name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
continuous_zpow
Mathlib/Topology/Algebra/Group/Basic.lean
theorem continuous_zpow : ∀ z : ℤ, Continuous fun a : G => a ^ z | Int.ofNat n => by simpa using continuous_pow n | Int.negSucc n => by simpa using (continuous_pow (n + 1)).inv
G : Type w inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : IsTopologicalGroup G n : ℕ ⊢ Continuous fun a => a ^ Int.ofNat n
simpa using continuous_pow n
no goals
c3ebc7d6b2302a3b
Topology.IsLower.isTopologicalSpace_basis
Mathlib/Topology/Order/LowerUpperTopology.lean
lemma isTopologicalSpace_basis (U : Set α) : IsOpen U ↔ U = univ ∨ ∃ a, (Ici a)ᶜ = U
case h.a α : Type u_1 inst✝¹ : CompleteLinearOrder α t : TopologicalSpace α inst✝ : IsLower α U : Set α hU : ¬U = univ hO : IsOpen U S : Set (Set α) hS1 : S ⊆ insert univ {s | ∃ a, (Ici a)ᶜ = s} hS2 : U = ⋃₀ S hUS : univ ∉ S b : α hb : b ∈ ⋂₀ (compl '' S) c : α hc : c ∈ {a | (Ici a)ᶜ ∈ S} ⊢ c ≤ b
simp only [sInter_image, mem_iInter] at hb
case h.a α : Type u_1 inst✝¹ : CompleteLinearOrder α t : TopologicalSpace α inst✝ : IsLower α U : Set α hU : ¬U = univ hO : IsOpen U S : Set (Set α) hS1 : S ⊆ insert univ {s | ∃ a, (Ici a)ᶜ = s} hS2 : U = ⋃₀ S hUS : univ ∉ S b c : α hc : c ∈ {a | (Ici a)ᶜ ∈ S} hb : ∀ i ∈ S, b ∈ iᶜ ⊢ c ≤ b
f1c47d20246a5fbc
LinearMap.continuousAt_zero_of_locally_bounded
Mathlib/Analysis/LocallyConvex/ContinuousOfBounded.lean
theorem LinearMap.continuousAt_zero_of_locally_bounded (f : E →ₛₗ[σ] F) (hf : ∀ s, IsVonNBounded 𝕜 s → IsVonNBounded 𝕜' (f '' s)) : ContinuousAt f 0
case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 𝕜' : Type u_2 E : Type u_3 F : Type u_4 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : UniformSpace E inst✝⁹ : UniformAddGroup E inst✝⁸ : AddCommGroup F inst✝⁷ : UniformSpace F inst✝⁶ : FirstCountableTopology E inst✝⁵ : RCLike 𝕜 inst✝⁴ : Module 𝕜 E inst✝³ : ContinuousSMul 𝕜 E inst✝² : RCLike 𝕜' inst✝¹ : Module 𝕜' F inst✝ : ContinuousSMul 𝕜' F σ : 𝕜 →+* 𝕜' f : E →ₛₗ[σ] F hf : ∀ (s : Set E), IsVonNBounded 𝕜 s → IsVonNBounded 𝕜' (⇑f '' s) b : ℕ → Set E bE1 : ∀ (i : ℕ), b i ∈ 𝓝 0 ∧ Balanced 𝕜 (b i) bE : (𝓝 0).HasAntitoneBasis fun i => b i bE' : (𝓝 0).HasBasis (fun x => x ≠ 0) fun n => (↑n)⁻¹ • b n V : Set F hV : V ∈ 𝓝 0 u : ℕ → E hu : ∀ (ia : ℕ), ia ≠ 0 → u ia ∈ (↑ia)⁻¹ • b ia hu' : ∀ (ia : ℕ), ia ≠ 0 → f (u ia) ∉ V h_tendsto : Tendsto (fun n => ↑n • u n) atTop (𝓝 0) h_bounded : IsVonNBounded 𝕜 (Set.range fun n => ↑n • u n) r : ℝ hr : r > 0 h' : ∀ (c : 𝕜'), r ≤ ‖c‖ → (⇑f '' Set.range fun n => ↑n • u n) ⊆ c • V n : ℕ hn : r < ↑n ⊢ False
have h1 : r ≤ ‖(n : 𝕜')‖ := by rw [RCLike.norm_natCast] exact hn.le
case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 𝕜' : Type u_2 E : Type u_3 F : Type u_4 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : UniformSpace E inst✝⁹ : UniformAddGroup E inst✝⁸ : AddCommGroup F inst✝⁷ : UniformSpace F inst✝⁶ : FirstCountableTopology E inst✝⁵ : RCLike 𝕜 inst✝⁴ : Module 𝕜 E inst✝³ : ContinuousSMul 𝕜 E inst✝² : RCLike 𝕜' inst✝¹ : Module 𝕜' F inst✝ : ContinuousSMul 𝕜' F σ : 𝕜 →+* 𝕜' f : E →ₛₗ[σ] F hf : ∀ (s : Set E), IsVonNBounded 𝕜 s → IsVonNBounded 𝕜' (⇑f '' s) b : ℕ → Set E bE1 : ∀ (i : ℕ), b i ∈ 𝓝 0 ∧ Balanced 𝕜 (b i) bE : (𝓝 0).HasAntitoneBasis fun i => b i bE' : (𝓝 0).HasBasis (fun x => x ≠ 0) fun n => (↑n)⁻¹ • b n V : Set F hV : V ∈ 𝓝 0 u : ℕ → E hu : ∀ (ia : ℕ), ia ≠ 0 → u ia ∈ (↑ia)⁻¹ • b ia hu' : ∀ (ia : ℕ), ia ≠ 0 → f (u ia) ∉ V h_tendsto : Tendsto (fun n => ↑n • u n) atTop (𝓝 0) h_bounded : IsVonNBounded 𝕜 (Set.range fun n => ↑n • u n) r : ℝ hr : r > 0 h' : ∀ (c : 𝕜'), r ≤ ‖c‖ → (⇑f '' Set.range fun n => ↑n • u n) ⊆ c • V n : ℕ hn : r < ↑n h1 : r ≤ ‖↑n‖ ⊢ False
eb01391c7362c5dd
WeierstrassCurve.Jacobian.neg_of_Z_eq_zero'
Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean
lemma neg_of_Z_eq_zero' {P : Fin 3 → R} (hPz : P z = 0) : W'.neg P = ![P x, -P y, 0]
R : Type r inst✝ : CommRing R W' : Jacobian R P : Fin 3 → R hPz : P z = 0 ⊢ W'.neg P = ![P x, -P y, 0]
rw [neg, negY_of_Z_eq_zero hPz, hPz]
no goals
2cd2c918df78da3e
Grp_.isPullback
Mathlib/CategoryTheory/Monoidal/Grp_.lean
theorem isPullback (A : Grp_ C) : IsPullback (A.mul ▷ A.X) ((α_ A.X A.X A.X).hom ≫ (A.X ◁ A.mul)) A.mul A.mul where w
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : ChosenFiniteProducts C A : Grp_ C s : PullbackCone A.mul A.mul ⊢ lift (lift (s.snd ≫ fst A.X A.X ≫ A.inv) (s.fst ≫ fst A.X A.X) ≫ A.mul) (s.fst ≫ snd A.X A.X) ≫ A.mul = s.snd ≫ snd A.X A.X
have : lift (s.snd ≫ fst _ _ ≫ A.inv) (s.fst ≫ fst _ _) ≫ A.mul = lift (s.snd ≫ snd _ _) (s.fst ≫ snd _ _ ≫ A.inv) ≫ A.mul := by rw [← assoc s.fst, eq_lift_inv_right, lift_lift_assoc, ← assoc s.snd, lift_inv_left_eq, lift_comp_fst_snd, lift_comp_fst_snd, s.condition]
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : ChosenFiniteProducts C A : Grp_ C s : PullbackCone A.mul A.mul this : lift (s.snd ≫ fst A.X A.X ≫ A.inv) (s.fst ≫ fst A.X A.X) ≫ A.mul = lift (s.snd ≫ snd A.X A.X) (s.fst ≫ snd A.X A.X ≫ A.inv) ≫ A.mul ⊢ lift (lift (s.snd ≫ fst A.X A.X ≫ A.inv) (s.fst ≫ fst A.X A.X) ≫ A.mul) (s.fst ≫ snd A.X A.X) ≫ A.mul = s.snd ≫ snd A.X A.X
d4cb31ef2ed58598
NumberField.mixedEmbedding.iUnion_negAt_plusPart_union
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
theorem iUnion_negAt_plusPart_union : (⋃ s, negAt s '' (plusPart A)) ∪ (A ∩ (⋃ w, {x | x.1 w = 0})) = A
case h.refine_1.inr K : Type u_1 inst✝ : Field K A : Set (mixedSpace K) hA : ∀ (x : mixedSpace K), x ∈ A ↔ (fun w => |x.1 w|, x.2) ∈ A x : mixedSpace K h : x ∈ A ∧ ∃ i, x ∈ {x | x.1 i = 0} ⊢ x ∈ A
exact h.left
no goals
618707fcf4bf60a6
Algebra.FormallySmooth.of_pi
Mathlib/RingTheory/Smooth/Pi.lean
theorem of_pi [FormallySmooth R (Π i, A i)] (i) : FormallySmooth R (A i)
R : Type (max u v) I : Type u A : I → Type (max u v) inst✝³ : CommRing R inst✝² : (i : I) → CommRing (A i) inst✝¹ : (i : I) → Algebra R (A i) inst✝ : FormallySmooth R ((i : I) → A i) i : I ⊢ FormallySmooth R (A i)
fapply FormallySmooth.of_split (Pi.evalAlgHom R A i)
case g R : Type (max u v) I : Type u A : I → Type (max u v) inst✝³ : CommRing R inst✝² : (i : I) → CommRing (A i) inst✝¹ : (i : I) → Algebra R (A i) inst✝ : FormallySmooth R ((i : I) → A i) i : I ⊢ A i →ₐ[R] ((i : I) → A i) ⧸ RingHom.ker (Pi.evalAlgHom R A i).toRingHom ^ 2 case hg R : Type (max u v) I : Type u A : I → Type (max u v) inst✝³ : CommRing R inst✝² : (i : I) → CommRing (A i) inst✝¹ : (i : I) → Algebra R (A i) inst✝ : FormallySmooth R ((i : I) → A i) i : I ⊢ (Pi.evalAlgHom R A i).kerSquareLift.comp ?g = AlgHom.id R (A i)
05006a1a091ecde0
ascPochhammer_eval_zero
Mathlib/RingTheory/Polynomial/Pochhammer.lean
theorem ascPochhammer_eval_zero {n : ℕ} : (ascPochhammer S n).eval 0 = if n = 0 then 1 else 0
case zero S : Type u inst✝ : Semiring S ⊢ eval 0 (ascPochhammer S 0) = if 0 = 0 then 1 else 0
simp
no goals
6def024cbe9e9070
ConvexOn.slope_mono_adjacent
Mathlib/Analysis/Convex/Slope.lean
theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn 𝕜 s f) {x y z : 𝕜} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ a + b = 1
field_simp [a, b]
no goals
bc57f356e81e7bde
Batteries.RBNode.upperBound?_eq_find?
