name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
mem_adjoin_of_smul_prime_smul_of_minpoly_isEisensteinAt
Mathlib/RingTheory/Polynomial/Eisenstein/IsIntegral.lean
theorem mem_adjoin_of_smul_prime_smul_of_minpoly_isEisensteinAt {B : PowerBasis K L} (hp : Prime p) (hBint : IsIntegral R B.gen) {z : L} (hzint : IsIntegral R z) (hz : p • z ∈ adjoin R ({B.gen} : Set L)) (hei : (minpoly R B.gen).IsEisensteinAt 𝓟) : z ∈ adjoin R ({B.gen} : Set L)
case neg.hz R : Type u K : Type v L : Type z p : R inst✝¹⁰ : CommRing R inst✝⁹ : Field K inst✝⁸ : Field L inst✝⁷ : Algebra K L inst✝⁶ : Algebra R L inst✝⁵ : Algebra R K inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra.IsSeparable K L inst✝² : IsDomain R inst✝¹ : IsFractionRing R K inst✝ : IsIntegrallyClosed R B : PowerBasis K L hp : _root_.Prime p hBint : IsIntegral R B.gen z : L hzint : IsIntegral R z this✝ : Module.Finite K L P : R[X] := minpoly R B.gen hei : P.IsEisensteinAt (Submodule.span R {p}) hndiv : ¬p ^ 2 ∣ P.coeff 0 hP : P = minpoly R B.gen n : ℕ hn : B.dim = n.succ this : NoZeroSMulDivisors R L x✝ : L[X] := Polynomial.map (algebraMap R L) P Q₁ : R[X] Q : R[X] := Q₁ %ₘ P hQ₁ : Q = Q₁ %ₘ P hQ : (aeval B.gen) Q = p • z hQzero : ¬Q = 0 a✝ : 0 ∈ range (Q.natDegree + 1) ⊢ p ∣ Q.coeff 0
exact dvd_coeff_zero_of_aeval_eq_prime_smul_of_minpoly_isEisensteinAt hp hBint hQ hzint hei
no goals
fa4f10e8cbdbb4c7
Array.SatisfiesM_anyM
Mathlib/.lake/packages/batteries/Batteries/Data/Array/Monadic.lean
theorem SatisfiesM_anyM [Monad m] [LawfulMonad m] (p : α → m Bool) (as : Array α) (start stop) (hstart : start ≤ min stop as.size) (tru : Prop) (fal : Nat → Prop) (h0 : fal start) (hp : ∀ i : Fin as.size, i.1 < stop → fal i.1 → SatisfiesM (bif · then tru else fal (i + 1)) (p as[i])) : SatisfiesM (fun res => bif res then tru else fal (min stop as.size)) (anyM p as start stop)
case isFalse m : Type → Type u_1 α : Type u_2 inst✝¹ : Monad m inst✝ : LawfulMonad m p : α → m Bool as : Array α start stop✝ : Nat hstart : start ≤ min stop✝ as.size tru : Prop fal : Nat → Prop h0✝ : fal start hp✝ : ∀ (i : Fin as.size), ↑i < stop✝ → fal ↑i → SatisfiesM (fun x => bif x then tru else fal (↑i + 1)) (p as[i]) stop j : Nat hj' : j ≤ stop hstop : stop ≤ as.size h0 : fal j hp : ∀ (i : Fin as.size), ↑i < stop → fal ↑i → SatisfiesM (fun x => bif x then tru else fal (↑i + 1)) (p as[i]) h✝ : ¬j < stop ⊢ SatisfiesM (fun res => bif res then tru else fal stop) (pure false)
next hj => exact .pure <| Nat.le_antisymm hj' (Nat.ge_of_not_lt hj) ▸ h0
no goals
d562cc739db72f2f
rootsOfUnity.integer_power_of_ringEquiv'
Mathlib/NumberTheory/Cyclotomic/CyclotomicCharacter.lean
theorem rootsOfUnity.integer_power_of_ringEquiv' (g : L ≃+* L) : ∃ m : ℤ, ∀ t ∈ rootsOfUnity n L, g (t : Lˣ) = (t ^ m : Lˣ)
L : Type u inst✝² : CommRing L inst✝¹ : IsDomain L n : ℕ inst✝ : NeZero n g : L ≃+* L ⊢ ∃ m, ∀ t ∈ rootsOfUnity n L, g ↑t = ↑(t ^ m)
simpa using rootsOfUnity.integer_power_of_ringEquiv n g
no goals
3ffe73c8d1d46269
List.findIdx?_eq_fst_find?_zipIdx
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem findIdx?_eq_fst_find?_zipIdx {xs : List α} {p : α → Bool} : xs.findIdx? p = (xs.zipIdx.find? fun ⟨x, _⟩ => p x).map (·.2)
case nil α : Type u_1 p : α → Bool ⊢ findIdx? p [] = Option.map (fun x => x.snd) (find? (fun x => match x with | (x, snd) => p x) [].zipIdx)
simp
no goals
b0e05c550ded97a0
AffineSubspace.setOf_wSameSide_eq_image2
Mathlib/Analysis/Convex/Side.lean
theorem setOf_wSameSide_eq_image2 {s : AffineSubspace R P} {x p : P} (hx : x ∉ s) (hp : p ∈ s) : { y | s.WSameSide x y } = Set.image2 (fun (t : R) q => t • (x -ᵥ p) +ᵥ q) (Set.Ici 0) s
case h.mp.intro.intro.inr.inl R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P s : AffineSubspace R P x p : P hx : x ∉ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : y -ᵥ p₂ = 0 ⊢ ∃ a, 0 ≤ a ∧ ∃ b ∈ ↑s, a • (x -ᵥ p) +ᵥ b = y
rw [vsub_eq_zero_iff_eq] at h
case h.mp.intro.intro.inr.inl R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P s : AffineSubspace R P x p : P hx : x ∉ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : y = p₂ ⊢ ∃ a, 0 ≤ a ∧ ∃ b ∈ ↑s, a • (x -ᵥ p) +ᵥ b = y
0ddcbc2292b9cdb2
CategoryTheory.extensiveTopology.surjective_of_isLocallySurjective_sheaf_of_types
Mathlib/CategoryTheory/Sites/Coherent/LocallySurjective.lean
lemma extensiveTopology.surjective_of_isLocallySurjective_sheaf_of_types [FinitaryPreExtensive C] {F G : Cᵒᵖ ⥤ Type w} (f : F ⟶ G) [PreservesFiniteProducts F] [PreservesFiniteProducts G] (h : Presheaf.IsLocallySurjective (extensiveTopology C) f) {X : C} : Function.Surjective (f.app (op X))
case intro.intro.intro.intro.intro.a C : Type u_1 inst✝³ : Category.{u_4, u_1} C inst✝² : FinitaryPreExtensive C F G : Cᵒᵖ ⥤ Type w f : F ⟶ G inst✝¹ : PreservesFiniteProducts F inst✝ : PreservesFiniteProducts G X : C x : G.obj (op X) α : Type w✝ : Finite α Y : α → C π : (a : α) → Y a ⟶ X h : Nonempty (IsColimit (Cofan.mk X π)) h' : ∀ (a : α), (Presheaf.imageSieve f x).arrows (π a) y : (a : α) → F.obj (op (Y a)) := fun a => Exists.choose ⋯ x✝ : Fintype α := Fintype.ofFinite α ht : IsLimit (Types.productLimitCone fun a => F.obj (op (Y a))).cone := (Types.productLimitCone fun a => F.obj (op (Y a))).isLimit ht' : IsLimit (Cone.whisker (Discrete.opposite α).inverse (Cocone.op (Cofan.mk X π))) := (Functor.Initial.isLimitWhiskerEquiv (Discrete.opposite α).inverse (Cocone.op (Cofan.mk X π))).symm h.some.op i : ((a : α) → F.obj (op (Y a))) ≅ F.obj (op X) := ht.conePointsIsoOfNatIso (isLimitOfPreserves F ht') (Discrete.natIso fun x => Iso.refl (F.obj (op (Y x.as)))) a : α ⊢ (ConcreteCategory.hom (G.map (π a).op)) (f.app (op X) (i.hom y)) = (ConcreteCategory.hom (G.map (π a).op)) x
rw [← (h' a).choose_spec]
case intro.intro.intro.intro.intro.a C : Type u_1 inst✝³ : Category.{u_4, u_1} C inst✝² : FinitaryPreExtensive C F G : Cᵒᵖ ⥤ Type w f : F ⟶ G inst✝¹ : PreservesFiniteProducts F inst✝ : PreservesFiniteProducts G X : C x : G.obj (op X) α : Type w✝ : Finite α Y : α → C π : (a : α) → Y a ⟶ X h : Nonempty (IsColimit (Cofan.mk X π)) h' : ∀ (a : α), (Presheaf.imageSieve f x).arrows (π a) y : (a : α) → F.obj (op (Y a)) := fun a => Exists.choose ⋯ x✝ : Fintype α := Fintype.ofFinite α ht : IsLimit (Types.productLimitCone fun a => F.obj (op (Y a))).cone := (Types.productLimitCone fun a => F.obj (op (Y a))).isLimit ht' : IsLimit (Cone.whisker (Discrete.opposite α).inverse (Cocone.op (Cofan.mk X π))) := (Functor.Initial.isLimitWhiskerEquiv (Discrete.opposite α).inverse (Cocone.op (Cofan.mk X π))).symm h.some.op i : ((a : α) → F.obj (op (Y a))) ≅ F.obj (op X) := ht.conePointsIsoOfNatIso (isLimitOfPreserves F ht') (Discrete.natIso fun x => Iso.refl (F.obj (op (Y x.as)))) a : α ⊢ (ConcreteCategory.hom (G.map (π a).op)) (f.app (op X) (i.hom y)) = (ConcreteCategory.hom (f.app (op (Y a)))) (Exists.choose ⋯)
f246db99c628b9b2
FirstOrder.Language.Theory.models_formula_iff_onTheory_models_equivSentence
Mathlib/ModelTheory/Satisfiability.lean
theorem models_formula_iff_onTheory_models_equivSentence {φ : L.Formula α} : T ⊨ᵇ φ ↔ (L.lhomWithConstants α).onTheory T ⊨ᵇ Formula.equivSentence φ
case refine_1 L : Language T : L.Theory α : Type w φ : L.Formula α h : T ⊨ᵇ φ M : ((L.lhomWithConstants α).onTheory T).ModelType this : L.Structure ↑M := (L.lhomWithConstants α).reduct ↑M ⊢ ↑M ⊨ Formula.equivSentence φ
have : (L.lhomWithConstants α).IsExpansionOn M := LHom.isExpansionOn_reduct _ _
case refine_1 L : Language T : L.Theory α : Type w φ : L.Formula α h : T ⊨ᵇ φ M : ((L.lhomWithConstants α).onTheory T).ModelType this✝ : L.Structure ↑M := (L.lhomWithConstants α).reduct ↑M this : (L.lhomWithConstants α).IsExpansionOn ↑M ⊢ ↑M ⊨ Formula.equivSentence φ
68157140d9be2023
ProbabilityTheory.Kernel.compProd_preimage_fst
Mathlib/Probability/Kernel/Composition/CompProd.lean
lemma compProd_preimage_fst {s : Set β} (hs : MeasurableSet s) (κ : Kernel α β) (η : Kernel (α × β) γ) [IsSFiniteKernel κ] [IsMarkovKernel η] (x : α) : (κ ⊗ₖ η) x (Prod.fst ⁻¹' s) = κ x s
α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ s : Set β hs : MeasurableSet s κ : Kernel α β η : Kernel (α × β) γ inst✝¹ : IsSFiniteKernel κ inst✝ : IsMarkovKernel η x : α ⊢ ∫⁻ (b : β), (η (x, b)) {c | b ∈ s} ∂κ x = (κ x) s
have : ∀ b : β, η (x, b) {_c | b ∈ s} = s.indicator (fun _ ↦ 1) b := by intro b by_cases hb : b ∈ s <;> simp [hb]
α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ s : Set β hs : MeasurableSet s κ : Kernel α β η : Kernel (α × β) γ inst✝¹ : IsSFiniteKernel κ inst✝ : IsMarkovKernel η x : α this : ∀ (b : β), (η (x, b)) {_c | b ∈ s} = s.indicator (fun x => 1) b ⊢ ∫⁻ (b : β), (η (x, b)) {c | b ∈ s} ∂κ x = (κ x) s
36d443ec521ea3bb
Nat.Partrec.Code.encode_lt_pair
Mathlib/Computability/PartrecCode.lean
theorem encode_lt_pair (cf cg) : encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg)
cf cg : Code ⊢ encode cf < encode (cf.pair cg) ∧ encode cg < encode (cf.pair cg)
simp only [encodeCode_eq, encodeCode]
cf cg : Code ⊢ cf.encodeCode < 2 * (2 * Nat.pair cf.encodeCode cg.encodeCode) + 4 ∧ cg.encodeCode < 2 * (2 * Nat.pair cf.encodeCode cg.encodeCode) + 4
5e05412ef5ddc786
IntermediateField.sup_toSubalgebra_of_isAlgebraic_right
Mathlib/FieldTheory/IntermediateField/Adjoin/Algebra.lean
theorem sup_toSubalgebra_of_isAlgebraic_right [Algebra.IsAlgebraic K E2] : (E1 ⊔ E2).toSubalgebra = E1.toSubalgebra ⊔ E2.toSubalgebra
K : Type u_3 L : Type u_4 inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra K L E1 E2 : IntermediateField K L inst✝ : Algebra.IsAlgebraic K ↥E2 this : (adjoin ↥E1 ↑E2).toSubalgebra = Algebra.adjoin ↥E1 ↑E2 ⊢ (E1 ⊔ E2).toSubalgebra = E1.toSubalgebra ⊔ E2.toSubalgebra
apply_fun Subalgebra.restrictScalars K at this
K : Type u_3 L : Type u_4 inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra K L E1 E2 : IntermediateField K L inst✝ : Algebra.IsAlgebraic K ↥E2 this : Subalgebra.restrictScalars K (adjoin ↥E1 ↑E2).toSubalgebra = Subalgebra.restrictScalars K (Algebra.adjoin ↥E1 ↑E2) ⊢ (E1 ⊔ E2).toSubalgebra = E1.toSubalgebra ⊔ E2.toSubalgebra
6f61e299237242c9
