.leadingCoeff D = q.leadingCoeff D) : (p - q).supDegree D < p.supDegree D ∨ p = q
A : Type u_3 B : Type u_5 inst✝³ : LinearOrder B inst✝² : OrderBot B D : A → B inst✝¹ : AddZeroClass A hD : Function.Injective D R : Type u_8 inst✝ : CommRing R p q : R[A] hd : supDegree D p = supDegree D q hc : leadingCoeff D p = leadingCoeff D q ⊢ ¬p = q → supDegree D (p - q) < supDegree D p
refine fun he => (supDegree_sub_le.trans ?_).lt_of_ne ?_
case refine_1 A : Type u_3 B : Type u_5 inst✝³ : LinearOrder B inst✝² : OrderBot B D : A → B inst✝¹ : AddZeroClass A hD : Function.Injective D R : Type u_8 inst✝ : CommRing R p q : R[A] hd : supDegree D p = supDegree D q hc : leadingCoeff D p = leadingCoeff D q he : ¬p = q ⊢ supDegree D p ⊔ supDegree D q ≤ supDegree D p case refine_2 A : Type u_3 B : Type u_5 inst✝³ : LinearOrder B inst✝² : OrderBot B D : A → B inst✝¹ : AddZeroClass A hD : Function.Injective D R : Type u_8 inst✝ : CommRing R p q : R[A] hd : supDegree D p = supDegree D q hc : leadingCoeff D p = leadingCoeff D q he : ¬p = q ⊢ supDegree D (p - q) ≠ supDegree D p
8a45d765e6091c8f
ContextFreeRule.rewrites_iff
Mathlib/Computability/ContextFreeGrammar.lean
theorem rewrites_iff : r.Rewrites u v ↔ ∃ p q : List (Symbol T N), u = p ++ [Symbol.nonterminal r.input] ++ q ∧ v = p ++ r.output ++ q := ⟨Rewrites.exists_parts, by rintro ⟨p, q, rfl, rfl⟩; apply rewrites_of_exists_parts⟩
case intro.intro.intro T : Type u_1 N : Type u_2 r : ContextFreeRule T N p q : List (Symbol T N) ⊢ r.Rewrites (p ++ [Symbol.nonterminal r.input] ++ q) (p ++ r.output ++ q)
apply rewrites_of_exists_parts
no goals
018f0091ad90e8b6
Real.logb_nonneg_iff
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x
b x : ℝ hb : 1 < b hx : 0 < x ⊢ 0 ≤ logb b x ↔ 1 ≤ x
rw [← not_lt, logb_neg_iff hb hx, not_lt]
no goals
9bebd044aa988f2d
MeasureTheory.integral_comp_rpow_Ioi
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
theorem integral_comp_rpow_Ioi (g : ℝ → E) {p : ℝ} (hp : p ≠ 0) : (∫ x in Ioi 0, (|p| * x ^ (p - 1)) • g (x ^ p)) = ∫ y in Ioi 0, g y
case h.mpr E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E g : ℝ → E p : ℝ hp : p ≠ 0 S : Set ℝ := Ioi 0 a1 : ∀ x ∈ S, HasDerivWithinAt (fun t => t ^ p) (p * x ^ (p - 1)) S x a2 : InjOn (fun x => x ^ p) S x : ℝ hx : x ∈ S ⊢ ∃ x_1 ∈ S, x_1 ^ p = x
refine ⟨x ^ (1 / p), rpow_pos_of_pos hx _, ?_⟩
case h.mpr E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E g : ℝ → E p : ℝ hp : p ≠ 0 S : Set ℝ := Ioi 0 a1 : ∀ x ∈ S, HasDerivWithinAt (fun t => t ^ p) (p * x ^ (p - 1)) S x a2 : InjOn (fun x => x ^ p) S x : ℝ hx : x ∈ S ⊢ (x ^ (1 / p)) ^ p = x
2e1724a0aef0efd0
Algebra.Generators.CotangentSpace.fst_compEquiv
Mathlib/RingTheory/Kaehler/JacobiZariski.lean
lemma CotangentSpace.fst_compEquiv : LinearMap.fst T Q.toExtension.CotangentSpace (T ⊗[S] P.toExtension.CotangentSpace) ∘ₗ (compEquiv Q P).toLinearMap = Extension.CotangentSpace.map (Q.ofComp P).toExtensionHom
R : Type u S : Type v inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S T : Type uT inst✝³ : CommRing T inst✝² : Algebra R T inst✝¹ : Algebra S T inst✝ : IsScalarTower R S T Q : Generators S T P : Generators R S ⊢ LinearMap.fst T Q.toExtension.CotangentSpace (T ⊗[S] P.toExtension.CotangentSpace) ∘ₗ ↑(compEquiv Q P) = Extension.CotangentSpace.map (Q.ofComp P).toExtensionHom