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Lemmas.lean
theorem upperBound?_eq_find? {t : RBNode α} {cut} (ub) (H : t.find? cut = some x) : t.upperBound? cut ub = some x
case node.h_1 α : Type u_1 x : α cut : α → Ordering c : RBColor a : RBNode α y : α b : RBNode α iha : ∀ (ub : Option α), find? cut a = some x → upperBound? cut a ub = some x ihb : ∀ (ub : Option α), find? cut b = some x → upperBound? cut b ub = some x ub : Option α x✝ : Ordering heq✝ : cut y = Ordering.lt H : find? cut a = some x ⊢ upperBound? cut a (some y) = some x
apply iha _ H
no goals
4f0bd97d16fa95f5
Equiv.Perm.ofSubtype_eq_iff
Mathlib/GroupTheory/Perm/Support.lean
/-- A permutation c is the extension of a restriction of g to s iff its support is contained in s and its restriction is that of g -/ lemma ofSubtype_eq_iff {g c : Equiv.Perm α} {s : Finset α} (hg : ∀ x, x ∈ s ↔ g x ∈ s) : ofSubtype (g.subtypePerm hg) = c ↔ c.support ≤ s ∧ ∀ (hc' : ∀ x, x ∈ s ↔ c x ∈ s), c.subtypePerm hc' = g.subtypePerm hg
case mpr.intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α g c : Perm α s : Finset α hg : ∀ (x : α), x ∈ s ↔ g x ∈ s hc : c.support ≤ s h : (∀ (x : α), x ∈ s ↔ c x ∈ s) → ∀ a ∈ s, c a = g a a : α ⊢ (ofSubtype (g.subtypePerm hg)) a = c a
specialize h (isInvariant_of_support_le hc)
case mpr.intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α g c : Perm α s : Finset α hg : ∀ (x : α), x ∈ s ↔ g x ∈ s hc : c.support ≤ s a : α h : ∀ a ∈ s, c a = g a ⊢ (ofSubtype (g.subtypePerm hg)) a = c a
ab1e7a47010d0039
Algebra.FormallySmooth.localization_base
Mathlib/RingTheory/Smooth/Basic.lean
theorem localization_base [FormallySmooth R Sₘ] : FormallySmooth Rₘ Sₘ
case comp_surjective R Rₘ Sₘ : Type u inst✝¹⁰ : CommRing R inst✝⁹ : CommRing Rₘ inst✝⁸ : CommRing Sₘ M : Submonoid R inst✝⁷ : Algebra R Sₘ inst✝⁶ : Algebra R Rₘ inst✝⁵ : Algebra Rₘ Sₘ inst✝⁴ : IsScalarTower R Rₘ Sₘ inst✝³ : IsLocalization M Rₘ inst✝² : FormallySmooth R Sₘ Q : Type u inst✝¹ : CommRing Q inst✝ : Algebra Rₘ Q I : Ideal Q e : I ^ 2 = ⊥ f✝ : Sₘ →ₐ[Rₘ] Q ⧸ I this✝ : Algebra R Q := ((algebraMap Rₘ Q).comp (algebraMap R Rₘ)).toAlgebra this : IsScalarTower R Rₘ Q := IsScalarTower.of_algebraMap_eq' rfl f : Sₘ →ₐ[Rₘ] Q := let __src := lift I ⋯ (AlgHom.restrictScalars R f✝); { toRingHom := __src.toRingHom, commutes' := ⋯ } ⊢ ∃ a, (Ideal.Quotient.mkₐ Rₘ I).comp a = f✝
use f
case h R Rₘ Sₘ : Type u inst✝¹⁰ : CommRing R inst✝⁹ : CommRing Rₘ inst✝⁸ : CommRing Sₘ M : Submonoid R inst✝⁷ : Algebra R Sₘ inst✝⁶ : Algebra R Rₘ inst✝⁵ : Algebra Rₘ Sₘ inst✝⁴ : IsScalarTower R Rₘ Sₘ inst✝³ : IsLocalization M Rₘ inst✝² : FormallySmooth R Sₘ Q : Type u inst✝¹ : CommRing Q inst✝ : Algebra Rₘ Q I : Ideal Q e : I ^ 2 = ⊥ f✝ : Sₘ →ₐ[Rₘ] Q ⧸ I this✝ : Algebra R Q := ((algebraMap Rₘ Q).comp (algebraMap R Rₘ)).toAlgebra this : IsScalarTower R Rₘ Q := IsScalarTower.of_algebraMap_eq' rfl f : Sₘ →ₐ[Rₘ] Q := let __src := lift I ⋯ (AlgHom.restrictScalars R f✝); { toRingHom := __src.toRingHom, commutes' := ⋯ } ⊢ (Ideal.Quotient.mkₐ Rₘ I).comp f = f✝
03f56deeca80d586
Compactum.cl_cl
Mathlib/Topology/Category/Compactum.lean
theorem cl_cl {X : Compactum} (A : Set X) : cl (cl A) ⊆ cl A
X : Compactum A : Set X.A ⊢ Compactum.cl (Compactum.cl A) ⊆ Compactum.cl A
rintro _ ⟨F, hF, rfl⟩
case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) ⊢ X.str F ∈ Compactum.cl A
1c30fb7238f2120d
Subalgebra.isSimpleOrder_of_finrank
Mathlib/LinearAlgebra/FiniteDimensional.lean
theorem Subalgebra.isSimpleOrder_of_finrank (hr : finrank F E = 2) : IsSimpleOrder (Subalgebra F E) := let i := nontrivial_of_finrank_pos (zero_lt_two.trans_eq hr.symm) { toNontrivial := ⟨⟨⊥, ⊤, fun h => by cases hr.symm.trans (Subalgebra.bot_eq_top_iff_finrank_eq_one.1 h)⟩⟩ eq_bot_or_eq_top
case «2».h F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝² : FiniteDimensional F E this✝¹ : FiniteDimensional F ↥S h : finrank F ↥S = finrank F E this✝ : 2 ≤ 2 this : 0 < 2 ⊢ S = ⊤
rw [← Algebra.toSubmodule_eq_top]
case «2».h F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝² : FiniteDimensional F E this✝¹ : FiniteDimensional F ↥S h : finrank F ↥S = finrank F E this✝ : 2 ≤ 2 this : 0 < 2 ⊢ toSubmodule S = ⊤
c7e4894f93ed9891
Real.vector_fourierIntegral_eq_integral_exp_smul
Mathlib/Analysis/Fourier/FourierTransform.lean
theorem vector_fourierIntegral_eq_integral_exp_smul {V : Type*} [AddCommGroup V] [Module ℝ V] [MeasurableSpace V] {W : Type*} [AddCommGroup W] [Module ℝ W] (L : V →ₗ[ℝ] W →ₗ[ℝ] ℝ) (μ : Measure V) (f : V → E) (w : W) : VectorFourier.fourierIntegral fourierChar μ L f w = ∫ v : V, Complex.exp (↑(-2 * π * L v w) * Complex.I) • f v ∂μ
E : Type u_1 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E V : Type u_2 inst✝⁴ : AddCommGroup V inst✝³ : Module ℝ V inst✝² : MeasurableSpace V W : Type u_3 inst✝¹ : AddCommGroup W inst✝ : Module ℝ W L : V →ₗ[ℝ] W →ₗ[ℝ] ℝ μ : Measure V f : V → E w : W ⊢ VectorFourier.fourierIntegral 𝐞 μ L f w = ∫ (v : V), Complex.exp (↑(-2 * π * (L v) w) * Complex.I) • f v ∂μ
simp_rw [VectorFourier.fourierIntegral, Circle.smul_def, Real.fourierChar_apply, mul_neg, neg_mul]
no goals
9df2ea4a25cbef20
ContinuousMap.starSubalgebra_topologicalClosure_eq_top_of_separatesPoints
Mathlib/Topology/ContinuousMap/StoneWeierstrass.lean
theorem ContinuousMap.starSubalgebra_topologicalClosure_eq_top_of_separatesPoints (A : StarSubalgebra 𝕜 C(X, 𝕜)) (hA : A.SeparatesPoints) : A.topologicalClosure = ⊤
𝕜 : Type u_1 X : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : A.SeparatesPoints I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealCLM A₀ : Submodule ℝ C(X, ℝ) := Submodule.comap I (Submodule.restrictScalars ℝ (Subalgebra.toSubmodule A.toSubalgebra)) SW : A₀.topologicalClosure = ⊤ h₁ : Submodule.map (↑(ContinuousLinearMap.compLeftContinuousCompact X ofRealCLM)) A₀.topologicalClosure ≤ (Submodule.map (↑(ContinuousLinearMap.compLeftContinuousCompact X ofRealCLM)) A₀).topologicalClosure h₂ : Submodule.map I (Submodule.comap I (Submodule.restrictScalars ℝ (Subalgebra.toSubmodule A.toSubalgebra))) ≤ Submodule.restrictScalars ℝ (Subalgebra.toSubmodule A.toSubalgebra) ⊢ Submodule.map I A₀.topologicalClosure ≤ (Submodule.restrictScalars ℝ (Subalgebra.toSubmodule A.toSubalgebra)).topologicalClosure