Setoid.IsPartition.sUnion_eq_univ
Mathlib/Data/Setoid/Partition.lean
theorem IsPartition.sUnion_eq_univ {c : Set (Set α)} (hc : IsPartition c) : ⋃₀ c = Set.univ := Set.eq_univ_of_forall fun x => Set.mem_sUnion.2 <| let ⟨t, ht⟩ := hc.2 x ⟨t, by simp only [existsUnique_iff_exists] at ht tauto⟩
α : Type u_1 c : Set (Set α) hc : IsPartition c x : α t : Set α ht : (t ∈ c ∧ x ∈ t) ∧ ∀ (y : Set α), y ∈ c ∧ x ∈ y → y = t ⊢ t ∈ c ∧ x ∈ t
tauto
no goals
6df30b3690c4e8b9
exteriorPower.alternatingMapLinearEquiv_symm_map
Mathlib/LinearAlgebra/ExteriorPower/Basic.lean
@[simp] lemma alternatingMapLinearEquiv_symm_map (f : M →ₗ[R] N) : alternatingMapLinearEquiv.symm (map n f) = (ιMulti R n).compLinearMap f
R : Type u inst✝⁴ : CommRing R n : ℕ M : Type u_1 N : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M →ₗ[R] N ⊢ alternatingMapLinearEquiv.symm (map n f) = (ιMulti R n).compLinearMap f
simp only [map, LinearEquiv.symm_apply_apply]
no goals
da62e5af6f98c521
CategoryTheory.Meq.congr_apply
Mathlib/CategoryTheory/Sites/ConcreteSheafification.lean
lemma congr_apply {X} {P : Cᵒᵖ ⥤ D} {S : J.Cover X} (x : Meq P S) {Y} {f g : Y ⟶ X} (h : f = g) (hf : S f) : x ⟨_, _, hf⟩ = x ⟨_, g, by simpa only [← h] using hf⟩
C : Type u inst✝³ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝² : Category.{max v u, w} D FD : D → D → Type u_1 CD : D → Type (max v u) inst✝¹ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) inst✝ : ConcreteCategory D FD X : C P : Cᵒᵖ ⥤ D S : J.Cover X x : Meq P S Y : C f g : Y ⟶ X h : f = g hf : (↑S).arrows f ⊢ ↑x { Y := Y, f := f, hf := hf } = ↑x { Y := Y, f := g, hf := ⋯ }
subst h
C : Type u inst✝³ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝² : Category.{max v u, w} D FD : D → D → Type u_1 CD : D → Type (max v u) inst✝¹ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) inst✝ : ConcreteCategory D FD X : C P : Cᵒᵖ ⥤ D S : J.Cover X x : Meq P S Y : C f : Y ⟶ X hf : (↑S).arrows f ⊢ ↑x { Y := Y, f := f, hf := hf } = ↑x { Y := Y, f := f, hf := ⋯ }
aaa88f681fa58bcc
Std.Tactic.BVDecide.BVExpr.bitblast.blastZeroExtend.go_get_aux
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ZeroExtend.lean
theorem go_get_aux (aig : AIG α) (w : Nat) (input : AIG.RefVec aig w) (newWidth curr : Nat) (hcurr : curr ≤ newWidth) (s : AIG.RefVec aig curr) : ∀ (idx : Nat) (hidx : idx < curr) (hfoo), (go aig w input newWidth curr hcurr s).vec.get idx (by omega) = (s.get idx hidx).cast hfoo
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α w : Nat input : aig.RefVec w newWidth curr : Nat hcurr : curr ≤ newWidth s : aig.RefVec curr ⊢ ∀ (idx : Nat) (hidx : idx < curr) (hfoo : aig.decls.size ≤ (go aig w input newWidth curr hcurr s).aig.decls.size), (go aig w input newWidth curr hcurr s).vec.get idx ⋯ = (s.get idx hidx).cast hfoo
intro idx hidx
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α w : Nat input : aig.RefVec w newWidth curr : Nat hcurr : curr ≤ newWidth s : aig.RefVec curr idx : Nat hidx : idx < curr ⊢ ∀ (hfoo : aig.decls.size ≤ (go aig w input newWidth curr hcurr s).aig.decls.size), (go aig w input newWidth curr hcurr s).vec.get idx ⋯ = (s.get idx hidx).cast hfoo
aa7bc21c8b54f977
Equiv.Perm.ofSubtype_swap_eq
Mathlib/GroupTheory/Perm/Support.lean
theorem ofSubtype_swap_eq {p : α → Prop} [DecidablePred p] (x y : Subtype p) : ofSubtype (Equiv.swap x y) = Equiv.swap ↑x ↑y := Equiv.ext fun z => by by_cases hz : p z · rw [swap_apply_def, ofSubtype_apply_of_mem _ hz] split_ifs with hzx hzy · simp_rw [hzx, Subtype.coe_eta, swap_apply_left] · simp_rw [hzy, Subtype.coe_eta, swap_apply_right] · rw [swap_apply_of_ne_of_ne] <;> simp [Subtype.ext_iff, *] · rw [ofSubtype_apply_of_not_mem _ hz, swap_apply_of_ne_of_ne] · intro h apply hz rw [h] exact Subtype.prop x intro h apply hz rw [h] exact Subtype.prop y
case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z ⊢ z ≠ ↑x
intro h
case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z h : z = ↑x ⊢ False
7c967a4cc58d1491
ProbabilityTheory.Kernel.indep_limsup_atTop_self
Mathlib/Probability/Independence/ZeroOne.lean
theorem Kernel.indep_limsup_atTop_self (h_le : ∀ n, s n ≤ m0) (h_indep : iIndep s κ μα) : Indep (limsup s atTop) (limsup s atTop) κ μα
α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → MeasurableSpace Ω m0 : MeasurableSpace Ω κ : Kernel α Ω μα : Measure α inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s κ μα ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) ⊢ Indep (limsup s atTop) (limsup s atTop) κ μα
refine indep_limsup_self h_le h_indep ?_ ?_ hnsp ?_
case refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → MeasurableSpace Ω m0 : MeasurableSpace Ω κ : Kernel α Ω μα : Measure α inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s κ μα ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) ⊢ ∀ (t : Set ι), BddAbove t → tᶜ ∈ atTop case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → MeasurableSpace Ω m0 : MeasurableSpace Ω κ : Kernel α Ω μα : Measure α inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s κ μα ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) ⊢ Directed (fun x1 x2 => x1 ≤ x2) ns case refine_3 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → MeasurableSpace Ω m0 : MeasurableSpace Ω κ : Kernel α Ω μα : Measure α inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s κ μα ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) ⊢ ∀ (n : ι), ∃ a, n ∈ ns a
24b40639abdf5ed0
VectorFourier.hasFTaylorSeriesUpTo_fourierIntegral
Mathlib/Analysis/Fourier/FourierTransformDeriv.lean
lemma hasFTaylorSeriesUpTo_fourierIntegral {N : WithTop ℕ∞} (hf : ∀ (n : ℕ), n ≤ N → Integrable (fun v ↦ ‖v‖^n * ‖f v‖) μ) (h'f : AEStronglyMeasurable f μ) : HasFTaylorSeriesUpTo N (fourierIntegral 𝐞 μ L.toLinearMap₂ f) (fun w n ↦ fourierIntegral 𝐞 μ L.toLinearMap₂ (fun v ↦ fourierPowSMulRight L f v n) w)
E : Type u_1 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E V : Type u_2 W : Type u_3 inst✝⁶ : NormedAddCommGroup V inst✝⁵ : NormedSpace ℝ V inst✝⁴ : NormedAddCommGroup W inst✝³ : NormedSpace ℝ W L : V →L[ℝ] W →L[ℝ] ℝ f : V → E inst✝² : MeasurableSpace V inst✝¹ : BorelSpace V μ : Measure V inst✝ : SecondCountableTopology V N : WithTop ℕ∞ hf : ∀ (n : ℕ), ↑n ≤ N → Integrable (fun v => ‖v‖ ^ n * ‖f v‖) μ h'f : AEStronglyMeasurable f μ n : ℕ hn : ↑n < N w : W I₁ : Integrable (fun v => fourierPowSMulRight L f v n) μ I₂ : Integrable (fun v => ‖v‖ * ‖fourierPowSMulRight L f v n‖) μ I₃ : Integrable (fun v => fourierPowSMulRight L f v (n + 1)) μ ⊢ Integrable (fun v => fourierSMulRight L (fun v => fourierPowSMulRight L f v n) v) μ
apply (I₂.const_mul ((2 * π * ‖L‖))).mono' (h'f.fourierPowSMulRight L n).fourierSMulRight
E : Type u_1 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E V : Type u_2 W : Type u_3 inst✝⁶ : NormedAddCommGroup V inst✝⁵ : NormedSpace ℝ V inst✝⁴ : NormedAddCommGroup W inst✝³ : NormedSpace ℝ W L : V →L[ℝ] W →L[ℝ] ℝ f : V → E inst✝² : MeasurableSpace V inst✝¹ : BorelSpace V μ : Measure V inst✝ : SecondCountableTopology V N : WithTop ℕ∞ hf : ∀ (n : ℕ), ↑n ≤ N → Integrable (fun v => ‖v‖ ^ n * ‖f v‖) μ h'f : AEStronglyMeasurable f μ n : ℕ hn : ↑n < N w : W I₁ : Integrable (fun v => fourierPowSMulRight L f v n) μ I₂ : Integrable (fun v => ‖v‖ * ‖fourierPowSMulRight L f v n‖) μ I₃ : Integrable (fun v => fourierPowSMulRight L f v (n + 1)) μ ⊢ ∀ᵐ (a : V) ∂μ, ‖fourierSMulRight L (fun v => fourierPowSMulRight L f v n) a‖ ≤ 2 * π * ‖L‖ * (‖a‖ * ‖fourierPowSMulRight L f a n‖)
de7ff764a7066172
List.length_map
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem length_map (as : List α) (f : α → β) : (as.map f).length = as.length
case cons α : Type u_1 β : Type u_2 f : α → β head✝ : α as : List α ih : (map f as).length = as.length ⊢ (map f (head✝ :: as)).length = (head✝ :: as).length
simp [List.map, ih]
no goals
e236928c127beadd
IsCyclotomicExtension.Rat.Three.Units.mem
Mathlib/NumberTheory/Cyclotomic/Three.lean
theorem Units.mem [NumberField K] [IsCyclotomicExtension {3} ℚ K] : u ∈ [1, -1, η, -η, η ^ 2, -η ^ 2]
case h.e_s K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 u : (𝓞 K)ˣ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K hrank : rank K = 0 x : ↥(torsion K) e : Fin (rank K) → ℤ hxu : u = ↑(x, e).1 * ∏ i : Fin (rank K), fundSystem K i ^ (x, e).2 i ⊢ IsEmpty (Fin 0)
infer_instance
no goals
4597273329d964a3
MonomialOrder.degree_add_le
Mathlib/RingTheory/MvPolynomial/MonomialOrder.lean
theorem degree_add_le {f g : MvPolynomial σ R} : m.toSyn (m.degree (f + g)) ≤ m.toSyn (m.degree f) ⊔ m.toSyn (m.degree g)
case pos.h σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommSemiring R f g : MvPolynomial σ R b : σ →₀ ℕ hb : b ∈ (f + g).support hf : b ∈ f.support ⊢ m.toSyn b ≤ m.toSyn (m.degree f)
exact m.le_degree hf
no goals
3ccc5da830d2ee29
Fin.insertNth_binop
Mathlib/Data/Fin/Tuple/Basic.lean
theorem insertNth_binop (op : ∀ j, α j → α j → α j) (i : Fin (n + 1)) (x y : α i) (p q : ∀ j, α (i.succAbove j)) : (i.insertNth (op i x y) fun j ↦ op _ (p j) (q j)) = fun j ↦ op j (i.insertNth x p j) (i.insertNth y q j) := insertNth_eq_iff.2 <| by unfold removeNth; simp
n : ℕ α : Fin (n + 1) → Sort u_1 op : (j : Fin (n + 1)) → α j → α j → α j i : Fin (n + 1) x y : α i p q : (j : Fin n) → α (i.succAbove j) ⊢ op i x y = op i (i.insertNth x p i) (i.insertNth y q i) ∧ (fun j => op (i.succAbove j) (p j) (q j)) = i.removeNth fun j => op j (i.insertNth x p j) (i.insertNth y q j)
unfold removeNth
n : ℕ α : Fin (n + 1) → Sort u_1 op : (j : Fin (n + 1)) → α j → α j → α j i : Fin (n + 1) x y : α i p q : (j : Fin n) → α (i.succAbove j) ⊢ op i x y = op i (i.insertNth x p i) (i.insertNth y q i) ∧ (fun j => op (i.succAbove j) (p j) (q j)) = fun i_1 => (fun j => op j (i.insertNth x p j) (i.insertNth y q j)) (i.succAbove i_1)
0a8a748d549c1480
HurwitzKernelBounds.isBigO_atTop_F_int_zero_sub
Mathlib/NumberTheory/ModularForms/JacobiTheta/Bounds.lean
lemma isBigO_atTop_F_int_zero_sub (a : UnitAddCircle) : ∃ p, 0 < p ∧ (fun t ↦ F_int 0 a t - (if a = 0 then 1 else 0)) =O[atTop] fun t ↦ exp (-p * t)