classical apply (Q.comp P).cotangentSpaceBasis.ext intro i apply Q.cotangentSpaceBasis.repr.injective ext j simp only [compEquiv, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, ofComp_val, LinearEquiv.trans_apply, Basis.repr_self, LinearMap.fst_apply, repr_CotangentSpaceMap] obtain (i | i) := i <;> simp only [comp_vars, Basis.repr_symm_apply, Finsupp.linearCombination_single, Basis.prod_apply, LinearMap.coe_inl, LinearMap.coe_inr, Sum.elim_inl, Function.comp_apply, one_smul, Basis.repr_self, Finsupp.single_apply, pderiv_X, Pi.single_apply, RingHom.map_ite_one_zero, Sum.elim_inr, Function.comp_apply, Basis.baseChange_apply, one_smul, map_zero, Finsupp.coe_zero, Pi.zero_apply, derivation_C]
no goals
f446de9ba069a3ea
Finset.sup'_const
Mathlib/Data/Finset/Lattice/Fold.lean
theorem sup'_const (a : α) : s.sup' H (fun _ => a) = a
α : Type u_2 β : Type u_3 inst✝ : SemilatticeSup α s : Finset β H : s.Nonempty a : α ⊢ (s.sup' H fun x => a) = a
apply le_antisymm
case a α : Type u_2 β : Type u_3 inst✝ : SemilatticeSup α s : Finset β H : s.Nonempty a : α ⊢ (s.sup' H fun x => a) ≤ a case a α : Type u_2 β : Type u_3 inst✝ : SemilatticeSup α s : Finset β H : s.Nonempty a : α ⊢ a ≤ s.sup' H fun x => a
19a233cc520bfbb7
IsTopologicallyNilpotent.map
Mathlib/Topology/Algebra/TopologicallyNilpotent.lean
theorem map {F : Type*} [FunLike F R S] [MonoidWithZeroHomClass F R S] {φ : F} (hφ : Continuous φ) {a : R} (ha : IsTopologicallyNilpotent a) : IsTopologicallyNilpotent (φ a)
R : Type u_1 S : Type u_2 inst✝⁵ : TopologicalSpace R inst✝⁴ : MonoidWithZero R inst✝³ : MonoidWithZero S inst✝² : TopologicalSpace S F : Type u_3 inst✝¹ : FunLike F R S inst✝ : MonoidWithZeroHomClass F R S φ : F hφ : Continuous ⇑φ a : R ha : Tendsto (fun x => a ^ x) atTop (𝓝 0) ⊢ Tendsto (fun x => φ (a ^ x)) atTop (𝓝 0)
exact (map_zero φ ▸ hφ.tendsto 0).comp ha
no goals
3b2b48869271a747
Array.getElem_reverse
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem getElem_reverse (as : Array α) (i : Nat) (hi : i < as.reverse.size) : (as.reverse)[i] = as[as.size - 1 - i]'(by simp at hi; omega)
α : Type ?u.328456 as : Array α i : Nat hi : i < as.reverse.size ⊢ as.size - 1 - i < as.size
simp at hi
α : Type ?u.328456 as : Array α i : Nat hi : i < as.size ⊢ as.size - 1 - i < as.size
af4a1d0749ff35ea
AddCircle.closedBall_eq_univ_of_half_period_le
Mathlib/Analysis/Normed/Group/AddCircle.lean
theorem closedBall_eq_univ_of_half_period_le (hp : p ≠ 0) (x : AddCircle p) {ε : ℝ} (hε : |p| / 2 ≤ ε) : closedBall x ε = univ := eq_univ_iff_forall.mpr fun x => by simpa only [mem_closedBall, dist_eq_norm] using (norm_le_half_period p hp).trans hε
p : ℝ hp : p ≠ 0 x✝ : AddCircle p ε : ℝ hε : |p| / 2 ≤ ε x : AddCircle p ⊢ x ∈ closedBall x✝ ε
simpa only [mem_closedBall, dist_eq_norm] using (norm_le_half_period p hp).trans hε
no goals
e005dcb1cc4af2ea
List.Nodup.union
Mathlib/Data/List/Nodup.lean
theorem Nodup.union [DecidableEq α] (l₁ : List α) (h : Nodup l₂) : (l₁ ∪ l₂).Nodup
case cons α : Type u inst✝ : DecidableEq α a : α l₁ : List α ih : ∀ {l₂ : List α}, l₂.Nodup → (l₁ ∪ l₂).Nodup l₂ : List α h : l₂.Nodup ⊢ (a :: l₁ ∪ l₂).Nodup
exact (ih h).insert
no goals
703b8be42fe97c42
MeasureTheory.integral_prod
Mathlib/MeasureTheory/Integral/Prod.lean
theorem integral_prod (f : α × β → E) (hf : Integrable f (μ.prod ν)) : ∫ z, f z ∂μ.prod ν = ∫ x, ∫ y, f (x, y) ∂ν ∂μ
case pos.h_ind α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β μ : Measure α ν : Measure β inst✝³ : NormedAddCommGroup E inst✝² : SFinite ν inst✝¹ : NormedSpace ℝ E inst✝ : SFinite μ hE : CompleteSpace E c : E s : Set (α × β) hs : MeasurableSet s h2s : (μ.prod ν) s < ⊤ ⊢ ((μ.prod ν) s).toReal • c = (∫⁻ (a : α), ν (Prod.mk a ⁻¹' s) ∂μ).toReal • c
rw [prod_apply hs]
no goals
fa8a81f609cb5cf4