exact h₁.trans (Submodule.topologicalClosure_mono h₂)
no goals
587f29aadba1393d
Set.image_update_uIcc_right
Mathlib/Order/Interval/Set/Pi.lean
theorem image_update_uIcc_right (f : ∀ i, α i) (i : ι) (b : α i) : update f i '' uIcc (f i) b = uIcc f (update f i b)
ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Lattice (α i) inst✝ : DecidableEq ι f : (i : ι) → α i i : ι b : α i ⊢ update f i '' uIcc (f i) b = uIcc f (update f i b)
simpa using image_update_uIcc f i (f i) b
no goals
b3851f77be639435
MeasureTheory.continuousWithinAt_of_dominated
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem continuousWithinAt_of_dominated {F : X → α → G} {x₀ : X} {bound : α → ℝ} {s : Set X} (hF_meas : ∀ᶠ x in 𝓝[s] x₀, AEStronglyMeasurable (F x) μ) (h_bound : ∀ᶠ x in 𝓝[s] x₀, ∀ᵐ a ∂μ, ‖F x a‖ ≤ bound a) (bound_integrable : Integrable bound μ) (h_cont : ∀ᵐ a ∂μ, ContinuousWithinAt (fun x => F x a) s x₀) : ContinuousWithinAt (fun x => ∫ a, F x a ∂μ) s x₀
case pos α : Type u_1 G : Type u_5 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace ℝ G m : MeasurableSpace α μ : Measure α X : Type u_6 inst✝¹ : TopologicalSpace X inst✝ : FirstCountableTopology X F : X → α → G x₀ : X bound : α → ℝ s : Set X hF_meas : ∀ᶠ (x : X) in 𝓝[s] x₀, AEStronglyMeasurable (F x) μ h_bound : ∀ᶠ (x : X) in 𝓝[s] x₀, ∀ᵐ (a : α) ∂μ, ‖F x a‖ ≤ bound a bound_integrable : Integrable bound μ h_cont : ∀ᵐ (a : α) ∂μ, ContinuousWithinAt (fun x => F x a) s x₀ hG : CompleteSpace G ⊢ ContinuousWithinAt (fun x => if h : True then if hf : Integrable (fun a => F x a) μ then L1.integralCLM (Integrable.toL1 (fun a => F x a) hf) else 0 else 0) s x₀
exact continuousWithinAt_setToFun_of_dominated (dominatedFinMeasAdditive_weightedSMul μ) hF_meas h_bound bound_integrable h_cont
no goals
d77cd827192ec8fd
Polynomial.X_pow_mem_lifts
Mathlib/Algebra/Polynomial/Lifts.lean
theorem X_pow_mem_lifts (f : R →+* S) (n : ℕ) : (X ^ n : S[X]) ∈ lifts f := ⟨X ^ n, by simp only [coe_mapRingHom, map_pow, Set.mem_univ, Subsemiring.coe_top, eq_self_iff_true, map_X, and_self_iff]⟩
R : Type u inst✝¹ : Semiring R S : Type v inst✝ : Semiring S f : R →+* S n : ℕ ⊢ (mapRingHom f) (X ^ n) = X ^ n
simp only [coe_mapRingHom, map_pow, Set.mem_univ, Subsemiring.coe_top, eq_self_iff_true, map_X, and_self_iff]
no goals
a8ad5606ae23bf76
Metric.cobounded_eq_cocompact
Mathlib/Topology/MetricSpace/Bounded.lean
theorem Metric.cobounded_eq_cocompact [ProperSpace α] : cobounded α = cocompact α
α : Type u inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α a✝ : Nontrivial α inhabited_h : Inhabited α ⊢ cobounded α = cocompact α
exact cobounded_le_cocompact.antisymm <| (hasBasis_cobounded_compl_closedBall default).ge_iff.2 fun _ _ ↦ (isCompact_closedBall _ _).compl_mem_cocompact
no goals
2cf5377ba4d7d105
CategoryTheory.ShortComplex.RightHomologyMapData.quasiIso_iff
Mathlib/Algebra/Homology/ShortComplex/QuasiIso.lean
lemma RightHomologyMapData.quasiIso_iff {φ : S₁ ⟶ S₂} {h₁ : S₁.RightHomologyData} {h₂ : S₂.RightHomologyData} (γ : RightHomologyMapData φ h₁ h₂) : QuasiIso φ ↔ IsIso γ.φH
case mp C : Type u_2 inst✝³ : Category.{u_1, u_2} C inst✝² : HasZeroMorphisms C S₁ S₂ : ShortComplex C inst✝¹ : S₁.HasHomology inst✝ : S₂.HasHomology φ : S₁ ⟶ S₂ h₁ : S₁.RightHomologyData h₂ : S₂.RightHomologyData γ : RightHomologyMapData φ h₁ h₂ ⊢ IsIso (h₁.homologyIso.hom ≫ γ.φH ≫ h₂.homologyIso.inv) → IsIso γ.φH
intro h
case mp C : Type u_2 inst✝³ : Category.{u_1, u_2} C inst✝² : HasZeroMorphisms C S₁ S₂ : ShortComplex C inst✝¹ : S₁.HasHomology inst✝ : S₂.HasHomology φ : S₁ ⟶ S₂ h₁ : S₁.RightHomologyData h₂ : S₂.RightHomologyData γ : RightHomologyMapData φ h₁ h₂ h : IsIso (h₁.homologyIso.hom ≫ γ.φH ≫ h₂.homologyIso.inv) ⊢ IsIso γ.φH
dcb9895c8bb79cf1
Ideal.sum_ramification_inertia
Mathlib/NumberTheory/RamificationInertia/Basic.lean
theorem sum_ramification_inertia (K L : Type*) [Field K] [Field L] [IsDedekindDomain R] [Algebra R K] [IsFractionRing R K] [Algebra S L] [IsFractionRing S L] [Algebra K L] [Algebra R L] [IsScalarTower R S L] [IsScalarTower R K L] [Module.Finite R S] [p.IsMaximal] (hp0 : p ≠ ⊥) : (∑ P ∈ (factors (map (algebraMap R S) p)).toFinset, ramificationIdx (algebraMap R S) p P * inertiaDeg p P) = finrank K L
case calc_2 R : Type u inst✝¹⁶ : CommRing R S : Type v inst✝¹⁵ : CommRing S p : Ideal R inst✝¹⁴ : IsDedekindDomain S inst✝¹³ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : IsDedekindDomain R inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra S L inst✝⁶ : IsFractionRing S L inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : Module.Finite R S inst✝ : p.IsMaximal hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : Algebra R S] → ℕ := p.inertiaDeg ⊢ map (algebraMap R S) p ≠ ⊥
rwa [Ne, Ideal.map_eq_bot_iff_le_ker, (RingHom.injective_iff_ker_eq_bot _).mp <| algebraMap_injective_of_field_isFractionRing R S K L, le_bot_iff]
no goals
93ea3cefba21e7c4
inv_eq_of_root_of_coeff_zero_ne_zero
Mathlib/RingTheory/Algebraic/Basic.lean
theorem inv_eq_of_root_of_coeff_zero_ne_zero {x : L} {p : K[X]} (aeval_eq : aeval x p = 0) (coeff_zero_ne : p.coeff 0 ≠ 0) : x⁻¹ = -(aeval x (divX p) / algebraMap _ _ (p.coeff 0))
case convert_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L x : L p : K[X] aeval_eq : (aeval x) p = 0 coeff_zero_ne : p.coeff 0 ≠ 0 h : (aeval x) p.divX = 0 ⊢ (algebraMap K L) (p.coeff 0) = (algebraMap K L) 0
rw [RingHom.map_zero]
case convert_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L x : L p : K[X] aeval_eq : (aeval x) p = 0 coeff_zero_ne : p.coeff 0 ≠ 0 h : (aeval x) p.divX = 0 ⊢ (algebraMap K L) (p.coeff 0) = 0
7dd9a2f842fde806
nonempty_linearEquiv_of_lift_rank_eq
Mathlib/LinearAlgebra/Dimension/Free.lean
theorem nonempty_linearEquiv_of_lift_rank_eq (cnd : Cardinal.lift.{v'} (Module.rank R M) = Cardinal.lift.{v} (Module.rank R M')) : Nonempty (M ≃ₗ[R] M')
R : Type u M : Type v M' : Type v' inst✝⁷ : Semiring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : Free R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Free R M' cnd : lift.{v', v} (Module.rank R M) = lift.{v, v'} (Module.rank R M') α : Type v B : Basis α R M β : Type v' B' : Basis β R M' ⊢ lift.{v', v} #α = lift.{v, v'} #β
rw [B.mk_eq_rank'', cnd, B'.mk_eq_rank'']
no goals
21fe368c1b53de28