a : UnitAddCircle ⊢ ∃ p, 0 < p ∧ (fun t => F_int 0 a t - if a = 0 then 1 else 0) =O[atTop] fun t => rexp (-p * t)
obtain ⟨a, ha, rfl⟩ := a.eq_coe_Ico
case intro.intro a : ℝ ha : a ∈ Ico 0 1 ⊢ ∃ p, 0 < p ∧ (fun t => F_int 0 (↑a) t - if ↑a = 0 then 1 else 0) =O[atTop] fun t => rexp (-p * t)
216d869dd795975f
UniformSpace.Completion.mul_hatInv_cancel
Mathlib/Topology/Algebra/UniformField.lean
theorem mul_hatInv_cancel {x : hat K} (x_ne : x ≠ 0) : x * hatInv x = 1
K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 ⊢ x * x.hatInv = 1
haveI : T1Space (hat K) := T2Space.t1Space
K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) ⊢ x * x.hatInv = 1
64ff41b42847f96a
ArithmeticFunction.vonMangoldt.summable_F''
Mathlib/NumberTheory/LSeries/PrimesInAP.lean
private lemma summable_F'' : Summable F''
hp₀ : ∀ (p : Nat.Primes), 0 < (↑↑p)⁻¹ hp₁ : ∀ (p : Nat.Primes), (↑↑p)⁻¹ < 1 ⊢ Summable ArithmeticFunction.vonMangoldt.F''
suffices Summable fun (pk : Nat.Primes × ℕ) ↦ (pk.1 : ℝ)⁻¹ ^ (pk.2 + 3 / 2 : ℝ) by refine (Summable.mul_left 2 this).of_nonneg_of_le (fun pk ↦ ?_) (fun pk ↦ F''_le pk.1 pk.2) simp only [F'', Function.comp_apply, F', F₀, Prod.map_fst, id_eq, Prod.map_snd, Nat.cast_pow] have := vonMangoldt_nonneg (n := (pk.1 : ℕ) ^ (pk.2 + 2)) positivity
hp₀ : ∀ (p : Nat.Primes), 0 < (↑↑p)⁻¹ hp₁ : ∀ (p : Nat.Primes), (↑↑p)⁻¹ < 1 ⊢ Summable fun pk => (↑↑pk.1)⁻¹ ^ (↑pk.2 + 3 / 2)
c675abf56f959c99
Even.pow_nonneg
Mathlib/Algebra/Order/Ring/Basic.lean
lemma Even.pow_nonneg (hn : Even n) (a : R) : 0 ≤ a ^ n
case intro R : Type u_3 inst✝¹ : LinearOrderedSemiring R inst✝ : ExistsAddOfLE R a : R k : ℕ ⊢ 0 ≤ a ^ (k + k)
rw [pow_add]
case intro R : Type u_3 inst✝¹ : LinearOrderedSemiring R inst✝ : ExistsAddOfLE R a : R k : ℕ ⊢ 0 ≤ a ^ k * a ^ k
edbb2af1e09ebb9e
MeasureTheory.eLpNorm_one_le_of_le
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem eLpNorm_one_le_of_le {r : ℝ≥0} (hfint : Integrable f μ) (hfint' : 0 ≤ ∫ x, f x ∂μ) (hf : ∀ᵐ ω ∂μ, f ω ≤ r) : eLpNorm f 1 μ ≤ 2 * μ Set.univ * r
case pos α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ r : ℝ≥0 hfint : Integrable f μ hfint' : 0 ≤ ∫ (x : α), f x ∂μ hf : ∀ᵐ (ω : α) ∂μ, f ω ≤ ↑r hr : r = 0 ⊢ eLpNorm f 1 μ ≤ 2 * μ univ * ↑r
suffices f =ᵐ[μ] 0 by rw [eLpNorm_congr_ae this, eLpNorm_zero, hr, ENNReal.coe_zero, mul_zero]
case pos α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ r : ℝ≥0 hfint : Integrable f μ hfint' : 0 ≤ ∫ (x : α), f x ∂μ hf : ∀ᵐ (ω : α) ∂μ, f ω ≤ ↑r hr : r = 0 ⊢ f =ᶠ[ae μ] 0
f01ab8867e396603
CommGroup.exists_apply_ne_one_aux
Mathlib/GroupTheory/FiniteAbelian/Duality.lean
private lemma exists_apply_ne_one_aux (H : ∀ n : ℕ, n ∣ Monoid.exponent G → ∀ a : ZMod n, a ≠ 0 → ∃ φ : Multiplicative (ZMod n) →* M, φ (.ofAdd a) ≠ 1) {a : G} (ha : a ≠ 1) : ∃ φ : G →* M, φ a ≠ 1
G : Type u_1 M : Type u_2 inst✝² : CommGroup G inst✝¹ : Finite G inst✝ : CommMonoid M H : ∀ (n : ℕ), n ∣ Monoid.exponent G → ∀ (a : ZMod n), a ≠ 0 → ∃ φ, φ (Multiplicative.ofAdd a) ≠ 1 a : G ha : a ≠ 1 ι : Type w✝ : Fintype ι n : ι → ℕ left✝ : ∀ (i : ι), 1 < n i h : Nonempty (G ≃* ((i : ι) → Multiplicative (ZMod (n i)))) e : G ≃* ((i : ι) → Multiplicative (ZMod (n i))) := h.some ⊢ ∃ i, e a i ≠ 1
contrapose! ha
G : Type u_1 M : Type u_2 inst✝² : CommGroup G inst✝¹ : Finite G inst✝ : CommMonoid M H : ∀ (n : ℕ), n ∣ Monoid.exponent G → ∀ (a : ZMod n), a ≠ 0 → ∃ φ, φ (Multiplicative.ofAdd a) ≠ 1 a : G ι : Type w✝ : Fintype ι n : ι → ℕ left✝ : ∀ (i : ι), 1 < n i h : Nonempty (G ≃* ((i : ι) → Multiplicative (ZMod (n i)))) e : G ≃* ((i : ι) → Multiplicative (ZMod (n i))) := h.some ha : ∀ (i : ι), e a i = 1 ⊢ a = 1
ca48e086b93104fd
exteriorPower.pairingDual_apply_apply_eq_one_zero
Mathlib/LinearAlgebra/ExteriorPower/Pairing.lean
lemma pairingDual_apply_apply_eq_one_zero (a b : Fin n ↪o ι) (h : a ≠ b) : pairingDual R M n (ιMulti _ _ (f ∘ a)) (ιMulti _ _ (x ∘ b)) = 0
case h R : Type u_1 M : Type u_2 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : LinearOrder ι x : ι → M f : ι → Module.Dual R M h₀ : ∀ ⦃i j : ι⦄, i ≠ j → (f i) (x j) = 0 n : ℕ a b : Fin n ↪o ι h : a ≠ b σ : Equiv.Perm (Fin n) x✝ : σ ∈ Finset.univ h' : ¬∏ x_1 : Fin n, (f (a x_1)) (x (b (σ x_1))) = 0 i : Fin n ⊢ a i = (⇑b ∘ ⇑σ) i
by_contra hi
case h R : Type u_1 M : Type u_2 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : LinearOrder ι x : ι → M f : ι → Module.Dual R M h₀ : ∀ ⦃i j : ι⦄, i ≠ j → (f i) (x j) = 0 n : ℕ a b : Fin n ↪o ι h : a ≠ b σ : Equiv.Perm (Fin n) x✝ : σ ∈ Finset.univ h' : ¬∏ x_1 : Fin n, (f (a x_1)) (x (b (σ x_1))) = 0 i : Fin n hi : ¬a i = (⇑b ∘ ⇑σ) i ⊢ False
fd3ea1bd40177425
WeierstrassCurve.natDegree_coeff_ΨSq_ofNat
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Degree.lean
private lemma natDegree_coeff_ΨSq_ofNat (n : ℕ) : (W.ΨSq n).natDegree ≤ n ^ 2 - 1 ∧ (W.ΨSq n).coeff (n ^ 2 - 1) = (n ^ 2 : ℤ)
R : Type u inst✝ : CommRing R W : WeierstrassCurve R dp : ∀ {m n : ℕ} {p : R[X]}, p.natDegree ≤ m → (p ^ n).natDegree ≤ n * m := fun {m n} {p} => natDegree_pow_le_of_le n h : ∀ {n : ℕ}, (W.preΨ' n).natDegree ≤ WeierstrassCurve.expDegree n ∧ (W.preΨ' n).coeff (WeierstrassCurve.expDegree n) = ↑(WeierstrassCurve.expCoeff n) := fun {n} => WeierstrassCurve.natDegree_coeff_preΨ' W n n : ℕ hd : (n + 1) ^ 2 - 1 = 2 * WeierstrassCurve.expDegree (n + 1) + if Even (n + 1) then 3 else 0 ⊢ (↑n + 1) ^ 2 = (if Even (n + 1) then (↑n + 1) / 2 else ↑n + 1) ^ 2 * if Even (n + 1) then 4 else 1
split_ifs <;> ring1
no goals
96420254b4130cb9
MeasureTheory.Measure.withDensity_rnDeriv_eq
Mathlib/MeasureTheory/Decomposition/RadonNikodym.lean
theorem withDensity_rnDeriv_eq (μ ν : Measure α) [HaveLebesgueDecomposition μ ν] (h : μ ≪ ν) : ν.withDensity (rnDeriv μ ν) = μ
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝ : μ.HaveLebesgueDecomposition ν h : μ ≪ ν h_sing : μ.singularPart ν ⟂ₘ ν ⊢ (μ.singularPart ν) Set.univ = 0
rw [← measure_add_measure_compl h_sing.measurableSet_nullSet]
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝ : μ.HaveLebesgueDecomposition ν h : μ ≪ ν h_sing : μ.singularPart ν ⟂ₘ ν ⊢ (μ.singularPart ν) h_sing.nullSet + (μ.singularPart ν) h_sing.nullSetᶜ = 0
e394f2342b33f5a1
AlgebraicGeometry.IsAffineOpen.basicOpen_union_eq_self_iff
Mathlib/AlgebraicGeometry/AffineScheme.lean
theorem basicOpen_union_eq_self_iff (s : Set Γ(X, U)) : ⨆ f : s, X.basicOpen (f : Γ(X, U)) = U ↔ Ideal.span s = ⊤
X : Scheme U : X.Opens hU : IsAffineOpen U s : Set ↑Γ(X, U) ⊢ ⋃ i, (PrimeSpectrum.basicOpen ↑i).carrier = Set.univ ↔ Ideal.span s = ⊤
simp only [Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl]
X : Scheme U : X.Opens hU : IsAffineOpen U s : Set ↑Γ(X, U) ⊢ ⋃ i, (PrimeSpectrum.zeroLocus {↑i})ᶜ = Set.univ ↔ Ideal.span s = ⊤
e342cbef83e9eeeb
exists_sum_eq_one_iff_pairwise_coprime
Mathlib/RingTheory/Coprime/Lemmas.lean
theorem exists_sum_eq_one_iff_pairwise_coprime [DecidableEq I] (h : t.Nonempty) : (∃ μ : I → R, (∑ i ∈ t, μ i * ∏ j ∈ t \ {i}, s j) = 1) ↔ Pairwise (IsCoprime on fun i : t ↦ s i)
case h R : Type u I : Type v inst✝¹ : CommSemiring R s : I → R t✝ : Finset I inst✝ : DecidableEq I a : I t : Finset I hat : a ∉ t h : t.Nonempty ih : (∃ μ, ∑ i ∈ t, μ i * ∏ j ∈ t \ {i}, s j = 1) ↔ Pairwise (IsCoprime on fun i => s ↑i) mem : ∀ x ∈ t, a ∈ insert a t \ {x} hs : Pairwise (IsCoprime on fun a => s ↑a) Hb : ∀ b ∈ t, IsCoprime (s a) (s b) ∧ IsCoprime (s b) (s a) μ : I → R hμ : ∑ i ∈ t, μ i * ∏ j ∈ t \ {i}, s j = 1 u v : R huv : u * ∏ i ∈ t, s i + v * s a = 1 hμ' : ∑ i ∈ t, v * ((μ i * ∏ j ∈ t \ {i}, s j) * s a) = v * s a x : I hx : x ∈ t ⊢ (if x = a then u * ∏ j ∈ insert a t \ {x}, s j else v * μ x * ∏ j ∈ insert a t \ {x}, s j) = v * ((μ x * ∏ j ∈ t \ {x}, s j) * s a)
rw [mul_assoc, if_neg fun ha : x = a ↦ hat (ha.casesOn hx)]
case h R : Type u I : Type v inst✝¹ : CommSemiring R s : I → R t✝ : Finset I inst✝ : DecidableEq I a : I t : Finset I hat : a ∉ t h : t.Nonempty ih : (∃ μ, ∑ i ∈ t, μ i * ∏ j ∈ t \ {i}, s j = 1) ↔ Pairwise (IsCoprime on fun i => s ↑i) mem : ∀ x ∈ t, a ∈ insert a t \ {x} hs : Pairwise (IsCoprime on fun a => s ↑a) Hb : ∀ b ∈ t, IsCoprime (s a) (s b) ∧ IsCoprime (s b) (s a) μ : I → R hμ : ∑ i ∈ t, μ i * ∏ j ∈ t \ {i}, s j = 1 u v : R huv : u * ∏ i ∈ t, s i + v * s a = 1 hμ' : ∑ i ∈ t, v * ((μ i * ∏ j ∈ t \ {i}, s j) * s a) = v * s a x : I hx : x ∈ t ⊢ v * (μ x * ∏ j ∈ insert a t \ {x}, s j) = v * ((μ x * ∏ j ∈ t \ {x}, s j) * s a)
8a28cdbc75233b6c
MvPolynomial.eval₂_assoc
Mathlib/Algebra/MvPolynomial/Eval.lean
theorem eval₂_assoc (q : S₂ → MvPolynomial σ R) (p : MvPolynomial S₂ R) : eval₂ f (fun t => eval₂ f g (q t)) p = eval₂ f g (eval₂ C q p)
case e_f.a R : Type u S₁ : Type v S₂ : Type w σ : Type u_1 inst✝¹ : CommSemiring R inst✝ : CommSemiring S₁ f : R →+* S₁ g : σ → S₁ q : S₂ → MvPolynomial σ R p : MvPolynomial S₂ R a : R ⊢ f a = ((eval₂Hom f g).comp C) a
simp
no goals
2eea5a3597162dd7
TensorPower.cast_eq_cast
Mathlib/LinearAlgebra/TensorPower/Basic.lean
theorem cast_eq_cast {i j} (h : i = j) : ⇑(cast R M h) = _root_.cast (congrArg (fun i => ⨂[R]^i M) h)
R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M i : ℕ ⊢ ⇑(cast R M ⋯) = _root_.cast ⋯
rw [cast_refl]
R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M i : ℕ ⊢ ⇑(LinearEquiv.refl R (⨂[R]^i M)) = _root_.cast ⋯
0321341678e9c761
Mon_.mul_associator
Mathlib/CategoryTheory/Monoidal/Mon_.lean
theorem mul_associator {M N P : Mon_ C} : (tensorμ (M.X ⊗ N.X) P.X (M.X ⊗ N.X) P.X ≫ (tensorμ M.X N.X M.X N.X ≫ (M.mul ⊗ N.mul) ⊗ P.mul)) ≫ (α_ M.X N.X P.X).hom = ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensorμ M.X (N.X ⊗ P.X) M.X (N.X ⊗ P.X) ≫ (M.mul ⊗ tensorμ N.X P.X N.X P.X ≫ (N.mul ⊗ P.mul))
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C M N P : Mon_ C ⊢ (tensorμ (M.X ⊗ N.X) P.X (M.X ⊗ N.X) P.X ≫ (tensorμ M.X N.X M.X N.X ≫ (M.mul ⊗ N.mul) ⊗ P.mul)) ≫ (α_ M.X N.X P.X).hom = ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensorμ M.X (N.X ⊗ P.X) M.X (N.X ⊗ P.X) ≫ (M.mul ⊗ tensorμ N.X P.X N.X P.X ≫ (N.mul ⊗ P.mul))
simp only [tensor_obj, prodMonoidal_tensorObj, Category.assoc]