Module.free_of_maximalIdeal_rTensor_injective
Mathlib/RingTheory/LocalRing/Module.lean
theorem free_of_maximalIdeal_rTensor_injective [Module.FinitePresentation R M] (H : Function.Injective ((𝔪).subtype.rTensor M)) : Module.Free R M
case intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsLocalRing R inst✝ : FinitePresentation R M H : Function.Injective ⇑(LinearMap.rTensor M (Submodule.subtype 𝔪)) w✝¹ : Type u_2 w✝ : w✝¹ → M b : Basis w✝¹ R M h✝ : ∀ (i : w✝¹), b i = id (w✝ i) ⊢ Free R M
exact Free.of_basis b
no goals
51ea42859f002e98
isZGroup_of_coprime
Mathlib/GroupTheory/SpecificGroups/ZGroup.lean
theorem isZGroup_of_coprime [Finite G] [IsZGroup G] [IsZGroup G''] (h_le : f'.ker ≤ f.range) (h_cop : (Nat.card G).Coprime (Nat.card G'')) : IsZGroup G'
G : Type u_1 G' : Type u_2 G'' : Type u_3 inst✝⁵ : Group G inst✝⁴ : Group G' inst✝³ : Group G'' f : G →* G' f' : G' →* G'' inst✝² : Finite G inst✝¹ : IsZGroup G inst✝ : IsZGroup G'' h_le : f'.ker ≤ f.range h_cop : (Nat.card G).Coprime (Nat.card G'') p : ℕ hp : Nat.Prime p P : Sylow p G' ⊢ IsCyclic ↥↑P
have := Fact.mk hp
G : Type u_1 G' : Type u_2 G'' : Type u_3 inst✝⁵ : Group G inst✝⁴ : Group G' inst✝³ : Group G'' f : G →* G' f' : G' →* G'' inst✝² : Finite G inst✝¹ : IsZGroup G inst✝ : IsZGroup G'' h_le : f'.ker ≤ f.range h_cop : (Nat.card G).Coprime (Nat.card G'') p : ℕ hp : Nat.Prime p P : Sylow p G' this : Fact (Nat.Prime p) ⊢ IsCyclic ↥↑P
8e6ebf384c14685f
Monoid.CoprodI.lift_word_prod_nontrivial_of_not_empty
Mathlib/GroupTheory/CoprodI.lean
theorem lift_word_prod_nontrivial_of_not_empty {i j} (w : NeWord H i j) : lift f w.prod ≠ 1
case pos ι : Type u_1 G : Type u_4 inst✝³ : Group G H : ι → Type u_5 inst✝² : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝¹ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), (X i).Nonempty hXdisj : Pairwise (Disjoint on X) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → (f i) h • X j ⊆ X i inst✝ : Nontrivial ι i j : ι w : NeWord H i j hcard : 3 ≤ #(H j) hh : i ≠ j this : (lift f) w.inv.prod ≠ 1 heq : (lift f) w.prod = 1 ⊢ (lift f) w.inv.prod = 1
simpa using heq
no goals
3e8798a67334cdb3
SimpleGraph.isClique_map_iff_of_nontrivial
Mathlib/Combinatorics/SimpleGraph/Clique.lean
theorem isClique_map_iff_of_nontrivial {f : α ↪ β} {t : Set β} (ht : t.Nontrivial) : (G.map f).IsClique t ↔ ∃ (s : Set α), G.IsClique s ∧ f '' s = t
case refine_2 α : Type u_1 β : Type u_2 G : SimpleGraph α f : α ↪ β t : Set β ht : t.Nontrivial h : (SimpleGraph.map f G).IsClique t ⊢ ⇑f '' (⇑f ⁻¹' t) = t
rw [Set.image_preimage_eq_iff]
case refine_2 α : Type u_1 β : Type u_2 G : SimpleGraph α f : α ↪ β t : Set β ht : t.Nontrivial h : (SimpleGraph.map f G).IsClique t ⊢ t ⊆ Set.range ⇑f
67c4bf83d155ae44
ProbabilityTheory.IndepFun.mgf_add'
Mathlib/Probability/Moments/Basic.lean
theorem IndepFun.mgf_add' {X Y : Ω → ℝ} (h_indep : IndepFun X Y μ) (hX : AEStronglyMeasurable X μ) (hY : AEStronglyMeasurable Y μ) : mgf (X + Y) μ t = mgf X μ t * mgf Y μ t
Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y μ hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ A : Continuous fun x => rexp (t * x) h'X : AEStronglyMeasurable (fun ω => rexp (t * X ω)) μ h'Y : AEStronglyMeasurable (fun ω => rexp (t * Y ω)) μ ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t
exact h_indep.mgf_add h'X h'Y
no goals
34796f9be20b1f78
Polynomial.existsUnique_hilbertPoly
Mathlib/RingTheory/Polynomial/HilbertPoly.lean
theorem existsUnique_hilbertPoly (p : F[X]) (d : ℕ) : ∃! h : F[X], ∃ N : ℕ, ∀ n > N, PowerSeries.coeff F n (p * invOneSubPow F d) = h.eval (n : F)
case h.right.intro F : Type u_1 inst✝¹ : Field F inst✝ : CharZero F p : F[X] d : ℕ h : F[X] N : ℕ hhN : ∀ n > N, (PowerSeries.coeff F n) (↑p * ↑(invOneSubPow F d)) = eval (↑n) h ⊢ h = p.hilbertPoly d
apply eq_of_infinite_eval_eq h (hilbertPoly p d)
case h.right.intro F : Type u_1 inst✝¹ : Field F inst✝ : CharZero F p : F[X] d : ℕ h : F[X] N : ℕ hhN : ∀ n > N, (PowerSeries.coeff F n) (↑p * ↑(invOneSubPow F d)) = eval (↑n) h ⊢ {x | eval x h = eval x (p.hilbertPoly d)}.Infinite
45a6eaf17bc668dd
List.range'_eq_range'TR
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Basic.lean
theorem range'_eq_range'TR : @range' = @range'TR
⊢ @range' = @range'TR
apply funext
case h ⊢ ∀ (x : Nat), @range' x = @range'TR x
e9265b974e40b86d
ZLattice.isAddFundamentalDomain
Mathlib/Algebra/Module/ZLattice/Basic.lean
theorem ZLattice.isAddFundamentalDomain {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] [FiniteDimensional ℝ E] {L : Submodule ℤ E} [DiscreteTopology L] [IsZLattice ℝ L] [Finite ι] (b : Basis ι ℤ L) [MeasurableSpace E] [OpensMeasurableSpace E] (μ : Measure E) : IsAddFundamentalDomain L (fundamentalDomain (b.ofZLatticeBasis ℝ)) μ
case h.e'_1.h.e'_2.h.h.e'_4 ι : Type u_3 E : Type u_4 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : FiniteDimensional ℝ E L : Submodule ℤ E inst✝⁴ : DiscreteTopology ↥L inst✝³ : IsZLattice ℝ L inst✝² : Finite ι b : Basis ι ℤ ↥L inst✝¹ : MeasurableSpace E inst✝ : OpensMeasurableSpace E μ : Measure E x✝ : E ⊢ L = span ℤ (Set.range ⇑(Basis.ofZLatticeBasis ℝ L b)) case h.e'_3.e'_6 ι : Type u_3 E : Type u_4 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : FiniteDimensional ℝ E L : Submodule ℤ E inst✝⁴ : DiscreteTopology ↥L inst✝³ : IsZLattice ℝ L inst✝² : Finite ι b : Basis ι ℤ ↥L inst✝¹ : MeasurableSpace E inst✝ : OpensMeasurableSpace E μ : Measure E e_1✝ : ↥L = ↥(span ℤ (Set.range ⇑(Basis.ofZLatticeBasis ℝ L b))) ⊢ L = span ℤ (Set.range ⇑(Basis.ofZLatticeBasis ℝ L b)) case h.e'_4.e'_6 ι : Type u_3 E : Type u_4 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : FiniteDimensional ℝ E L : Submodule ℤ E inst✝⁴ : DiscreteTopology ↥L inst✝³ : IsZLattice ℝ L inst✝² : Finite ι b : Basis ι ℤ ↥L inst✝¹ : MeasurableSpace E inst✝ : OpensMeasurableSpace E μ : Measure E e_1✝ : ↥L = ↥(span ℤ (Set.range ⇑(Basis.ofZLatticeBasis ℝ L b))) ⊢ L = span ℤ (Set.range ⇑(Basis.ofZLatticeBasis ℝ L b))
all_goals exact (b.ofZLatticeBasis_span ℝ).symm
no goals
b519d41af37f923f
CategoryTheory.Functor.preservesFiniteColimits_of_preservesHomology
Mathlib/Algebra/Homology/ShortComplex/ExactFunctor.lean
/-- An additive which preserves homology preserves finite colimits. -/ lemma preservesFiniteColimits_of_preservesHomology [HasFiniteCoproducts C] [HasCokernels C] : PreservesFiniteColimits F
C : Type u_1 D : Type u_2 inst✝⁸ : Category.{u_3, u_1} C inst✝⁷ : Category.{u_4, u_2} D inst✝⁶ : Preadditive C inst✝⁵ : Preadditive D F : C ⥤ D inst✝⁴ : F.Additive inst✝³ : F.PreservesHomology inst✝² : HasZeroObject C inst✝¹ : HasFiniteCoproducts C inst✝ : HasCokernels C this✝¹ : ∀ {X Y : C} (f : X ⟶ Y), PreservesColimit (parallelPair f 0) F this✝ : HasBinaryBiproducts C this : HasCoequalizers C ⊢ IsZero (F.obj 0)
rw [IsZero.iff_id_eq_zero, ← F.map_id, id_zero, F.map_zero]
no goals
eba7eed2b0d3086e
Finite.exists_infinite_fiber
Mathlib/Data/Fintype/Pigeonhole.lean
theorem Finite.exists_infinite_fiber [Infinite α] [Finite β] (f : α → β) : ∃ y : β, Infinite (f ⁻¹' {y})
α : Type u_1 β : Type u_2 inst✝¹ : Infinite α inst✝ : Finite β f : α → β hf : ∀ (y : β), ¬Infinite ↑(f ⁻¹' {y}) ⊢ False
cases nonempty_fintype β
case intro α : Type u_1 β : Type u_2 inst✝¹ : Infinite α inst✝ : Finite β f : α → β hf : ∀ (y : β), ¬Infinite ↑(f ⁻¹' {y}) val✝ : Fintype β ⊢ False
1fb76a52f781b215
MeasureTheory.L1.SimpleFunc.setToL1S_indicatorConst
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToL1S_indicatorConst {T : Set α → E →L[ℝ] F} {s : Set α} (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T) (hs : MeasurableSet s) (hμs : μ s < ∞) (x : E) : setToL1S T (simpleFunc.indicatorConst 1 hs hμs.ne x) = T s x
α : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α T : Set α → E →L[ℝ] F s : Set α h_zero : ∀ (s : Set α), MeasurableSet s → μ s = 0 → T s = 0 h_add : FinMeasAdditive μ T hs : MeasurableSet s hμs : μ s < ⊤ x : E ⊢ setToL1S T (indicatorConst 1 hs ⋯ x) = (T s) x
have h_empty : T ∅ = 0 := h_zero _ MeasurableSet.empty measure_empty
α : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α T : Set α → E →L[ℝ] F s : Set α h_zero : ∀ (s : Set α), MeasurableSet s → μ s = 0 → T s = 0 h_add : FinMeasAdditive μ T hs : MeasurableSet s hμs : μ s < ⊤ x : E h_empty : T ∅ = 0 ⊢ setToL1S T (indicatorConst 1 hs ⋯ x) = (T s) x
49eca8056f95cd51
ZLattice.covolume.tendsto_card_le_div''
Mathlib/Algebra/Module/ZLattice/Covolume.lean
theorem tendsto_card_le_div'' [FiniteDimensional ℝ E] [MeasurableSpace E] [BorelSpace E] [Nonempty ι] {X : Set E} (hX : ∀ ⦃x⦄ ⦃r : ℝ⦄, x ∈ X → 0 < r → r • x ∈ X) {F : E → ℝ} (h₁ : ∀ x ⦃r : ℝ⦄, 0 ≤ r → F (r • x) = r ^ card ι * (F x)) (h₂ : IsBounded {x ∈ X | F x ≤ 1}) (h₃ : MeasurableSet {x ∈ X | F x ≤ 1}) (h₄ : volume (frontier ((b.ofZLatticeBasis ℝ L).equivFun '' {x | x ∈ X ∧ F x ≤ 1})) = 0) : Tendsto (fun c : ℝ ↦ Nat.card ({x ∈ X | F x ≤ c} ∩ L : Set E) / (c : ℝ)) atTop (𝓝 (volume ((b.ofZLatticeBasis ℝ).equivFun '' {x ∈ X | F x ≤ 1})).toReal)
case h.intro E : Type u_1 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E L : Submodule ℤ E inst✝⁶ : DiscreteTopology ↥L inst✝⁵ : IsZLattice ℝ L ι : Type u_2 inst✝⁴ : Fintype ι b : Basis ι ℤ ↥L inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E inst✝ : Nonempty ι X : Set E hX : ∀ ⦃x : E⦄ ⦃r : ℝ⦄, x ∈ X → 0 < r → r • x ∈ X F : E → ℝ h₁ : ∀ (x : E) ⦃r : ℝ⦄, 0 ≤ r → F (r • x) = r ^ card ι * F x h₂ : Bornology.IsBounded {x | x ∈ X ∧ F x ≤ 1} h₃ : MeasurableSet {x | x ∈ X ∧ F x ≤ 1} h₄ : volume (frontier (⇑(Basis.ofZLatticeBasis ℝ L b).equivFun '' {x | x ∈ X ∧ F x ≤ 1})) = 0 c : ℝ hc : 0 < c aux₁ : ↑(card ι) ≠ 0 aux₂ : 0 < c ^ (↑(card ι))⁻¹ aux₃ : (c ^ (↑(card ι))⁻¹)⁻¹ ≠ 0 aux₄ : c ^ (-(↑(card ι))⁻¹) ≠ 0 hc₁ : 0 ≤ c hc₂ : 0 ≠ c ⊢ ↑(Nat.card ↑({x | x ∈ X ∧ F x ≤ c} ∩ ↑L)) / c = ↑(Nat.card ↑(⇑(Basis.ofZLatticeBasis ℝ L b).equivFun '' {x | x ∈ X ∧ F x ≤ 1} ∩ (c ^ (↑(card ι))⁻¹)⁻¹ • ↑(span ℤ (Set.range ⇑(Pi.basisFun ℝ ι))))) / c
congr
case h.intro.e_a.e_a E : Type u_1 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E L : Submodule ℤ E inst✝⁶ : DiscreteTopology ↥L inst✝⁵ : IsZLattice ℝ L ι : Type u_2 inst✝⁴ : Fintype ι b : Basis ι ℤ ↥L inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E inst✝ : Nonempty ι X : Set E hX : ∀ ⦃x : E⦄ ⦃r : ℝ⦄, x ∈ X → 0 < r → r • x ∈ X F : E → ℝ h₁ : ∀ (x : E) ⦃r : ℝ⦄, 0 ≤ r → F (r • x) = r ^ card ι * F x h₂ : Bornology.IsBounded {x | x ∈ X ∧ F x ≤ 1} h₃ : MeasurableSet {x | x ∈ X ∧ F x ≤ 1} h₄ : volume (frontier (⇑(Basis.ofZLatticeBasis ℝ L b).equivFun '' {x | x ∈ X ∧ F x ≤ 1})) = 0 c : ℝ hc : 0 < c aux₁ : ↑(card ι) ≠ 0 aux₂ : 0 < c ^ (↑(card ι))⁻¹ aux₃ : (c ^ (↑(card ι))⁻¹)⁻¹ ≠ 0 aux₄ : c ^ (-(↑(card ι))⁻¹) ≠ 0 hc₁ : 0 ≤ c hc₂ : 0 ≠ c ⊢ Nat.card ↑({x | x ∈ X ∧ F x ≤ c} ∩ ↑L) = Nat.card ↑(⇑(Basis.ofZLatticeBasis ℝ L b).equivFun '' {x | x ∈ X ∧ F x ≤ 1} ∩ (c ^ (↑(card ι))⁻¹)⁻¹ • ↑(span ℤ (Set.range ⇑(Pi.basisFun ℝ ι))))
1e1817e88f98e881
Zsqrtd.nonnegg_pos_neg
Mathlib/NumberTheory/Zsqrtd/Basic.lean
theorem nonnegg_pos_neg {c d} {a b : ℕ} : Nonnegg c d a (-b) ↔ SqLe b c a d
c d a b : ℕ ⊢ Nonnegg c d (↑a) (-↑b) ↔ SqLe b c a d
rw [nonnegg_comm]
c d a b : ℕ ⊢ Nonnegg d c (-↑b) ↑a ↔ SqLe b c a d
a55b09f60e8769a3
NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/ConvexBody.lean
theorem exists_primitive_element_lt_of_isComplex {w₀ : InfinitePlace K} (hw₀ : IsComplex w₀) {B : ℝ≥0} (hB : minkowskiBound K ↑1 < convexBodyLT'Factor K * B) : ∃ a : 𝓞 K, ℚ⟮(a : K)⟯ = ⊤ ∧ ∀ w : InfinitePlace K, w a < Real.sqrt (1 + B ^ 2)
case neg K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K w₀ : InfinitePlace K hw₀ : w₀.IsComplex B : ℝ≥0 hB : minkowskiBound K 1 < ↑(convexBodyLT'Factor K) * ↑B this : minkowskiBound K 1 < volume (convexBodyLT' K (fun w => if w = w₀ then NNReal.sqrt B else 1) ⟨w₀, hw₀⟩) a : 𝓞 K h_nz : a ≠ 0 h_le : ∀ (w : InfinitePlace K), w ≠ ↑⟨w₀, hw₀⟩ → w ↑a < ↑(if w = w₀ then NNReal.sqrt B else 1) h_le₀ : |((↑⟨w₀, hw₀⟩).embedding ↑a).re| < 1 ∧ |((↑⟨w₀, hw₀⟩).embedding ↑a).im| < ↑(if ↑⟨w₀, hw₀⟩ = w₀ then NNReal.sqrt B else 1) ^ 2 w : InfinitePlace K h_eq : ¬w = w₀ ⊢ 1 ≤ 1 + ↑B ^ 2
norm_num
no goals
b1817ae1b2a5d1e1
linearIndependent_of_ne_zero_of_inner_eq_zero
Mathlib/Analysis/InnerProductSpace/Basic.lean
theorem linearIndependent_of_ne_zero_of_inner_eq_zero {ι : Type*} {v : ι → E} (hz : ∀ i, v i ≠ 0) (ho : Pairwise fun i j => ⟪v i, v j⟫ = 0) : LinearIndependent 𝕜 v
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : Pairwise fun i j => inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i ∈ s, g i • v i = 0 i : ι hi : i ∈ s h' : g i * inner (v i) (v i) = inner (v i) (∑ j ∈ s, g j • v j) ⊢ g i = 0