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C M N P : Mon_ C ⊢ tensorμ (M.X ⊗ N.X) P.X (M.X ⊗ N.X) P.X ≫ (tensorμ M.X N.X M.X N.X ≫ (M.mul ⊗ N.mul) ⊗ P.mul) ≫ (α_ M.X N.X P.X).hom = ((α_ M.X N.X P.X).hom ⊗ (α_ M.X N.X P.X).hom) ≫ tensorμ M.X (N.X ⊗ P.X) M.X (N.X ⊗ P.X) ≫ (M.mul ⊗ tensorμ N.X P.X N.X P.X ≫ (N.mul ⊗ P.mul))
c740555ca5cf3587
Std.DHashMap.Internal.List.getKey_insertListConst_of_contains_eq_false
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getKey_insertListConst_of_contains_eq_false [BEq α] [EquivBEq α] {l : List ((_ : α) × β)} {toInsert : List (α × β)} {k : α} (not_contains : (toInsert.map Prod.fst).contains k = false) {h} : getKey k (insertListConst l toInsert) h = getKey k l (containsKey_of_containsKey_insertListConst h not_contains)
α : Type u β : Type v inst✝¹ : BEq α inst✝ : EquivBEq α l : List ((_ : α) × β) toInsert : List (α × β) k : α not_contains : (List.map Prod.fst toInsert).contains k = false h : containsKey k (insertListConst l toInsert) = true ⊢ getKey k (insertListConst l toInsert) h = getKey k l ⋯
rw [← Option.some_inj, ← getKey?_eq_some_getKey, getKey?_insertListConst_of_contains_eq_false not_contains, getKey?_eq_some_getKey]
no goals
dd2cab53f1d3098e
surjective_of_isSwap_of_isPretransitive
Mathlib/GroupTheory/Perm/ClosureSwap.lean
theorem surjective_of_isSwap_of_isPretransitive [Finite α] (S : Set G) (hS1 : ∀ σ ∈ S, Perm.IsSwap (MulAction.toPermHom G α σ)) (hS2 : Subgroup.closure S = ⊤) [h : MulAction.IsPretransitive G α] : Function.Surjective (MulAction.toPermHom G α)
G : Type u_1 α : Type u_2 inst✝³ : Group G inst✝² : MulAction G α inst✝¹ : DecidableEq α inst✝ : Finite α S : Set G hS1 : ∀ σ ∈ S, ((toPermHom G α) σ).IsSwap hS2 : closure S = ⊤ h : IsPretransitive G α this : IsPretransitive (↥(toPermHom G α).range) α ⊢ (toPermHom G α).range = ⊤
rw [MonoidHom.range_eq_map, ← hS2, MonoidHom.map_closure] at this ⊢
G : Type u_1 α : Type u_2 inst✝³ : Group G inst✝² : MulAction G α inst✝¹ : DecidableEq α inst✝ : Finite α S : Set G hS1 : ∀ σ ∈ S, ((toPermHom G α) σ).IsSwap hS2 : closure S = ⊤ h : IsPretransitive G α this : IsPretransitive (↥(closure (⇑(toPermHom G α) '' S))) α ⊢ closure (⇑(toPermHom G α) '' S) = ⊤
666fb2f6f05ce63a
List.perm_lookmap
Mathlib/Data/List/Lookmap.lean
theorem perm_lookmap (f : α → Option α) {l₁ l₂ : List α} (H : Pairwise (fun a b => ∀ c ∈ f a, ∀ d ∈ f b, a = b ∧ c = d) l₁) (p : l₁ ~ l₂) : lookmap f l₁ ~ lookmap f l₂
α : Type u_1 f : α → Option α l₁ l₂ : List α H : Pairwise (fun a b => ∀ (c : α), c ∈ f a → ∀ (d : α), d ∈ f b → a = b ∧ c = d) l₁ p : l₁ ~ l₂ ⊢ lookmap f l₁ ~ lookmap f l₂
induction' p with a l₁ l₂ p IH a b l l₁ l₂ l₃ p₁ _ IH₁ IH₂
case nil α : Type u_1 f : α → Option α l₁ l₂ : List α H : Pairwise (fun a b => ∀ (c : α), c ∈ f a → ∀ (d : α), d ∈ f b → a = b ∧ c = d) [] ⊢ lookmap f [] ~ lookmap f [] case cons α : Type u_1 f : α → Option α l₁✝ l₂✝ : List α a : α l₁ l₂ : List α p : l₁ ~ l₂ IH : Pairwise (fun a b => ∀ (c : α), c ∈ f a → ∀ (d : α), d ∈ f b → a = b ∧ c = d) l₁ → lookmap f l₁ ~ lookmap f l₂ H : Pairwise (fun a b => ∀ (c : α), c ∈ f a → ∀ (d : α), d ∈ f b → a = b ∧ c = d) (a :: l₁) ⊢ lookmap f (a :: l₁) ~ lookmap f (a :: l₂) case swap α : Type u_1 f : α → Option α l₁ l₂ : List α a b : α l : List α H : Pairwise (fun a b => ∀ (c : α), c ∈ f a → ∀ (d : α), d ∈ f b → a = b ∧ c = d) (b :: a :: l) ⊢ lookmap f (b :: a :: l) ~ lookmap f (a :: b :: l) case trans α : Type u_1 f : α → Option α l₁✝ l₂✝ l₁ l₂ l₃ : List α p₁ : l₁ ~ l₂ a✝ : l₂ ~ l₃ IH₁ : Pairwise (fun a b => ∀ (c : α), c ∈ f a → ∀ (d : α), d ∈ f b → a = b ∧ c = d) l₁ → lookmap f l₁ ~ lookmap f l₂ IH₂ : Pairwise (fun a b => ∀ (c : α), c ∈ f a → ∀ (d : α), d ∈ f b → a = b ∧ c = d) l₂ → lookmap f l₂ ~ lookmap f l₃ H : Pairwise (fun a b => ∀ (c : α), c ∈ f a → ∀ (d : α), d ∈ f b → a = b ∧ c = d) l₁ ⊢ lookmap f l₁ ~ lookmap f l₃
50ba40462e6c2ee0
image_subset_closure_compl_image_compl_of_isOpen
Mathlib/Topology/ExtremallyDisconnected.lean
/-- Lemma 2.1 in [Gleason, *Projective topological spaces*][gleason1958]: if $\rho$ is a continuous surjection from a topological space $E$ to a topological space $A$ satisfying the "Zorn subset condition", then $\rho(G)$ is contained in the closure of $A \setminus \rho(E \setminus G)$ for any open set $G$ of $E$. -/ lemma image_subset_closure_compl_image_compl_of_isOpen {ρ : E → A} (ρ_cont : Continuous ρ) (ρ_surj : ρ.Surjective) (zorn_subset : ∀ E₀ : Set E, E₀ ≠ univ → IsClosed E₀ → ρ '' E₀ ≠ univ) {G : Set E} (hG : IsOpen G) : ρ '' G ⊆ closure ((ρ '' Gᶜ)ᶜ)
case neg A E : Type u inst✝¹ : TopologicalSpace A inst✝ : TopologicalSpace E ρ : E → A ρ_cont : Continuous ρ ρ_surj : Surjective ρ zorn_subset : ∀ (E₀ : Set E), E₀ ≠ univ → IsClosed E₀ → ρ '' E₀ ≠ univ G : Set E hG : IsOpen G G_empty : ¬G = ∅ a : A ha : a ∈ ρ '' G N : Set A N_open : IsOpen N hN : a ∈ N ⊢ (N ∩ (ρ '' Gᶜ)ᶜ).Nonempty
rcases (G.mem_image ρ a).mp ha with ⟨e, he, rfl⟩
case neg.intro.intro A E : Type u inst✝¹ : TopologicalSpace A inst✝ : TopologicalSpace E ρ : E → A ρ_cont : Continuous ρ ρ_surj : Surjective ρ zorn_subset : ∀ (E₀ : Set E), E₀ ≠ univ → IsClosed E₀ → ρ '' E₀ ≠ univ G : Set E hG : IsOpen G G_empty : ¬G = ∅ N : Set A N_open : IsOpen N e : E he : e ∈ G ha : ρ e ∈ ρ '' G hN : ρ e ∈ N ⊢ (N ∩ (ρ '' Gᶜ)ᶜ).Nonempty
7e7582b54cb8739a
Ordinal.nfpFamily_lt_ord_lift
Mathlib/SetTheory/Cardinal/Cofinality.lean
theorem nfpFamily_lt_ord_lift {ι} {f : ι → Ordinal → Ordinal} {c} (hc : ℵ₀ < cof c) (hc' : Cardinal.lift.{v, u} #ι < cof c) (hf : ∀ (i), ∀ b < c, f i b < c) {a} (ha : a < c) : nfpFamily f a < c
case refine_1 ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Ordinal.{max u v} hc : ℵ₀ < c.cof hc' : Cardinal.lift.{v, u} #ι < c.cof hf : ∀ (i : ι), ∀ b < c, f i b < c a : Ordinal.{max u v} ha : a < c ⊢ Cardinal.lift.{v, u} ℵ₀ ⊔ Cardinal.lift.{v, u} #ι < c.cof
apply max_lt _ hc'
ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Ordinal.{max u v} hc : ℵ₀ < c.cof hc' : Cardinal.lift.{v, u} #ι < c.cof hf : ∀ (i : ι), ∀ b < c, f i b < c a : Ordinal.{max u v} ha : a < c ⊢ Cardinal.lift.{v, u} ℵ₀ < c.cof
1ab519ba3d97b754
List.erase_eq_eraseIdx
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Erase.lean
theorem erase_eq_eraseIdx (l : List α) (a : α) : l.erase a = match l.idxOf? a with | none => l | some i => l.eraseIdx i
case cons α : Type u_1 inst✝ : BEq α a x : α xs : List α ih : xs.erase a = match idxOf? a xs with | none => xs | some i => xs.eraseIdx i ⊢ (if (x == a) = true then xs else x :: xs.erase a) = match if (x == a) = true then some 0 else Option.map (fun x => x + 1) (idxOf? a xs) with | none => x :: xs | some i => (x :: xs).eraseIdx i
split
case cons.isTrue α : Type u_1 inst✝ : BEq α a x : α xs : List α ih : xs.erase a = match idxOf? a xs with | none => xs | some i => xs.eraseIdx i h✝ : (x == a) = true ⊢ xs = match some 0 with | none => x :: xs | some i => (x :: xs).eraseIdx i case cons.isFalse α : Type u_1 inst✝ : BEq α a x : α xs : List α ih : xs.erase a = match idxOf? a xs with | none => xs | some i => xs.eraseIdx i h✝ : ¬(x == a) = true ⊢ x :: xs.erase a = match Option.map (fun x => x + 1) (idxOf? a xs) with | none => x :: xs | some i => (x :: xs).eraseIdx i
75458e5765fb9afd
Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.contains_iff
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Clause.lean
theorem contains_iff : ∀ (c : DefaultClause n) (l : Literal (PosFin n)), contains c l = true ↔ l ∈ toList c
n : Nat c : DefaultClause n l : Literal (PosFin n) ⊢ c.contains l = true ↔ l ∈ c.toList
simp only [contains, List.contains]
n : Nat c : DefaultClause n l : Literal (PosFin n) ⊢ List.elem l c.clause = true ↔ l ∈ c.toList
9a231d639ed11448
VectorField.DifferentiableWithinAt.pullbackWithin
Mathlib/Analysis/Calculus/VectorField.lean
lemma DifferentiableWithinAt.pullbackWithin {f : E → F} {V : F → F} {s : Set E} {t : Set F} {x : E} (hV : DifferentiableWithinAt 𝕜 V t (f x)) (hf : ContDiffWithinAt 𝕜 2 f s x) (hf' : (fderivWithin 𝕜 f s x).IsInvertible) (hs : UniqueDiffOn 𝕜 s) (hx : x ∈ s) (hst : MapsTo f s t) : DifferentiableWithinAt 𝕜 (pullbackWithin 𝕜 f V s) s x
case hc 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace E f : E → F V : F → F s : Set E t : Set F x : E hV : DifferentiableWithinAt 𝕜 V t (f x) hf : ContDiffWithinAt 𝕜 2 f s x hf' : (fderivWithin 𝕜 f s x).IsInvertible hs : UniqueDiffOn 𝕜 s hx : x ∈ s hst : MapsTo f s t M : E → E ≃L[𝕜] F M_symm_smooth : ContDiffWithinAt 𝕜 1 (fun y => ↑(M y).symm) s x hM : ∀ᶠ (y : E) in 𝓝[s] x, ↑(M y) = fderivWithin 𝕜 f s y ⊢ DifferentiableWithinAt 𝕜 (fun y => ↑(M y).symm) s x
exact M_symm_smooth.differentiableWithinAt le_rfl
no goals
9464e97a9d907f07
Array.zipWith_comm_of_comm
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Zip.lean
theorem zipWith_comm_of_comm (f : α → α → β) (comm : ∀ x y : α, f x y = f y x) (l l' : Array α) : zipWith f l l' = zipWith f l' l
α : Type u_1 β : Type u_2 f : α → α → β comm : ∀ (x y : α), f x y = f y x l l' : Array α ⊢ zipWith (fun b a => f a b) l' l = zipWith f l' l
simp only [comm]
no goals
cdf1c835b4c70ca1
Ideal.finprod_count
Mathlib/RingTheory/DedekindDomain/Factorization.lean
theorem finprod_count (I : Ideal R) (hI : I ≠ 0) : (Associates.mk v.asIdeal).count (Associates.mk (∏ᶠ v : HeightOneSpectrum R, v.maxPowDividing I)).factors = (Associates.mk v.asIdeal).count (Associates.mk I).factors
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDedekindDomain R v : HeightOneSpectrum R I : Ideal R hI : I ≠ 0 h_ne_zero : Associates.mk (∏ᶠ (v : HeightOneSpectrum R), v.asIdeal ^ (Associates.mk v.asIdeal).count (Associates.mk I).factors) ≠ 0 hv : Irreducible (Associates.mk v.asIdeal) h_dvd : Associates.mk (v.asIdeal ^ (Associates.mk v.asIdeal).count (Associates.mk I).factors) ∣ Associates.mk (∏ᶠ (v : HeightOneSpectrum R), v.asIdeal ^ (Associates.mk v.asIdeal).count (Associates.mk I).factors) h_not_dvd : ¬Associates.mk (v.asIdeal ^ ((Associates.mk v.asIdeal).count (Associates.mk I).factors + 1)) ∣ Associates.mk (∏ᶠ (v : HeightOneSpectrum R), v.asIdeal ^ (Associates.mk v.asIdeal).count (Associates.mk I).factors) ⊢ (Associates.mk v.asIdeal).count (Associates.mk (∏ᶠ (v : HeightOneSpectrum R), v.maxPowDividing I)).factors = (Associates.mk v.asIdeal).count (Associates.mk I).factors