simpa [hg, hz] using h'
no goals
8e5b7920a8b38e39
List.length_dropLast_cons
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Basic.lean
theorem length_dropLast_cons (a : α) (as : List α) : (a :: as).dropLast.length = as.length
α : Type u a : α as : List α b : α bs : List α ih : (b :: bs).dropLast.length = bs.length ⊢ (a :: b :: bs).dropLast.length = (b :: bs).length
simp [dropLast, ih]
no goals
db7033c17c610e4e
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.deleteOne_preserves_strongAssignmentsInvariant
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
theorem deleteOne_preserves_strongAssignmentsInvariant {n : Nat} (f : DefaultFormula n) (id : Nat) : StrongAssignmentsInvariant f → StrongAssignmentsInvariant (deleteOne f id)
n : Nat f : DefaultFormula n id : Nat hsize : f.assignments.size = n hf : ∀ (i : PosFin n) (b : Bool), hasAssignment b f.assignments[i.val] = true → unit (i, b) ∈ f.toList hsize' : (f.deleteOne id).assignments.size = n i : PosFin n b : Bool i_in_bounds : i.val < f.assignments.size c : DefaultClause n heq : f.clauses[id]! = some c l : Literal (PosFin n) hl : c = { clause := [l], nodupkey := ⋯, nodup := ⋯ } l_eq_i : l.fst.val = i.val l_ne_b : l.snd = !b hb✝ : hasAssignment b (removeAssignment (!b) f.assignments[i.val]) = true hb : hasAssignment b f.assignments[i.val] = true ⊢ unit (i, b) ∈ { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments.modify l.fst.val (removeAssignment l.snd) }.toList
specialize hf i b hb
n : Nat f : DefaultFormula n id : Nat hsize : f.assignments.size = n hsize' : (f.deleteOne id).assignments.size = n i : PosFin n b : Bool i_in_bounds : i.val < f.assignments.size c : DefaultClause n heq : f.clauses[id]! = some c l : Literal (PosFin n) hl : c = { clause := [l], nodupkey := ⋯, nodup := ⋯ } l_eq_i : l.fst.val = i.val l_ne_b : l.snd = !b hb✝ : hasAssignment b (removeAssignment (!b) f.assignments[i.val]) = true hb : hasAssignment b f.assignments[i.val] = true hf : unit (i, b) ∈ f.toList ⊢ unit (i, b) ∈ { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments.modify l.fst.val (removeAssignment l.snd) }.toList
0ab20a88767ce69e
WithTop.strictMono_map_iff
Mathlib/Order/WithBot.lean
theorem strictMono_map_iff {f : α → β} : StrictMono (WithTop.map f) ↔ StrictMono f := strictMono_iff.trans <| by simp [StrictMono, coe_lt_top]
α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β f : α → β ⊢ ((StrictMono fun a => map f ↑a) ∧ ∀ (x : α), map f ↑x < map f ⊤) ↔ StrictMono f
simp [StrictMono, coe_lt_top]
no goals
7765458217a159e9
Ideal.iUnion_minimalPrimes
Mathlib/RingTheory/Ideal/MinimalPrime/Localization.lean
theorem Ideal.iUnion_minimalPrimes : ⋃ p ∈ I.minimalPrimes, p = { x | ∃ y ∉ I.radical, x * y ∈ I.radical }
R : Type u_1 inst✝ : CommSemiring R I : Ideal R x y : R hy : y ∉ I.radical hx : x * y ∈ I.radical ⊢ ∃ p ∈ I.minimalPrimes, y ∉ p
simpa [← Ideal.sInf_minimalPrimes] using hy
no goals
c2bb79363c5fb210
IsBaseChange.comp
Mathlib/RingTheory/IsTensorProduct.lean
theorem IsBaseChange.comp {f : M →ₗ[R] N} (hf : IsBaseChange S f) {g : N →ₗ[S] O} (hg : IsBaseChange T g) : IsBaseChange T ((g.restrictScalars R).comp f)
case h R : Type u_1 M : Type v₁ N : Type v₂ S : Type v₃ inst✝²³ : AddCommMonoid M inst✝²² : AddCommMonoid N inst✝²¹ : CommSemiring R inst✝²⁰ : CommSemiring S inst✝¹⁹ : Algebra R S inst✝¹⁸ : Module R M inst✝¹⁷ : Module R N inst✝¹⁶ : Module S N inst✝¹⁵ : IsScalarTower R S N T : Type u_4 O : Type u_5 inst✝¹⁴ : CommSemiring T inst✝¹³ : Algebra R T inst✝¹² : Algebra S T inst✝¹¹ : IsScalarTower R S T inst✝¹⁰ : AddCommMonoid O inst✝⁹ : Module R O inst✝⁸ : Module S O inst✝⁷ : Module T O inst✝⁶ : IsScalarTower S T O inst✝⁵ : IsScalarTower R S O inst✝⁴ : IsScalarTower R T O f : M →ₗ[R] N hf : IsBaseChange S f g : N →ₗ[S] O hg : IsBaseChange T g Q : Type (max v₁ u_5 u_4) inst✝³ : AddCommMonoid Q inst✝² : Module R Q inst✝¹ : Module T Q inst✝ : IsScalarTower R T Q i : M →ₗ[R] Q this✝¹ : Module S Q := Module.compHom Q (algebraMap S T) this✝ : IsScalarTower S T Q this : IsScalarTower R S Q g' : O →ₗ[T] Q e : ↑R g' ∘ₗ ↑R g ∘ₗ f = i ⊢ ↑R (↑S g' ∘ₗ g) ∘ₗ f = ↑R g' ∘ₗ ↑R g ∘ₗ f
ext
case h.h R : Type u_1 M : Type v₁ N : Type v₂ S : Type v₃ inst✝²³ : AddCommMonoid M inst✝²² : AddCommMonoid N inst✝²¹ : CommSemiring R inst✝²⁰ : CommSemiring S inst✝¹⁹ : Algebra R S inst✝¹⁸ : Module R M inst✝¹⁷ : Module R N inst✝¹⁶ : Module S N inst✝¹⁵ : IsScalarTower R S N T : Type u_4 O : Type u_5 inst✝¹⁴ : CommSemiring T inst✝¹³ : Algebra R T inst✝¹² : Algebra S T inst✝¹¹ : IsScalarTower R S T inst✝¹⁰ : AddCommMonoid O inst✝⁹ : Module R O inst✝⁸ : Module S O inst✝⁷ : Module T O inst✝⁶ : IsScalarTower S T O inst✝⁵ : IsScalarTower R S O inst✝⁴ : IsScalarTower R T O f : M →ₗ[R] N hf : IsBaseChange S f g : N →ₗ[S] O hg : IsBaseChange T g Q : Type (max v₁ u_5 u_4) inst✝³ : AddCommMonoid Q inst✝² : Module R Q inst✝¹ : Module T Q inst✝ : IsScalarTower R T Q i : M →ₗ[R] Q this✝¹ : Module S Q := Module.compHom Q (algebraMap S T) this✝ : IsScalarTower S T Q this : IsScalarTower R S Q g' : O →ₗ[T] Q e : ↑R g' ∘ₗ ↑R g ∘ₗ f = i x✝ : M ⊢ (↑R (↑S g' ∘ₗ g) ∘ₗ f) x✝ = (↑R g' ∘ₗ ↑R g ∘ₗ f) x✝
5f083a0c88695e0c
VitaliFamily.ae_tendsto_average_norm_sub
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem ae_tendsto_average_norm_sub {f : α → E} (hf : LocallyIntegrable f μ) : ∀ᵐ x ∂μ, Tendsto (fun a => ⨍ y in a, ‖f y - f x‖ ∂μ) (v.filterAt x) (𝓝 0)
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ f : α → E hf : LocallyIntegrable f μ x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ‖f y - f x‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ‖f y - f x‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 0) a : Set α h'a : μ a < ⊤ h''a : IntegrableOn f a μ ⊢ IntegrableOn (fun y => ↑‖f y - f x‖₊) a μ
simp_rw [coe_nnnorm]
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ f : α → E hf : LocallyIntegrable f μ x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ‖f y - f x‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ‖f y - f x‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 0) a : Set α h'a : μ a < ⊤ h''a : IntegrableOn f a μ ⊢ IntegrableOn (fun y => ‖f y - f x‖) a μ
58e38ef8cb10ccfc
SatisfiesM_ExceptT_eq
Mathlib/.lake/packages/batteries/Batteries/Classes/SatisfiesM.lean
theorem SatisfiesM_ExceptT_eq [Monad m] [LawfulMonad m] : SatisfiesM (m := ExceptT ρ m) (α := α) p x ↔ SatisfiesM (m := m) (∀ a, · = .ok a → p a) x.run
case refine_2.e_a m : Type u_1 → Type u_2 α ρ : Type u_1 p : α → Prop x : ExceptT ρ m α inst✝¹ : Monad m inst✝ : LawfulMonad m x✝ : SatisfiesM (fun x => ∀ (a : α), x = Except.ok a → p a) x f : m { a // (fun x => ∀ (a : α), x = Except.ok a → p a) a } eq : Subtype.val <$> f = x ⊢ (fun x => match match x with | ⟨Except.ok a, h⟩ => Except.ok ⟨a, ⋯⟩ | ⟨Except.error e, property⟩ => Except.error e with | Except.ok a => pure (Except.ok a.val) | Except.error e => pure (Except.error e)) = fun a => pure a.val
funext ⟨a, h⟩
case refine_2.e_a.h m : Type u_1 → Type u_2 α ρ : Type u_1 p : α → Prop x : ExceptT ρ m α inst✝¹ : Monad m inst✝ : LawfulMonad m x✝ : SatisfiesM (fun x => ∀ (a : α), x = Except.ok a → p a) x f : m { a // (fun x => ∀ (a : α), x = Except.ok a → p a) a } eq : Subtype.val <$> f = x a : Except ρ α h : ∀ (a_1 : α), a = Except.ok a_1 → p a_1 ⊢ (match match ⟨a, h⟩ with | ⟨Except.ok a, h⟩ => Except.ok ⟨a, ⋯⟩ | ⟨Except.error e, property⟩ => Except.error e with | Except.ok a => pure (Except.ok a.val) | Except.error e => pure (Except.error e)) = pure ⟨a, h⟩.val
0d5f8bbc1987cbbe
Polynomial.coeff_bdd_of_roots_le
Mathlib/Topology/Algebra/Polynomial.lean
theorem coeff_bdd_of_roots_le {B : ℝ} {d : ℕ} (f : F →+* K) {p : F[X]} (h1 : p.Monic) (h2 : Splits f p) (h3 : p.natDegree ≤ d) (h4 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B) (i : ℕ) : ‖(map f p).coeff i‖ ≤ max B 1 ^ d * d.choose (d / 2)
case h.hmn F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : p.Monic h2 : Splits f p h3 : p.natDegree ≤ d h4 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ p.natDegree - i ≤ d
exact le_trans (Nat.sub_le _ _) h3
no goals
49af0bf207486cbc
CochainComplex.HomComplex.Cochain.leftShift_v
Mathlib/Algebra/Homology/HomotopyCategory/HomComplexShift.lean
lemma leftShift_v (a n' : ℤ) (hn' : n + a = n') (p q : ℤ) (hpq : p + n' = q) (p' : ℤ) (hp' : p' + n = q) : (γ.leftShift a n' hn').v p q hpq = (a * n' + ((a * (a - 1))/2)).negOnePow • (K.shiftFunctorObjXIso a p p' (by rw [← add_left_inj n, hp', add_assoc, add_comm a, hn', hpq])).hom ≫ γ.v p' q hp'
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C K L : CochainComplex C ℤ n : ℤ γ : Cochain K L n a n' : ℤ hn' : n + a = n' p q : ℤ hpq : p + n' = q p' : ℤ hp' : p' + n = q ⊢ p' = p + a
omega
no goals
7e18951062272244
WeierstrassCurve.Projective.addMap_of_Z_eq_zero_left
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
lemma addMap_of_Z_eq_zero_left {P : Fin 3 → F} {Q : PointClass F} (hP : W.Nonsingular P) (hQ : W.NonsingularLift Q) (hPz : P z = 0) : W.addMap ⟦P⟧ Q = Q
case pos F : Type u inst✝ : Field F W : Projective F P : Fin 3 → F Q✝ : PointClass F hP : W.Nonsingular P hPz : P z = 0 Q : Fin 3 → F hQ : W.NonsingularLift (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) Q) hQz : Q z = 0 ⊢ W.addMap ⟦P⟧ (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) Q) = Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) Q
erw [addMap_eq, add_of_Z_eq_zero hP hQ hPz hQz, smul_eq _ <| (isUnit_Y_of_Z_eq_zero hP hPz).pow 4, Quotient.eq]
case pos F : Type u inst✝ : Field F W : Projective F P : Fin 3 → F Q✝ : PointClass F hP : W.Nonsingular P hPz : P z = 0 Q : Fin 3 → F hQ : W.NonsingularLift (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) Q) hQz : Q z = 0 ⊢ (MulAction.orbitRel Fˣ (Fin 3 → F)) ![0, 1, 0] Q
6da18fa7da391a26
FiberBundleCore.open_source'
Mathlib/Topology/FiberBundle/Basic.lean
theorem open_source' (i : ι) : IsOpen (Z.localTrivAsPartialEquiv i).source
case a ι : Type u_1 B : Type u_2 F : Type u_3 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι ⊢ (Z.localTrivAsPartialEquiv i).source = (Z.localTrivAsPartialEquiv i).source ∩ ↑(Z.localTrivAsPartialEquiv i) ⁻¹' Z.baseSet i ×ˢ univ
ext p
case a.h ι : Type u_1 B : Type u_2 F : Type u_3 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι p : Z.TotalSpace ⊢ p ∈ (Z.localTrivAsPartialEquiv i).source ↔ p ∈ (Z.localTrivAsPartialEquiv i).source ∩ ↑(Z.localTrivAsPartialEquiv i) ⁻¹' Z.baseSet i ×ˢ univ
437cc1867a06723f
mfderiv_neg
Mathlib/Geometry/Manifold/MFDeriv/SpecificFunctions.lean
theorem mfderiv_neg (f : M → E') (x : M) : (mfderiv I 𝓘(𝕜, E') (-f) x : TangentSpace I x →L[𝕜] E') = (-mfderiv I 𝓘(𝕜, E') f x : TangentSpace I x →L[𝕜] E')
𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M E' : Type u_5 inst✝¹ : NormedAddCommGroup E' inst✝ : NormedSpace 𝕜 E' f : M → E' x : M ⊢ (if MDifferentiableAt I 𝓘(𝕜, E') (-f) x then fderivWithin 𝕜 (writtenInExtChartAt I 𝓘(𝕜, E') x (-f)) (range ↑I) (↑(extChartAt I x) x) else 0) = -if MDifferentiableAt I 𝓘(𝕜, E') f x then fderivWithin 𝕜 (writtenInExtChartAt I 𝓘(𝕜, E') x f) (range ↑I) (↑(extChartAt I x) x) else 0
by_cases hf : MDifferentiableAt I 𝓘(𝕜, E') f x
case pos 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M E' : Type u_5 inst✝¹ : NormedAddCommGroup E' inst✝ : NormedSpace 𝕜 E' f : M → E' x : M hf : MDifferentiableAt I 𝓘(𝕜, E') f x ⊢ (if MDifferentiableAt I 𝓘(𝕜, E') (-f) x then fderivWithin 𝕜 (writtenInExtChartAt I 𝓘(𝕜, E') x (-f)) (range ↑I) (↑(extChartAt I x) x) else 0) = -if MDifferentiableAt I 𝓘(𝕜, E') f x then fderivWithin 𝕜 (writtenInExtChartAt I 𝓘(𝕜, E') x f) (range ↑I) (↑(extChartAt I x) x) else 0 case neg 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M E' : Type u_5 inst✝¹ : NormedAddCommGroup E' inst✝ : NormedSpace 𝕜 E' f : M → E' x : M hf : ¬MDifferentiableAt I 𝓘(𝕜, E') f x ⊢ (if MDifferentiableAt I 𝓘(𝕜, E') (-f) x then fderivWithin 𝕜 (writtenInExtChartAt I 𝓘(𝕜, E') x (-f)) (range ↑I) (↑(extChartAt I x) x) else 0) = -if MDifferentiableAt I 𝓘(𝕜, E') f x then fderivWithin 𝕜 (writtenInExtChartAt I 𝓘(𝕜, E') x f) (range ↑I) (↑(extChartAt I x) x) else 0
bb6d984738c96be5
WeierstrassCurve.Affine.map_polynomial
Mathlib/AlgebraicGeometry/EllipticCurve/Affine.lean
lemma map_polynomial : (W'.map f).toAffine.polynomial = W'.polynomial.map (mapRingHom f)