simp only [Associates.dvd_eq_le] at h_dvd h_not_dvd
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDedekindDomain R v : HeightOneSpectrum R I : Ideal R hI : I ≠ 0 h_ne_zero : Associates.mk (∏ᶠ (v : HeightOneSpectrum R), v.asIdeal ^ (Associates.mk v.asIdeal).count (Associates.mk I).factors) ≠ 0 hv : Irreducible (Associates.mk v.asIdeal) h_dvd : Associates.mk (v.asIdeal ^ (Associates.mk v.asIdeal).count (Associates.mk I).factors) ≤ Associates.mk (∏ᶠ (v : HeightOneSpectrum R), v.asIdeal ^ (Associates.mk v.asIdeal).count (Associates.mk I).factors) h_not_dvd : ¬Associates.mk (v.asIdeal ^ ((Associates.mk v.asIdeal).count (Associates.mk I).factors + 1)) ≤ Associates.mk (∏ᶠ (v : HeightOneSpectrum R), v.asIdeal ^ (Associates.mk v.asIdeal).count (Associates.mk I).factors) ⊢ (Associates.mk v.asIdeal).count (Associates.mk (∏ᶠ (v : HeightOneSpectrum R), v.maxPowDividing I)).factors = (Associates.mk v.asIdeal).count (Associates.mk I).factors
3755a7f07538b12d
Nat.pos_of_lt_mul_right
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem pos_of_lt_mul_right {a b c : Nat} (h : a < b * c) : 0 < b
a b c : Nat h : a < b * c ⊢ 0 < b * c
omega
no goals
d9ecb2226b6aa123
AkraBazziRecurrence.GrowsPolynomially.eventually_atTop_nonneg_or_nonpos
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma eventually_atTop_nonneg_or_nonpos (hf : GrowsPolynomially f) : (∀ᶠ x in atTop, 0 ≤ f x) ∨ (∀ᶠ x in atTop, f x ≤ 0)
f : ℝ → ℝ hf : GrowsPolynomially f c₁ : ℝ left✝¹ : c₁ > 0 c₂ : ℝ left✝ : c₂ > 0 heq : c₁ = c₂ n₀ : ℝ hn₀ : ∀ b ≥ n₀, ∀ u ∈ Set.Icc (1 / 2 * b) b, f u = c₂ * f b ⊢ 1 < 2
norm_num
no goals
69674f7264744f71
Relation.reflTransGen_iff_eq
Mathlib/Logic/Relation.lean
theorem reflTransGen_iff_eq (h : ∀ b, ¬r a b) : ReflTransGen r a b ↔ b = a
α : Type u_1 r : α → α → Prop a b : α h : ∀ (b : α), ¬r a b ⊢ (a = b ∨ ∃ c, r a c ∧ ReflTransGen r c b) ↔ b = a
simp [h, eq_comm]
no goals
9fd6a0ab909b1619
Int.sum_div
Mathlib/Algebra/BigOperators/Ring/Finset.lean
protected lemma sum_div (hf : ∀ i ∈ s, n ∣ f i) : (∑ i ∈ s, f i) / n = ∑ i ∈ s, f i / n
case inl ι : Type u_7 s : Finset ι f : ι → ℤ hf : ∀ i ∈ s, 0 ∣ f i ⊢ (∑ i ∈ s, f i) / 0 = ∑ i ∈ s, f i / 0
simp
no goals
82058ce44f02b8ca
Finset.Iic_erase
Mathlib/Order/Interval/Finset/Basic.lean
theorem Iic_erase [DecidableEq α] (b : α) : (Iic b).erase b = Iio b
α : Type u_2 inst✝² : PartialOrder α inst✝¹ : LocallyFiniteOrderBot α inst✝ : DecidableEq α b : α ⊢ (Iic b).erase b = Iio b
ext
case h α : Type u_2 inst✝² : PartialOrder α inst✝¹ : LocallyFiniteOrderBot α inst✝ : DecidableEq α b a✝ : α ⊢ a✝ ∈ (Iic b).erase b ↔ a✝ ∈ Iio b
b3668786661fd204
CategoryTheory.Functor.isZero_rightDerived_obj_injective_succ
Mathlib/CategoryTheory/Abelian/RightDerived.lean
/-- The higher derived functors vanish on injective objects. -/ lemma Functor.isZero_rightDerived_obj_injective_succ (F : C ⥤ D) [F.Additive] (n : ℕ) (X : C) [Injective X] : IsZero ((F.rightDerived (n+1)).obj X)
C : Type u inst✝⁶ : Category.{v, u} C D : Type u_1 inst✝⁵ : Category.{u_2, u_1} D inst✝⁴ : Abelian C inst✝³ : HasInjectiveResolutions C inst✝² : Abelian D F : C ⥤ D inst✝¹ : F.Additive n : ℕ X : C inst✝ : Injective X ⊢ IsZero ((HomologicalComplex.homologyFunctor D (ComplexShape.up ℕ) (n + 1)).obj ((F.mapHomologicalComplex (ComplexShape.up ℕ)).obj (InjectiveResolution.self X).cocomplex))
erw [← HomologicalComplex.exactAt_iff_isZero_homology]
C : Type u inst✝⁶ : Category.{v, u} C D : Type u_1 inst✝⁵ : Category.{u_2, u_1} D inst✝⁴ : Abelian C inst✝³ : HasInjectiveResolutions C inst✝² : Abelian D F : C ⥤ D inst✝¹ : F.Additive n : ℕ X : C inst✝ : Injective X ⊢ ((F.mapHomologicalComplex (ComplexShape.up ℕ)).obj (InjectiveResolution.self X).cocomplex).ExactAt (n + 1)
865b83e734765103
MeasureTheory.SimpleFunc.lintegral_restrict_iUnion_of_directed
Mathlib/MeasureTheory/Function/SimpleFunc.lean
theorem lintegral_restrict_iUnion_of_directed {ι : Type*} [Countable ι] (f : α →ₛ ℝ≥0∞) {s : ι → Set α} (hd : Directed (· ⊆ ·) s) (μ : Measure α) : f.lintegral (μ.restrict (⋃ i, s i)) = ⨆ i, f.lintegral (μ.restrict (s i))
α : Type u_1 m : MeasurableSpace α ι : Type u_5 inst✝ : Countable ι f : α →ₛ ℝ≥0∞ s : ι → Set α hd : Directed (fun x1 x2 => x1 ⊆ x2) s μ : Measure α ⊢ ∑ x ∈ f.range, ⨆ i, x * (μ.restrict (s i)) (⇑f ⁻¹' {x}) = ⨆ i, ∑ x ∈ f.range, x * (μ.restrict (s i)) (⇑f ⁻¹' {x})
refine finsetSum_iSup fun i j ↦ (hd i j).imp fun k ⟨hik, hjk⟩ ↦ fun a ↦ ?_
α : Type u_1 m : MeasurableSpace α ι : Type u_5 inst✝ : Countable ι f : α →ₛ ℝ≥0∞ s : ι → Set α hd : Directed (fun x1 x2 => x1 ⊆ x2) s μ : Measure α i j k : ι x✝ : (fun x1 x2 => x1 ⊆ x2) (s i) (s k) ∧ (fun x1 x2 => x1 ⊆ x2) (s j) (s k) hik : (fun x1 x2 => x1 ⊆ x2) (s i) (s k) hjk : (fun x1 x2 => x1 ⊆ x2) (s j) (s k) a : ℝ≥0∞ ⊢ a * (μ.restrict (s i)) (⇑f ⁻¹' {a}) ≤ a * (μ.restrict (s k)) (⇑f ⁻¹' {a}) ∧ a * (μ.restrict (s j)) (⇑f ⁻¹' {a}) ≤ a * (μ.restrict (s k)) (⇑f ⁻¹' {a})
271c53c8279667c1
Filter.mem_prod_iff_right
Mathlib/Order/Filter/Prod.lean
theorem mem_prod_iff_right {s : Set (α × β)} : s ∈ f ×ˢ g ↔ ∃ t ∈ g, ∀ᶠ x in f, ∀ y ∈ t, (x, y) ∈ s
α : Type u_1 β : Type u_2 f : Filter α g : Filter β s : Set (α × β) ⊢ s ∈ f ×ˢ g ↔ ∃ t ∈ g, ∀ᶠ (x : α) in f, ∀ y ∈ t, (x, y) ∈ s
rw [prod_comm, mem_map, mem_prod_iff_left]
α : Type u_1 β : Type u_2 f : Filter α g : Filter β s : Set (α × β) ⊢ (∃ t ∈ g, ∀ᶠ (y : α) in f, ∀ x ∈ t, (x, y) ∈ (fun p => (p.2, p.1)) ⁻¹' s) ↔ ∃ t ∈ g, ∀ᶠ (x : α) in f, ∀ y ∈ t, (x, y) ∈ s
82d8167a05c091e6
Finset.mem_finsupp_iff
Mathlib/Data/Finset/Finsupp.lean
theorem mem_finsupp_iff {t : ι → Finset α} : f ∈ s.finsupp t ↔ f.support ⊆ s ∧ ∀ i ∈ s, f i ∈ t i
case refine_2 ι : Type u_1 α : Type u_2 inst✝ : Zero α s : Finset ι f : ι →₀ α t : ι → Finset α ⊢ (f.support ⊆ s ∧ ∀ i ∈ s, f i ∈ t i) → ∃ a ∈ s.pi t, { toFun := indicator s, inj' := ⋯ } a = f
refine fun h => ⟨fun i _ => f i, mem_pi.2 h.2, ?_⟩
case refine_2 ι : Type u_1 α : Type u_2 inst✝ : Zero α s : Finset ι f : ι →₀ α t : ι → Finset α h : f.support ⊆ s ∧ ∀ i ∈ s, f i ∈ t i ⊢ ({ toFun := indicator s, inj' := ⋯ } fun i x => f i) = f
d85aaa6cf73479f2
tendstoUniformly_tsum_of_cofinite_eventually
Mathlib/Analysis/NormedSpace/FunctionSeries.lean
theorem tendstoUniformly_tsum_of_cofinite_eventually {ι : Type*} {f : ι → β → F} {u : ι → ℝ} (hu : Summable u) (hfu : ∀ᶠ (n : ι) in cofinite, ∀ x : β, ‖f n x‖ ≤ u n) : TendstoUniformly (fun t x => ∑ n ∈ t, f n x) (fun x => ∑' n, f n x) atTop
β : Type u_2 F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : CompleteSpace F ι : Type u_4 f : ι → β → F u : ι → ℝ hu : Summable u hfu : ∀ᶠ (n : ι) in cofinite, ∀ (x : β), ‖f n x‖ ≤ u n ⊢ ∀ᶠ (n : ι) in cofinite, ∀ x ∈ univ, ‖f n x‖ ≤ u n
simpa using hfu
no goals
9e3b2f25945fc21b
Int.gcd_one
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Gcd.lean
theorem gcd_one {a : Int} : gcd a 1 = 1
a : Int ⊢ a.gcd 1 = 1
simp [gcd]
no goals
543a072c1db4fa9b
Order.height_enat
Mathlib/Order/KrullDimension.lean
@[simp] lemma height_enat (n : ℕ∞) : height n = n
n : ℕ∞ ⊢ height n = n
cases n with | top => simp only [← WithBot.coe_eq_coe, height_top_eq_krullDim, krullDim_enat, WithBot.coe_top] | coe n => exact (height_coe_withTop _).trans (height_nat _)
no goals
76c06ba17cf6871f
Matrix.vecAlt0_vecAppend
Mathlib/Data/Fin/VecNotation.lean
theorem vecAlt0_vecAppend (v : Fin n → α) : vecAlt0 rfl (vecAppend rfl v v) = v ∘ (fun n ↦ n + n)
α : Type u n : ℕ v : Fin n → α ⊢ vecAlt0 ⋯ (vecAppend ⋯ v v) = v ∘ fun n_1 => n_1 + n_1
ext i
case h α : Type u n : ℕ v : Fin n → α i : Fin n ⊢ vecAlt0 ⋯ (vecAppend ⋯ v v) i = (v ∘ fun n_1 => n_1 + n_1) i
4c85d9edab2b8fd9
List.not_of_mem_foldl_argAux
Mathlib/Data/List/MinMax.lean
theorem not_of_mem_foldl_argAux (hr₀ : Irreflexive r) (hr₁ : Transitive r) : ∀ {a m : α} {o : Option α}, a ∈ l → m ∈ foldl (argAux r) o l → ¬r a m
case append_singleton.some α : Type u_1 r : α → α → Prop inst✝ : DecidableRel r l : List α hr₀ : Irreflexive r hr₁ : Transitive r tl : List α a : α ih : ∀ {a m : α} {o : Option α}, a ∈ tl → m ∈ foldl (argAux r) o tl → ¬r a m b m : α o : Option α hb : b ∈ tl ++ [a] c : α ho : (if r a c then some a else some c) = some m hf : foldl (argAux r) o tl = some c ⊢ ¬r b m
split_ifs at ho with hac <;> rcases mem_append.1 hb with h | h <;> injection ho with ho <;> subst ho
case pos.inl α : Type u_1 r : α → α → Prop inst✝ : DecidableRel r l : List α hr₀ : Irreflexive r hr₁ : Transitive r tl : List α a : α ih : ∀ {a m : α} {o : Option α}, a ∈ tl → m ∈ foldl (argAux r) o tl → ¬r a m b : α o : Option α hb : b ∈ tl ++ [a] c : α hf : foldl (argAux r) o tl = some c hac : r a c h : b ∈ tl ⊢ ¬r b a case pos.inr α : Type u_1 r : α → α → Prop inst✝ : DecidableRel r l : List α hr₀ : Irreflexive r hr₁ : Transitive r tl : List α a : α ih : ∀ {a m : α} {o : Option α}, a ∈ tl → m ∈ foldl (argAux r) o tl → ¬r a m b : α o : Option α hb : b ∈ tl ++ [a] c : α hf : foldl (argAux r) o tl = some c hac : r a c h : b ∈ [a] ⊢ ¬r b a case neg.inl α : Type u_1 r : α → α → Prop inst✝ : DecidableRel r l : List α hr₀ : Irreflexive r hr₁ : Transitive r tl : List α a : α ih : ∀ {a m : α} {o : Option α}, a ∈ tl → m ∈ foldl (argAux r) o tl → ¬r a m b : α o : Option α hb : b ∈ tl ++ [a] c : α hf : foldl (argAux r) o tl = some c hac : ¬r a c h : b ∈ tl ⊢ ¬r b c case neg.inr α : Type u_1 r : α → α → Prop inst✝ : DecidableRel r l : List α hr₀ : Irreflexive r hr₁ : Transitive r tl : List α a : α ih : ∀ {a m : α} {o : Option α}, a ∈ tl → m ∈ foldl (argAux r) o tl → ¬r a m b : α o : Option α hb : b ∈ tl ++ [a] c : α hf : foldl (argAux r) o tl = some c hac : ¬r a c h : b ∈ [a] ⊢ ¬r b c
fd32a85061587928
Ideal.primeHeight_add_one_le_of_lt
Mathlib/RingTheory/Ideal/Height.lean
lemma Ideal.primeHeight_add_one_le_of_lt {I J : Ideal R} [I.IsPrime] [J.IsPrime] (h : I < J) : I.primeHeight + 1 ≤ J.primeHeight
R : Type u_1 inst✝² : CommRing R I J : Ideal R inst✝¹ : I.IsPrime inst✝ : J.IsPrime h : I < J ⊢ I.primeHeight + 1 ≤ J.primeHeight
unfold primeHeight
R : Type u_1 inst✝² : CommRing R I J : Ideal R inst✝¹ : I.IsPrime inst✝ : J.IsPrime h : I < J ⊢ Order.height { asIdeal := I, isPrime := inst✝¹ } + 1 ≤ Order.height { asIdeal := J, isPrime := inst✝ }
bbaacd39c8a6cbfe
Equiv.Perm.IsCycle.isConj_iff
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
theorem IsCycle.isConj_iff (hσ : IsCycle σ) (hτ : IsCycle τ) : IsConj σ τ ↔ #σ.support = #τ.support where mp h
case intro.refine_1 α : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α hσ : σ.IsCycle π : Perm α hτ : (π * σ * π⁻¹).IsCycle h : IsConj σ (π * σ * π⁻¹) x✝ : α ha : x✝ ∈ σ.support ⊢ (fun a x => π a) x✝ ha ∈ (π * σ * π⁻¹).support
simp [mem_support.1 ha]
no goals
d8d050eb8efa4f7b
AlgebraicGeometry.Scheme.Spec_map_presheaf_map_eqToHom
Mathlib/AlgebraicGeometry/Scheme.lean
theorem Scheme.Spec_map_presheaf_map_eqToHom {X : Scheme} {U V : X.Opens} (h : U = V) (W) : (Spec.map (X.presheaf.map (eqToHom h).op)).app W = eqToHom (by cases h; dsimp; simp)
case refl X : Scheme U : X.Opens this : Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 (Scheme.Spec.obj (op Γ(X, U))) W : (Spec Γ(X, U)).Opens ⊢ Hom.app (Spec.map (X.presheaf.map (eqToHom ⋯).op)) W = eqToHom ⋯
refine (Scheme.congr_app this _).trans ?_
case refl X : Scheme U : X.Opens this : Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 (Scheme.Spec.obj (op Γ(X, U))) W : (Spec Γ(X, U)).Opens ⊢ Hom.app (𝟙 (Scheme.Spec.obj (op Γ(X, U)))) W ≫ (Scheme.Spec.obj (op Γ(X, U))).presheaf.map (eqToHom ⋯).op = eqToHom ⋯
6819d9d83e818d30
List.mem_inits
Mathlib/Data/List/Infix.lean
theorem mem_inits : ∀ s t : List α, s ∈ inits t ↔ s <+: t | s, [] => suffices s = nil ↔ s <+: nil by simpa only [inits, mem_singleton] ⟨fun h => h.symm ▸ prefix_rfl, eq_nil_of_prefix_nil⟩ | s, a :: t => suffices (s = nil ∨ ∃ l ∈ inits t, a :: l = s) ↔ s <+: a :: t by simpa ⟨fun o => match s, o with | _, Or.inl rfl => ⟨_, rfl⟩ | s, Or.inr ⟨r, hr, hs⟩ => by let ⟨s, ht⟩ := (mem_inits _ _).1 hr rw [← hs, ← ht]; exact ⟨s, rfl⟩, fun mi => match s, mi with | [], ⟨_, rfl⟩ => Or.inl rfl | b :: s, ⟨r, hr⟩ => (List.noConfusion hr) fun ba (st : s ++ r = t) => Or.inr <| by rw [ba]; exact ⟨_, (mem_inits _ _).2 ⟨_, st⟩, rfl⟩⟩
α : Type u_1 s✝ : List α a : α t : List α mi : s✝ <+: a :: t b : α s r : List α hr : b :: s ++ r = a :: t ba : b = a st : s ++ r = t ⊢ ∃ l, l ∈ t.inits ∧ a :: l = a :: s
exact ⟨_, (mem_inits _ _).2 ⟨_, st⟩, rfl⟩
no goals
bd51da11fa244872
affineCombination_mem_affineSpan
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
theorem affineCombination_mem_affineSpan [Nontrivial k] {s : Finset ι} {w : ι → k} (h : ∑ i ∈ s, w i = 1) (p : ι → P) : s.affineCombination k p w ∈ affineSpan k (Set.range p)
ι : Type u_1 k : Type u_2 V : Type u_3 P : Type u_4 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Nontrivial k s : Finset ι w : ι → k h : ∑ i ∈ s, w i = 1 p : ι → P hnz : ∑ i ∈ s, w i ≠ 0 i1 : ι hi1 : i1 ∈ s w1 : ι → k := Function.update (Function.const ι 0) i1 1 hw1 : ∑ i ∈ s, w1 i = 1 hw1s : (Finset.affineCombination k s p) w1 = p i1 ⊢ (Finset.affineCombination k s p) w -ᵥ p i1 ∈ (affineSpan k (Set.range p)).direction
rw [direction_affineSpan, ← hw1s, Finset.affineCombination_vsub]
ι : Type u_1 k : Type u_2 V : Type u_3 P : Type u_4 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Nontrivial k s : Finset ι w : ι → k h : ∑ i ∈ s, w i = 1 p : ι → P hnz : ∑ i ∈ s, w i ≠ 0 i1 : ι hi1 : i1 ∈ s w1 : ι → k := Function.update (Function.const ι 0) i1 1 hw1 : ∑ i ∈ s, w1 i = 1 hw1s : (Finset.affineCombination k s p) w1 = p i1 ⊢ (s.weightedVSub p) (w - w1) ∈ vectorSpan k (Set.range p)
b0078337a6cd7107
Filter.mul_top_of_one_le
Mathlib/Order/Filter/Pointwise.lean
theorem mul_top_of_one_le (hf : 1 ≤ f) : f * ⊤ = ⊤
α : Type u_2 inst✝ : Monoid α f : Filter α hf : 1 ≤ f ⊢ f * ⊤ = ⊤
refine top_le_iff.1 fun s => ?_
α : Type u_2 inst✝ : Monoid α f : Filter α hf : 1 ≤ f s : Set α ⊢ s ∈ f * ⊤ → s ∈ ⊤
9240cc9c89569e01
PowerSeries.degree_trunc_lt
Mathlib/RingTheory/PowerSeries/Trunc.lean
theorem degree_trunc_lt (f : R⟦X⟧) (n) : (trunc n f).degree < n
case neg R : Type u_1 inst✝ : Semiring R f : R⟦X⟧ n m✝ : ℕ a✝ : n ≤ m✝ h : ¬m✝ < n ⊢ 0 = 0
rfl
no goals
3a93048cc0d1e880
Nat.findGreatest_eq_iff
Mathlib/Data/Nat/Find.lean
lemma findGreatest_eq_iff : Nat.findGreatest P k = m ↔ m ≤ k ∧ (m ≠ 0 → P m) ∧ ∀ ⦃n⦄, m < n → n ≤ k → ¬P n
P : ℕ → Prop inst✝ : DecidablePred P k : ℕ ihk : ∀ {m : ℕ}, findGreatest P k = m ↔ m ≤ k ∧ (m ≠ 0 → P m) ∧ ∀ ⦃n : ℕ⦄, m < n → n ≤ k → ¬P n hk : P (k + 1) n : ℕ hlt : k + 1 < n hle : n ≤ k + 1 ⊢ ¬P n
omega
no goals
9905ebac396451ee
Transcendental.of_aeval
Mathlib/RingTheory/Algebraic/Basic.lean
theorem Transcendental.of_aeval {r : A} {f : R[X]} (H : Transcendental R (Polynomial.aeval r f)) : Transcendental R f
R : Type u A : Type v inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A r : A f : R[X] H : ∀ (p : R[X]), (Polynomial.aeval ((Polynomial.aeval r) f)) p = 0 → p = 0 ⊢ ∀ (p : R[X]), (Polynomial.aeval f) p = 0 → p = 0
intro p hp
R : Type u A : Type v inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A r : A f : R[X] H : ∀ (p : R[X]), (Polynomial.aeval ((Polynomial.aeval r) f)) p = 0 → p = 0 p : R[X] hp : (Polynomial.aeval f) p = 0 ⊢ p = 0
f95d2ba8e4b6f764
List.getElem?_zip_eq_some
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Zip.lean
theorem getElem?_zip_eq_some {l₁ : List α} {l₂ : List β} {z : α × β} {i : Nat} : (zip l₁ l₂)[i]? = some z ↔ l₁[i]? = some z.1 ∧ l₂[i]? = some z.2
case mk α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β i : Nat fst✝ : α snd✝ : β ⊢ (l₁.zip l₂)[i]? = some (fst✝, snd✝) ↔ l₁[i]? = some (fst✝, snd✝).fst ∧ l₂[i]? = some (fst✝, snd✝).snd
rw [zip, getElem?_zipWith_eq_some]
case mk α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β i : Nat fst✝ : α snd✝ : β ⊢ (∃ x y, l₁[i]? = some x ∧ l₂[i]? = some y ∧ (x, y) = (fst✝, snd✝)) ↔ l₁[i]? = some (fst✝, snd✝).fst ∧ l₂[i]? = some (fst✝, snd✝).snd
ff8f01ddc18035f4
ContinuousOn.if
Mathlib/Topology/ContinuousOn.lean
theorem ContinuousOn.if {p : α → Prop} [∀ a, Decidable (p a)] (hp : ∀ a ∈ s ∩ frontier { a | p a }, f a = g a) (hf : ContinuousOn f <| s ∩ closure { a | p a }) (hg : ContinuousOn g <| s ∩ closure { a | ¬p a }) : ContinuousOn (fun a => if p a then f a else g a) s
case hpf α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β f g : α → β s : Set α p : α → Prop inst✝ : (a : α) → Decidable (p a) hp : ∀ a ∈ s ∩ frontier {a | p a}, f a = g a hf : ContinuousOn f (s ∩ closure {a | p a}) hg : ContinuousOn g (s ∩ closure {a | ¬p a}) a : α ha : a ∈ s ∩ frontier {a | p a} ⊢ Tendsto f (𝓝[s ∩ closure {a | p a}] a) (𝓝 (f a))
exact hf a ⟨ha.1, ha.2.1⟩
no goals
342fb5057472ed38
Int.neg_add_emod_self
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem neg_add_emod_self (a b : Int) : (-a + b) % a = b % a
a b : Int ⊢ (-a + b) % a = b % a
rw [Int.add_comm, add_neg_emod_self]
no goals
fe3f1c2653fd2218
MeasureTheory.exists_not_mem_null_le_laverage
Mathlib/MeasureTheory/Integral/Average.lean
theorem exists_not_mem_null_le_laverage (hμ : μ ≠ 0) (hf : AEMeasurable f μ) (hN : μ N = 0) : ∃ x, x ∉ N ∧ f x ≤ ⨍⁻ a, f a ∂μ
α : Type u_1 m0 : MeasurableSpace α μ : Measure α N : Set α f : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : AEMeasurable f μ hN : μ N = 0 this : 0 < μ ({x | f x ≤ ⨍⁻ (a : α), f a ∂μ} \ N) ⊢ ∃ x ∉ N, f x ≤ ⨍⁻ (a : α), f a ∂μ
obtain ⟨x, hx, hxN⟩ := nonempty_of_measure_ne_zero this.ne'
case intro.intro α : Type u_1 m0 : MeasurableSpace α μ : Measure α N : Set α f : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : AEMeasurable f μ hN : μ N = 0 this : 0 < μ ({x | f x ≤ ⨍⁻ (a : α), f a ∂μ} \ N) x : α hx : x ∈ {x | f x ≤ ⨍⁻ (a : α), f a ∂μ} hxN : x ∉ N ⊢ ∃ x ∉ N, f x ≤ ⨍⁻ (a : α), f a ∂μ
b5d2c1ec1f07f375
Orientation.oangle_smul_add_right_eq_zero_or_eq_pi_iff
Mathlib/Geometry/Euclidean/Angle/Oriented/Basic.lean
theorem oangle_smul_add_right_eq_zero_or_eq_pi_iff {x y : V} (r : ℝ) : o.oangle x (r • x + y) = 0 ∨ o.oangle x (r • x + y) = π ↔ o.oangle x y = 0 ∨ o.oangle x y = π
case refine_1 V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V r : ℝ h : ∃ g, g 0 • ![x, r • x + y] 0 + g 1 • ![x, r • x + y] 1 = 0 ∧ (g 0 ≠ 0 ∨ g 1 ≠ 0) ⊢ ∃ g, g 0 • ![x, y] 0 + g 1 • ![x, y] 1 = 0 ∧ (g 0 ≠ 0 ∨ g 1 ≠ 0)
rcases h with ⟨m, h, hm⟩
case refine_1.intro.intro V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V r : ℝ m : Fin (Nat.succ 0).succ → ℝ h : m 0 • ![x, r • x + y] 0 + m 1 • ![x, r • x + y] 1 = 0 hm : m 0 ≠ 0 ∨ m 1 ≠ 0 ⊢ ∃ g, g 0 • ![x, y] 0 + g 1 • ![x, y] 1 = 0 ∧ (g 0 ≠ 0 ∨ g 1 ≠ 0)
8163cb9f535da18e
MvPolynomial.quotient_mk_comp_C_isIntegral_of_isJacobsonRing
Mathlib/RingTheory/Jacobson/Ring.lean
theorem quotient_mk_comp_C_isIntegral_of_isJacobsonRing {R : Type*} [CommRing R] [IsJacobsonRing R] (P : Ideal (MvPolynomial (Fin n) R)) [hP : P.IsMaximal] : RingHom.IsIntegral (RingHom.comp (Ideal.Quotient.mk P) (MvPolynomial.C))
n : ℕ R : Type u_1 inst✝¹ : CommRing R inst✝ : IsJacobsonRing R P : Ideal (MvPolynomial (Fin n) R) hP : P.IsMaximal ⊢ (algebraMap R (MvPolynomial (Fin n) R ⧸ P)).IsIntegral
apply quotient_mk_comp_C_isIntegral_of_isJacobsonRing'
case hP n : ℕ R : Type u_1 inst✝¹ : CommRing R inst✝ : IsJacobsonRing R P : Ideal (MvPolynomial (Fin n) R) hP : P.IsMaximal ⊢ P.IsMaximal
18215d953b985915
ContinuousMap.polynomial_comp_attachBound_mem
Mathlib/Topology/ContinuousMap/StoneWeierstrass.lean
theorem polynomial_comp_attachBound_mem (A : Subalgebra ℝ C(X, ℝ)) (f : A) (g : ℝ[X]) : (g.toContinuousMapOn (Set.Icc (-‖f‖) ‖f‖)).comp (f : C(X, ℝ)).attachBound ∈ A
X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : ↥A g : ℝ[X] ⊢ (g.toContinuousMapOn (Set.Icc (-‖f‖) ‖f‖)).comp (↑f).attachBound ∈ A
rw [polynomial_comp_attachBound]
X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : ↥A g : ℝ[X] ⊢ ↑((Polynomial.aeval f) g) ∈ A
6fc1f65f86aa5c1c
CategoryTheory.Pretriangulated.isIso₂_of_isIso₁₃
Mathlib/CategoryTheory/Triangulated/Pretriangulated.lean
lemma isIso₂_of_isIso₁₃ {T T' : Triangle C} (φ : T ⟶ T') (hT : T ∈ distTriang C) (hT' : T' ∈ distTriang C) (h₁ : IsIso φ.hom₁) (h₃ : IsIso φ.hom₃) : IsIso φ.hom₂
case intro.intro.intro C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : Preadditive C inst✝ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C T T' : Triangle C φ : T ⟶ T' hT : T ∈ distinguishedTriangles hT' : T' ∈ distinguishedTriangles h₁ : IsIso φ.hom₁ h₃ : IsIso φ.hom₃ A : C h : A ⟶ T'.invRotate.obj₁ k : A ⟶ T.invRotate.obj₁ hf : (k ≫ T.invRotate.mor₁) ≫ T.mor₁ ≫ φ.hom₂ = 0 hh : (k ≫ T.invRotate.mor₁) ≫ φ.hom₁ = h ≫ T'.invRotate.mor₁ ⊢ (k ≫ T.invRotate.mor₁) ≫ T.mor₁ = 0
erw [assoc, comp_distTriang_mor_zero₁₂ _ (inv_rot_of_distTriang _ hT), comp_zero]
no goals
8a538ff25cabfee4
HasStrictDerivAt.div
Mathlib/Analysis/Calculus/Deriv/Inv.lean
theorem HasStrictDerivAt.div (hc : HasStrictDerivAt c c' x) (hd : HasStrictDerivAt d d' x) (hx : d x ≠ 0) : HasStrictDerivAt (fun y => c y / d y) ((c' * d x - c x * d') / d x ^ 2) x
case h.e'_9 𝕜 : Type u inst✝² : NontriviallyNormedField 𝕜 x : 𝕜 𝕜' : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜' inst✝ : NormedAlgebra 𝕜 𝕜' c d : 𝕜 → 𝕜' c' d' : 𝕜' hc : HasStrictDerivAt c c' x hd : HasStrictDerivAt d d' x hx : d x ≠ 0 ⊢ (c' * d x - c x * d') * (d x * d x ^ 2) = (c' * d x ^ 2 + -(c x * d' * d x)) * d x ^ 2
ring
no goals
a430038d012aeadb
MeasureTheory.setToFun_smul
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToFun_smul [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (hT : DominatedFinMeasAdditive μ T C) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜) (f : α → E) : setToFun μ T hT (c • f) = c • setToFun μ T hT f
case pos α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_6 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α inst✝³ : CompleteSpace F T : Set α → E →L[ℝ] F C : ℝ inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜 F hT : DominatedFinMeasAdditive μ T C h_smul : ∀ (c : 𝕜) (s : Set α) (x : E), (T s) (c • x) = c • (T s) x c : 𝕜 f : α → E hf : ¬Integrable f μ hr : c = 0 ⊢ setToFun μ T hT (0 • f) = 0 • setToFun μ T hT f
simp
no goals
c0e0423fc4390b6f
Nat.diag_induction
Mathlib/Data/Nat/Init.lean
theorem diag_induction (P : ℕ → ℕ → Prop) (ha : ∀ a, P (a + 1) (a + 1)) (hb : ∀ b, P 0 (b + 1)) (hd : ∀ a b, a < b → P (a + 1) b → P a (b + 1) → P (a + 1) (b + 1)) : ∀ a b, a < b → P a b | 0, _ + 1, _ => hb _ | a + 1, b + 1, h => by apply hd _ _ (Nat.add_lt_add_iff_right.1 h) · have this : a + 1 = b ∨ a + 1 < b
P : ℕ → ℕ → Prop ha : ∀ (a : ℕ), P (a + 1) (a + 1) hb : ∀ (b : ℕ), P 0 (b + 1) hd : ∀ (a b : ℕ), a < b → P (a + 1) b → P a (b + 1) → P (a + 1) (b + 1) a b : ℕ h : a + 1 < b + 1 ⊢ a + 1 = b ∨ a + 1 < b
omega
no goals
42f141b2edc38622
Int.mul_eq_zero
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean
theorem mul_eq_zero {a b : Int} : a * b = 0 ↔ a = 0 ∨ b = 0
a b : Int h : a * b = 0 x✝¹ : Int x✝ : x✝¹ * ofNat 0 = 0 ⊢ x✝¹ = 0 ∨ ofNat 0 = 0
simp
no goals
6f0602ae658aec2d
Batteries.UnionFind.parent_push
Mathlib/.lake/packages/batteries/Batteries/Data/UnionFind/Lemmas.lean
theorem parent_push {m : UnionFind} : m.push.parent a = m.parent a
a : Nat m : UnionFind ⊢ m.push.parent a = m.parent a
simp [parent]
no goals
3a7b5e17d1394d4f
Multiset.rel_add_left
Mathlib/Data/Multiset/AddSub.lean
theorem rel_add_left {as₀ as₁} : ∀ {bs}, Rel r (as₀ + as₁) bs ↔ ∃ bs₀ bs₁, Rel r as₀ bs₀ ∧ Rel r as₁ bs₁ ∧ bs = bs₀ + bs₁ := @(Multiset.induction_on as₀ (by simp) fun a s ih bs ↦ by simp only [ih, cons_add, rel_cons_left] constructor · intro h rcases h with ⟨b, bs', hab, h, rfl⟩ rcases h with ⟨bs₀, bs₁, h₀, h₁, rfl⟩ exact ⟨b ::ₘ bs₀, bs₁, ⟨b, bs₀, hab, h₀, rfl⟩, h₁, by simp⟩ · intro h rcases h with ⟨bs₀, bs₁, h, h₁, rfl⟩ rcases h with ⟨b, bs, hab, h₀, rfl⟩ exact ⟨b, bs + bs₁, hab, ⟨bs, bs₁, h₀, h₁, rfl⟩, by simp⟩)
case mp α : Type u_1 β : Type v r : α → β → Prop as₀ as₁ : Multiset α a : α s : Multiset α ih : ∀ {bs : Multiset β}, Rel r (s + as₁) bs ↔ ∃ bs₀ bs₁, Rel r s bs₀ ∧ Rel r as₁ bs₁ ∧ bs = bs₀ + bs₁ bs : Multiset β h : ∃ b bs', r a b ∧ (∃ bs₀ bs₁, Rel r s bs₀ ∧ Rel r as₁ bs₁ ∧ bs' = bs₀ + bs₁) ∧ bs = b ::ₘ bs' ⊢ ∃ bs₀ bs₁, (∃ b bs', r a b ∧ Rel r s bs' ∧ bs₀ = b ::ₘ bs') ∧ Rel r as₁ bs₁ ∧ bs = bs₀ + bs₁
rcases h with ⟨b, bs', hab, h, rfl⟩
case mp.intro.intro.intro.intro α : Type u_1 β : Type v r : α → β → Prop as₀ as₁ : Multiset α a : α s : Multiset α ih : ∀ {bs : Multiset β}, Rel r (s + as₁) bs ↔ ∃ bs₀ bs₁, Rel r s bs₀ ∧ Rel r as₁ bs₁ ∧ bs = bs₀ + bs₁ b : β bs' : Multiset β hab : r a b h : ∃ bs₀ bs₁, Rel r s bs₀ ∧ Rel r as₁ bs₁ ∧ bs' = bs₀ + bs₁ ⊢ ∃ bs₀ bs₁, (∃ b bs', r a b ∧ Rel r s bs' ∧ bs₀ = b ::ₘ bs') ∧ Rel r as₁ bs₁ ∧ b ::ₘ bs' = bs₀ + bs₁
528c1d60fea179d9
MeasureTheory.integral_eq_lintegral_pos_part_sub_lintegral_neg_part
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem integral_eq_lintegral_pos_part_sub_lintegral_neg_part {f : α → ℝ} (hf : Integrable f μ) : ∫ a, f a ∂μ = ENNReal.toReal (∫⁻ a, .ofReal (f a) ∂μ) - ENNReal.toReal (∫⁻ a, .ofReal (-f a) ∂μ)
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ f₁ : ↥(Lp ℝ 1 μ) := Integrable.toL1 f hf eq₁ : (∫⁻ (a : α), ENNReal.ofReal (f a) ∂μ).toReal = ‖Lp.posPart f₁‖ eq₂ : (∫⁻ (a : α), ENNReal.ofReal (-f a) ∂μ).toReal = ‖Lp.negPart f₁‖ ⊢ ∫ (a : α), f a ∂μ = (∫⁻ (a : α), ENNReal.ofReal (f a) ∂μ).toReal - (∫⁻ (a : α), ENNReal.ofReal (-f a) ∂μ).toReal
rw [eq₁, eq₂, integral, dif_pos, dif_pos]
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ f₁ : ↥(Lp ℝ 1 μ) := Integrable.toL1 f hf eq₁ : (∫⁻ (a : α), ENNReal.ofReal (f a) ∂μ).toReal = ‖Lp.posPart f₁‖ eq₂ : (∫⁻ (a : α), ENNReal.ofReal (-f a) ∂μ).toReal = ‖Lp.negPart f₁‖ ⊢ L1.integral (Integrable.toL1 (fun a => f a) ?hc) = ‖Lp.posPart f₁‖ - ‖Lp.negPart f₁‖ case hc α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ f₁ : ↥(Lp ℝ 1 μ) := Integrable.toL1 f hf eq₁ : (∫⁻ (a : α), ENNReal.ofReal (f a) ∂μ).toReal = ‖Lp.posPart f₁‖ eq₂ : (∫⁻ (a : α), ENNReal.ofReal (-f a) ∂μ).toReal = ‖Lp.negPart f₁‖ ⊢ Integrable (fun a => f a) μ case hc α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ f₁ : ↥(Lp ℝ 1 μ) := Integrable.toL1 f hf eq₁ : (∫⁻ (a : α), ENNReal.ofReal (f a) ∂μ).toReal = ‖Lp.posPart f₁‖ eq₂ : (∫⁻ (a : α), ENNReal.ofReal (-f a) ∂μ).toReal = ‖Lp.negPart f₁‖ ⊢ CompleteSpace ℝ
c38c71e9a9c235bc
Matroid.Indep.insert_isBasis_iff_mem_closure
Mathlib/Data/Matroid/Closure.lean
lemma Indep.insert_isBasis_iff_mem_closure (hI : M.Indep I) : M.IsBasis I (insert e I) ↔ e ∈ M.closure I
α : Type u_2 M : Matroid α e : α I : Set α hI : M.Indep I ⊢ M.IsBasis I (insert e I) ↔ e ∈ M.closure I
rw [hI.closure_eq_setOf_isBasis_insert, mem_setOf]
no goals
fc1bbc2380a27a84
Valuation.map_sum_lt
Mathlib/RingTheory/Valuation/Basic.lean
theorem map_sum_lt {ι : Type*} {s : Finset ι} {f : ι → R} {g : Γ₀} (hg : g ≠ 0) (hf : ∀ i ∈ s, v (f i) < g) : v (∑ i ∈ s, f i) < g
R : Type u_3 Γ₀ : Type u_4 inst✝¹ : Ring R inst✝ : LinearOrderedCommMonoidWithZero Γ₀ v : Valuation R Γ₀ ι : Type u_7 s✝ : Finset ι f : ι → R g : Γ₀ hg : g ≠ 0 hf✝ : ∀ i ∈ s✝, v (f i) < g a : ι s : Finset ι has : a ∉ s ih : (∀ i ∈ s, v (f i) < g) → v (∑ i ∈ s, f i) < g hf : v (f a) < g ∧ ∀ x ∈ s, v (f x) < g ⊢ v (f a + ∑ x ∈ s, f x) < g
exact v.map_add_lt hf.1 (ih hf.2)
no goals
ecfbbabc73c096f9
ProbabilityTheory.mgf_sum_of_identDistrib
Mathlib/Probability/Moments/Basic.lean
theorem mgf_sum_of_identDistrib {X : ι → Ω → ℝ} {s : Finset ι} {j : ι} (h_meas : ∀ i, Measurable (X i)) (h_indep : iIndepFun (fun _ => inferInstance) X μ) (hident : ∀ i ∈ s, ∀ j ∈ s, IdentDistrib (X i) (X j) μ μ) (hj : j ∈ s) (t : ℝ) : mgf (∑ i ∈ s, X i) μ t = mgf (X j) μ t ^ #s
Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω μ : Measure Ω X : ι → Ω → ℝ s : Finset ι j : ι h_meas : ∀ (i : ι), Measurable (X i) h_indep : iIndepFun (fun x => inferInstance) X μ hident : ∀ i ∈ s, ∀ j ∈ s, IdentDistrib (X i) (X j) μ μ hj : j ∈ s t : ℝ ⊢ mgf (∑ i ∈ s, X i) μ t = mgf (X j) μ t ^ #s
rw [h_indep.mgf_sum h_meas]
Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω μ : Measure Ω X : ι → Ω → ℝ s : Finset ι j : ι h_meas : ∀ (i : ι), Measurable (X i) h_indep : iIndepFun (fun x => inferInstance) X μ hident : ∀ i ∈ s, ∀ j ∈ s, IdentDistrib (X i) (X j) μ μ hj : j ∈ s t : ℝ ⊢ ∏ i ∈ s, mgf (X i) μ t = mgf (X j) μ t ^ #s
a251942609d925ba
PMF.map_apply
Mathlib/Probability/ProbabilityMassFunction/Constructions.lean
theorem map_apply : (map f p) b = ∑' a, if b = f a then p a else 0
α : Type u_1 β : Type u_2 f : α → β p : PMF α b : β ⊢ (map f p) b = ∑' (a : α), if b = f a then p a else 0
simp [map]
no goals
8eba2aee49430f17
measurableSet_of_differentiableAt_of_isComplete_with_param
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem measurableSet_of_differentiableAt_of_isComplete_with_param (hf : Continuous f.uncurry) {K : Set (E →L[𝕜] F)} (hK : IsComplete K) : MeasurableSet {p : α × E | DifferentiableAt 𝕜 (f p.1) p.2 ∧ fderiv 𝕜 (f p.1) p.2 ∈ K}
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : LocallyCompactSpace E F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F α : Type u_4 inst✝⁴ : TopologicalSpace α f : α → E → F inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : MeasurableSpace E inst✝ : OpensMeasurableSpace E hf : Continuous (Function.uncurry f) K : Set (E →L[𝕜] F) hK : IsComplete K this : {p | DifferentiableAt 𝕜 (f p.1) p.2 ∧ fderiv 𝕜 (f p.1) p.2 ∈ K} = {p | p.2 ∈ D (f p.1) K} x✝ : ℕ ⊢ MeasurableSet (⋃ i, ⋂ i_1, ⋂ (_ : i_1 ≥ i), ⋂ i_2, ⋂ (_ : i_2 ≥ i), {x | x.2 ∈ B (f x.1) K ((1 / 2) ^ i_1) ((1 / 2) ^ i_2) ((1 / 2) ^ x✝)})
refine MeasurableSet.iUnion (fun _ ↦ ?_)
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : LocallyCompactSpace E F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F α : Type u_4 inst✝⁴ : TopologicalSpace α f : α → E → F inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : MeasurableSpace E inst✝ : OpensMeasurableSpace E hf : Continuous (Function.uncurry f) K : Set (E →L[𝕜] F) hK : IsComplete K this : {p | DifferentiableAt 𝕜 (f p.1) p.2 ∧ fderiv 𝕜 (f p.1) p.2 ∈ K} = {p | p.2 ∈ D (f p.1) K} x✝¹ x✝ : ℕ ⊢ MeasurableSet (⋂ i, ⋂ (_ : i ≥ x✝), ⋂ i_1, ⋂ (_ : i_1 ≥ x✝), {x | x.2 ∈ B (f x.1) K ((1 / 2) ^ i) ((1 / 2) ^ i_1) ((1 / 2) ^ x✝¹)})
77d1b3ef6979d5fd
Ordnode.Valid'.rotateL
Mathlib/Data/Ordmap/Ordset.lean
theorem Valid'.rotateL {l} {x : α} {r o₁ o₂} (hl : Valid' o₁ l x) (hr : Valid' x r o₂) (H1 : ¬size l + size r ≤ 1) (H2 : delta * size l < size r) (H3 : 2 * size r ≤ 9 * size l + 5 ∨ size r ≤ 3) : Valid' o₁ (@rotateL α l x r) o₂
α : Type u_1 inst✝ : Preorder α l : Ordnode α x : α o₁ : WithBot α o₂ : WithTop α hl : Valid' o₁ l ↑x rs : ℕ rl : Ordnode α rx : α rr : Ordnode α hr : Valid' (↑x) (Ordnode.node rs rl rx rr) o₂ H1 : ¬l.size + (Ordnode.node rs rl rx rr).size ≤ 1 H2 : delta * l.size ≤ rl.size + rr.size H3 : 2 * (rl.size + rr.size) ≤ 9 * l.size + 3 ∨ rl.size + rr.size ≤ 2 H3_0 : l.size = 0 → rl.size + rr.size ≤ 2 H3p : l.size > 0 → 2 * (rl.size + rr.size) ≤ 9 * l.size + 3 ablem : ∀ {a b : ℕ}, 1 ≤ a → a + b ≤ 2 → b ≤ 1 hlp : l.size > 0 → ¬rl.size + rr.size ≤ 1 h : rl.size < ratio * rr.size rr0 : rr.size > 0 this : BalancedSz l.size rl.size ∧ BalancedSz (l.size + rl.size + 1) rr.size ⊢ Valid' o₁ (l.node3L x rl rx rr) o₂
exact hl.node3L hr.left hr.right this.1 this.2
no goals
0ebe7132c42c2866
Nat.bitIndices_sorted
Mathlib/Data/Nat/BitIndices.lean
theorem bitIndices_sorted {n : ℕ} : n.bitIndices.Sorted (· < ·)
n : ℕ ⊢ Sorted (fun x1 x2 => x1 < x2) n.bitIndices
induction' n using binaryRec with b n hs
case z ⊢ Sorted (fun x1 x2 => x1 < x2) (bitIndices 0) case f b : Bool n : ℕ hs : Sorted (fun x1 x2 => x1 < x2) n.bitIndices ⊢ Sorted (fun x1 x2 => x1 < x2) (bit b n).bitIndices
af76496aedb3f73c
WeierstrassCurve.exists_variableChange_of_char_ne_two_or_three
Mathlib/AlgebraicGeometry/EllipticCurve/IsomOfJ.lean
private lemma exists_variableChange_of_char_ne_two_or_three {p : ℕ} [CharP F p] (hchar2 : p ≠ 2) (hchar3 : p ≠ 3) (heq : E.j = E'.j) : ∃ C : VariableChange F, E.variableChange C = E'
case h.a₃ F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E✝ E'✝ : WeierstrassCurve F inst✝⁴ : E✝.IsElliptic inst✝³ : E'✝.IsElliptic p : ℕ inst✝² : CharP F p hchar2 : 2 ≠ 0 hchar3 : 3 ≠ 0 this✝³ : NeZero 2 this✝² : NeZero 4 this✝¹ : NeZero 6 this✝ : Invertible 2 := invertibleOfNonzero hchar2 this : Invertible 3 := invertibleOfNonzero hchar3 E : WeierstrassCurve F inst✝¹ : E.IsElliptic h✝¹ : E.IsShortNF E' : WeierstrassCurve F inst✝ : E'.IsElliptic h✝ : E'.IsShortNF heq : E.a₄ ^ 3 * E'.a₆ ^ 2 = E'.a₄ ^ 3 * E.a₆ ^ 2 ha₄ : E.a₄ = 0 ha₆ : E.a₆ ≠ 0 ha₄' : E'.a₄ = 0 ha₆' : E'.a₆ ≠ 0 u : F hu : u ^ 6 = E.a₆ / E'.a₆ hu0 : u ≠ 0 ⊢ (E.variableChange { u := Units.mk0 u hu0, r := 0, s := 0, t := 0 }).a₃ = E'.a₃
simp
no goals
5599f8482dc6841e
BitVec.getLsbD_ge
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem getLsbD_ge (x : BitVec w) (i : Nat) (ge : w ≤ i) : getLsbD x i = false
w : Nat x : BitVec w i : Nat ge : w ≤ i ⊢ x.getLsbD i = false
let ⟨x, x_lt⟩ := x
w : Nat x✝ : BitVec w i : Nat ge : w ≤ i x : Nat x_lt : x < 2 ^ w ⊢ { toFin := ⟨x, x_lt⟩ }.getLsbD i = false
9350744387bd6450
ContDiffWithinAt.eventually
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
theorem ContDiffWithinAt.eventually (h : ContDiffWithinAt 𝕜 n f s x) (hn : n ≠ ∞) : ∀ᶠ y in 𝓝[insert x s] x, ContDiffWithinAt 𝕜 n f s y
𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E n : WithTop ℕ∞ h : ContDiffWithinAt 𝕜 n f s x hn : n ≠ ∞ ⊢ ∀ᶠ (y : E) in 𝓝[insert x s] x, ContDiffWithinAt 𝕜 n f s y
rcases h.contDiffOn le_rfl (by simp [hn]) with ⟨u, hu, _, hd⟩
case intro.intro.intro 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E n : WithTop ℕ∞ h : ContDiffWithinAt 𝕜 n f s x hn : n ≠ ∞ u : Set E hu : u ∈ 𝓝[insert x s] x left✝ : u ⊆ insert x s hd : ContDiffOn 𝕜 n f u ⊢ ∀ᶠ (y : E) in 𝓝[insert x s] x, ContDiffWithinAt 𝕜 n f s y
8e6eeba4d8f14914
CategoryTheory.GradedObject.mapBifunctor_triangle
Mathlib/CategoryTheory/GradedObject/Unitor.lean
lemma mapBifunctor_triangle (triangle : ∀ (X₁ : C₁) (X₃ : C₃), ((associator.hom.app X₁).app X₂).app X₃ ≫ (G.obj X₁).map (e₂.hom.app X₃) = (G.map (e₁.hom.app X₁)).app X₃) : (mapBifunctorAssociator associator τ.ρ₁₂ τ.ρ₂₃ X₁ ((single₀ I₂).obj X₂) X₃).hom ≫ mapBifunctorMapMap G π (𝟙 X₁) (mapBifunctorLeftUnitor F₂ X₂ e₂ τ.p₂₃ τ.h₃ X₃).hom = mapBifunctorMapMap G π (mapBifunctorRightUnitor F₁ X₂ e₁ τ.p₁₂ τ.h₁ X₁).hom (𝟙 X₃)
case h.h.e_a.e_a.e_a.e_a C₁ : Type u_1 C₂ : Type u_2 C₃ : Type u_3 D : Type u_4 I₁ : Type u_5 I₂ : Type u_6 I₃ : Type u_7 J : Type u_8 inst✝¹⁵ : Category.{u_12, u_1} C₁ inst✝¹⁴ : Category.{u_11, u_2} C₂ inst✝¹³ : Category.{u_10, u_3} C₃ inst✝¹² : Category.{u_9, u_4} D inst✝¹¹ : Zero I₂ inst✝¹⁰ : DecidableEq I₂ inst✝⁹ : HasInitial C₂ F₁ : C₁ ⥤ C₂ ⥤ C₁ F₂ : C₂ ⥤ C₃ ⥤ C₃ G : C₁ ⥤ C₃ ⥤ D associator : bifunctorComp₁₂ F₁ G ≅ bifunctorComp₂₃ G F₂ X₂ : C₂ e₁ : F₁.flip.obj X₂ ≅ 𝟭 C₁ e₂ : F₂.obj X₂ ≅ 𝟭 C₃ inst✝⁸ : ∀ (X₁ : C₁), PreservesColimit (Functor.empty C₂) (F₁.obj X₁) inst✝⁷ : ∀ (X₃ : C₃), PreservesColimit (Functor.empty C₂) (F₂.flip.obj X₃) r : I₁ × I₂ × I₃ → J π : I₁ × I₃ → J τ : TriangleIndexData r π X₁ : GradedObject I₁ C₁ X₃ : GradedObject I₃ C₃ inst✝⁶ : (((mapBifunctor F₁ I₁ I₂).obj X₁).obj ((single₀ I₂).obj X₂)).HasMap τ.p₁₂ inst✝⁵ : (((mapBifunctor G I₁ I₃).obj (mapBifunctorMapObj F₁ τ.p₁₂ X₁ ((single₀ I₂).obj X₂))).obj X₃).HasMap π inst✝⁴ : (((mapBifunctor F₂ I₂ I₃).obj ((single₀ I₂).obj X₂)).obj X₃).HasMap τ.p₂₃ inst✝³ : (((mapBifunctor G I₁ I₃).obj X₁).obj (mapBifunctorMapObj F₂ τ.p₂₃ ((single₀ I₂).obj X₂) X₃)).HasMap π inst✝² : HasGoodTrifunctor₁₂Obj F₁ G τ.ρ₁₂ X₁ ((single₀ I₂).obj X₂) X₃ inst✝¹ : HasGoodTrifunctor₂₃Obj G F₂ τ.ρ₂₃ X₁ ((single₀ I₂).obj X₂) X₃ inst✝ : (((mapBifunctor G I₁ I₃).obj X₁).obj X₃).HasMap π triangle : ∀ (X₁ : C₁) (X₃ : C₃), ((associator.hom.app X₁).app X₂).app X₃ ≫ (G.obj X₁).map (e₂.hom.app X₃) = (G.map (e₁.hom.app X₁)).app X₃ j : J i₁ : I₁ i₃ : I₃ hj : π (i₁, i₃) = j ⊢ (G.map ((F₁.obj (X₁ i₁)).map (singleObjApplyIso 0 X₂).hom)).app (X₃ i₃) ≫ ((associator.hom.app (X₁ i₁)).app X₂).app (X₃ i₃) = ((associator.hom.app (X₁ i₁)).app ((single₀ I₂).obj X₂ 0)).app (X₃ i₃) ≫ (G.obj (X₁ i₁)).map ((F₂.map (singleObjApplyIso 0 X₂).hom).app (X₃ i₃))
apply NatTrans.naturality_app (associator.hom.app (X₁ i₁))
no goals
59516bb5bca5f0f8
Complex.HadamardThreeLines.mem_verticalClosedStrip_of_scale_id_mem_verticalClosedStrip
Mathlib/Analysis/Complex/Hadamard.lean
/-- If z is on the closed strip `re ⁻¹' [l, u]`, then `(z - l) / (u - l)` is on the closed strip `re ⁻¹' [0, 1]`. -/ lemma mem_verticalClosedStrip_of_scale_id_mem_verticalClosedStrip {z : ℂ} {l u : ℝ} (hul : l < u) (hz : z ∈ verticalClosedStrip l u) : z / (u - l) - l / (u - l) ∈ verticalClosedStrip 0 1
z : ℂ l u : ℝ hul : l < u hz : z ∈ re ⁻¹' Icc l u ⊢ u - l ≠ 0
linarith
no goals
1ee8b1bc34ef4d29
Filter.exists_seq_monotone_tendsto_atTop_atTop
Mathlib/Order/Filter/AtTopBot/CountablyGenerated.lean
theorem exists_seq_monotone_tendsto_atTop_atTop (α : Type*) [Preorder α] [Nonempty α] [IsDirected α (· ≤ ·)] [(atTop : Filter α).IsCountablyGenerated] : ∃ xs : ℕ → α, Monotone xs ∧ Tendsto xs atTop atTop
case intro α : Type u_3 inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : IsDirected α fun x1 x2 => x1 ≤ x2 inst✝ : atTop.IsCountablyGenerated ys : ℕ → α h : Tendsto ys atTop atTop c : α → α → α hleft : ∀ (a b : α), a ≤ c a b hright : ∀ (a b : α), b ≤ c a b xs : ℕ → α := fun n => List.foldl (fun x n => c x (ys n)) (ys 0) (List.range n) ⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop
have hsucc (n : ℕ) : xs (n + 1) = c (xs n) (ys n) := by simp [xs, List.range_succ]
case intro α : Type u_3 inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : IsDirected α fun x1 x2 => x1 ≤ x2 inst✝ : atTop.IsCountablyGenerated ys : ℕ → α h : Tendsto ys atTop atTop c : α → α → α hleft : ∀ (a b : α), a ≤ c a b hright : ∀ (a b : α), b ≤ c a b xs : ℕ → α := fun n => List.foldl (fun x n => c x (ys n)) (ys 0) (List.range n) hsucc : ∀ (n : ℕ), xs (n + 1) = c (xs n) (ys n) ⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop
cfd85fba236c098c
BoxIntegral.integralSum_neg
Mathlib/Analysis/BoxIntegral/Basic.lean
theorem integralSum_neg (f : ℝⁿ → E) (vol : ι →ᵇᵃ E →L[ℝ] F) (π : TaggedPrepartition I) : integralSum (-f) vol π = -integralSum f vol π
ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I : Box ι f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π : TaggedPrepartition I ⊢ integralSum (-f) vol π = -integralSum f vol π
simp only [integralSum, Pi.neg_apply, (vol _).map_neg, Finset.sum_neg_distrib]
no goals
25debb8c308b0182
tendsto_integral_exp_inner_smul_cocompact_of_continuous_compact_support
Mathlib/Analysis/Fourier/RiemannLebesgueLemma.lean
theorem tendsto_integral_exp_inner_smul_cocompact_of_continuous_compact_support (hf1 : Continuous f) (hf2 : HasCompactSupport f) : Tendsto (fun w : V => ∫ v : V, 𝐞 (-⟪v, w⟫) • f v) (cocompact V) (𝓝 0)
case intro.intro.intro.intro.intro.intro.refine_1.hf E : Type u_1 V : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E f : V → E inst✝⁴ : NormedAddCommGroup V inst✝³ : MeasurableSpace V inst✝² : BorelSpace V inst✝¹ : InnerProductSpace ℝ V inst✝ : FiniteDimensional ℝ V hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ ⦃a b : V⦄, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖i w‖ = 1 / (2 * ‖w‖) this : ‖1 / 2‖ = 2⁻¹ bdA : ∀ v ∈ A, ‖‖f v - f (v + i w)‖‖ ≤ ε / ↑B ⊢ Continuous fun x => ‖f x - f (x + i w)‖
exact continuous_norm.comp <| hf1.sub <| hf1.comp <| continuous_id'.add continuous_const
no goals
e1b4f22b1d3b4e6d
Vector.take_mk
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem take_mk (a : Array α) (h : a.size = n) (m) : (Vector.mk a h).take m = Vector.mk (a.take m) (by simp [h]) := rfl
α : Type ?u.17462 n : Nat a : Array α h : a.size = n m : Nat ⊢ (a.take m).size = min m n
simp [h]
no goals
1572c49faa65a5c2
eventually_residual_liouville
Mathlib/NumberTheory/Transcendental/Liouville/Residual.lean
theorem eventually_residual_liouville : ∀ᶠ x in residual ℝ, Liouville x
case h.e'_4.h.e'_3 r : ℚ n : ℕ ⊢ ↑r.num * 2 / (↑r.den * 2) = ↑r
norm_cast
case h.e'_4.h.e'_3 r : ℚ n : ℕ ⊢ Rat.divInt (r.num * 2) ↑(r.den * 2) = r
e53ba645462ad542