R : Type r S : Type s inst✝¹ : CommRing R inst✝ : CommRing S W' : Affine R f : R →+* S ⊢ Y ^ 2 + C (C (map W' f).toAffine.a₁ * X + C (map W' f).toAffine.a₃) * Y - C (X ^ 3 + C (map W' f).toAffine.a₂ * X ^ 2 + C (map W' f).toAffine.a₄ * X + C (map W' f).toAffine.a₆) = Polynomial.map (mapRingHom f) (Y ^ 2 + C (C W'.a₁ * X + C W'.a₃) * Y - C (X ^ 3 + C W'.a₂ * X ^ 2 + C W'.a₄ * X + C W'.a₆))
map_simp
no goals
6c994053a676fe74
CategoryTheory.Functor.isRightKanExtension_iff_isIso
Mathlib/CategoryTheory/Functor/KanExtension/Basic.lean
lemma isRightKanExtension_iff_isIso {F' : D ⥤ H} {F'' : D ⥤ H} (φ : F'' ⟶ F') {L : C ⥤ D} {F : C ⥤ H} (α : L ⋙ F' ⟶ F) (α' : L ⋙ F'' ⟶ F) (comm : whiskerLeft L φ ≫ α = α') [F'.IsRightKanExtension α] : F''.IsRightKanExtension α' ↔ IsIso φ
C : Type u_1 H : Type u_3 D : Type u_4 inst✝³ : Category.{u_8, u_1} C inst✝² : Category.{u_7, u_3} H inst✝¹ : Category.{u_6, u_4} D F' F'' : D ⥤ H φ : F'' ⟶ F' L : C ⥤ D F : C ⥤ H α : L ⋙ F' ⟶ F α' : L ⋙ F'' ⟶ F comm : whiskerLeft L φ ≫ α = α' inst✝ : F'.IsRightKanExtension α ⊢ F''.IsRightKanExtension α' ↔ IsIso φ
constructor
case mp C : Type u_1 H : Type u_3 D : Type u_4 inst✝³ : Category.{u_8, u_1} C inst✝² : Category.{u_7, u_3} H inst✝¹ : Category.{u_6, u_4} D F' F'' : D ⥤ H φ : F'' ⟶ F' L : C ⥤ D F : C ⥤ H α : L ⋙ F' ⟶ F α' : L ⋙ F'' ⟶ F comm : whiskerLeft L φ ≫ α = α' inst✝ : F'.IsRightKanExtension α ⊢ F''.IsRightKanExtension α' → IsIso φ case mpr C : Type u_1 H : Type u_3 D : Type u_4 inst✝³ : Category.{u_8, u_1} C inst✝² : Category.{u_7, u_3} H inst✝¹ : Category.{u_6, u_4} D F' F'' : D ⥤ H φ : F'' ⟶ F' L : C ⥤ D F : C ⥤ H α : L ⋙ F' ⟶ F α' : L ⋙ F'' ⟶ F comm : whiskerLeft L φ ≫ α = α' inst✝ : F'.IsRightKanExtension α ⊢ IsIso φ → F''.IsRightKanExtension α'
14f3fa1f3712e7b2
Padic.AddValuation.map_mul
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem AddValuation.map_mul (x y : ℚ_[p]) : addValuationDef (x * y : ℚ_[p]) = addValuationDef x + addValuationDef y
case neg p : ℕ hp : Fact (Nat.Prime p) x y : ℚ_[p] hx : ¬x = 0 ⊢ (if x * y = 0 then ⊤ else ↑(x * y).valuation) = (if x = 0 then ⊤ else ↑x.valuation) + if y = 0 then ⊤ else ↑y.valuation
by_cases hy : y = 0
case pos p : ℕ hp : Fact (Nat.Prime p) x y : ℚ_[p] hx : ¬x = 0 hy : y = 0 ⊢ (if x * y = 0 then ⊤ else ↑(x * y).valuation) = (if x = 0 then ⊤ else ↑x.valuation) + if y = 0 then ⊤ else ↑y.valuation case neg p : ℕ hp : Fact (Nat.Prime p) x y : ℚ_[p] hx : ¬x = 0 hy : ¬y = 0 ⊢ (if x * y = 0 then ⊤ else ↑(x * y).valuation) = (if x = 0 then ⊤ else ↑x.valuation) + if y = 0 then ⊤ else ↑y.valuation
c60ad8ab6f4d7496
CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_pushouts
Mathlib/CategoryTheory/Abelian/GrothendieckCategory/EnoughInjectives.lean
/-- If `p : X ⟶ Y` is a monomorphism that is not an isomorphism, there exists a subobject `X'` of `Y` containing `X` (but different from `X`) such that the inclusion `X ⟶ X'` is a pushout of a monomorphism in the family `generatingMonomorphisms G`. -/ lemma exists_pushouts {X Y : C} (p : X ⟶ Y) [Mono p] (hp : ¬ IsIso p) : ∃ (X' : C) (i : X ⟶ X') (p' : X' ⟶ Y) (_ : (generatingMonomorphisms G).pushouts i) (_ : ¬ IsIso i) (_ : Mono p'), i ≫ p' = p
case intro C : Type u inst✝² : Category.{v, u} C G : C inst✝¹ : Abelian C hG : IsSeparator G X Y : C p : X ⟶ Y inst✝ : Mono p f : G ⟶ Y hf : ∀ (x : G ⟶ X), ¬x ≫ p = f ⊢ ∃ X' i p', ∃ (_ : (generatingMonomorphisms G).pushouts i) (_ : ¬IsIso i) (_ : Mono p'), i ≫ p' = p
refine ⟨pushout (pullback.fst p f) (pullback.snd p f), pushout.inl _ _, pushout.desc p f pullback.condition, ⟨_, _, _, (Subobject.underlyingIso _).hom ≫ pullback.fst _ _, pushout.inr _ _, ⟨Subobject.mk (pullback.snd p f)⟩, (IsPushout.of_hasPushout (pullback.fst p f) (pullback.snd p f)).of_iso ((Subobject.underlyingIso _).symm) (Iso.refl _) (Iso.refl _) (Iso.refl _) (by simp) (by simp) (by simp) (by simp)⟩, ?_, ?_, by simp⟩
case intro.refine_1 C : Type u inst✝² : Category.{v, u} C G : C inst✝¹ : Abelian C hG : IsSeparator G X Y : C p : X ⟶ Y inst✝ : Mono p f : G ⟶ Y hf : ∀ (x : G ⟶ X), ¬x ≫ p = f ⊢ ¬IsIso (pushout.inl (pullback.fst p f) (pullback.snd p f)) case intro.refine_2 C : Type u inst✝² : Category.{v, u} C G : C inst✝¹ : Abelian C hG : IsSeparator G X Y : C p : X ⟶ Y inst✝ : Mono p f : G ⟶ Y hf : ∀ (x : G ⟶ X), ¬x ≫ p = f ⊢ Mono (pushout.desc p f ⋯)
a7ac65ea27f73093
CategoryTheory.le_topology_of_closedSieves_isSheaf
Mathlib/CategoryTheory/Sites/Closed.lean
theorem le_topology_of_closedSieves_isSheaf {J₁ J₂ : GrothendieckTopology C} (h : Presieve.IsSheaf J₁ (Functor.closedSieves J₂)) : J₁ ≤ J₂
C : Type u inst✝ : Category.{v, u} C J₁ J₂ : GrothendieckTopology C h : Presieve.IsSheaf J₁ (Functor.closedSieves J₂) X : C S : Sieve X hS : S ∈ J₁ X this : J₂.IsClosed ⊤ ⊢ ∀ ⦃Y : C⦄ ⦃f : Y ⟶ X⦄, S.arrows f → (Functor.closedSieves J₂).map f.op ⟨J₂.close S, ⋯⟩ = (Functor.closedSieves J₂).map f.op ⟨⊤, this⟩
intro Y f hf
C : Type u inst✝ : Category.{v, u} C J₁ J₂ : GrothendieckTopology C h : Presieve.IsSheaf J₁ (Functor.closedSieves J₂) X : C S : Sieve X hS : S ∈ J₁ X this : J₂.IsClosed ⊤ Y : C f : Y ⟶ X hf : S.arrows f ⊢ (Functor.closedSieves J₂).map f.op ⟨J₂.close S, ⋯⟩ = (Functor.closedSieves J₂).map f.op ⟨⊤, this⟩
13067aa834d1fd87
separate_convex_open_set
Mathlib/Analysis/NormedSpace/HahnBanach/Separation.lean
theorem separate_convex_open_set [TopologicalSpace E] [AddCommGroup E] [IsTopologicalAddGroup E] [Module ℝ E] [ContinuousSMul ℝ E] {s : Set E} (hs₀ : (0 : E) ∈ s) (hs₁ : Convex ℝ s) (hs₂ : IsOpen s) {x₀ : E} (hx₀ : x₀ ∉ s) : ∃ f : E →L[ℝ] ℝ, f x₀ = 1 ∧ ∀ x ∈ s, f x < 1
case refine_2.intro.intro E : Type u_2 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : IsTopologicalAddGroup E inst✝¹ : Module ℝ E inst✝ : ContinuousSMul ℝ E s : Set E hs₀ : 0 ∈ s hs₁ : Convex ℝ s hs₂ : IsOpen s x₀ : E hx₀ : x₀ ∉ s f : E →ₗ.[ℝ] ℝ := LinearPMap.mkSpanSingleton x₀ 1 ⋯ φ : E →ₗ[ℝ] ℝ hφ₁ : ∀ (x : ↥f.domain), φ ↑x = ↑f x hφ₂ : ∀ (x : E), φ x ≤ gauge s x hφ₃ : φ x₀ = 1 hφ₄ : ∀ x ∈ s, φ x < 1 ⊢ ∃ f, f x₀ = 1 ∧ ∀ x ∈ s, f x < 1
refine ⟨⟨φ, ?_⟩, hφ₃, hφ₄⟩
case refine_2.intro.intro E : Type u_2 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : IsTopologicalAddGroup E inst✝¹ : Module ℝ E inst✝ : ContinuousSMul ℝ E s : Set E hs₀ : 0 ∈ s hs₁ : Convex ℝ s hs₂ : IsOpen s x₀ : E hx₀ : x₀ ∉ s f : E →ₗ.[ℝ] ℝ := LinearPMap.mkSpanSingleton x₀ 1 ⋯ φ : E →ₗ[ℝ] ℝ hφ₁ : ∀ (x : ↥f.domain), φ ↑x = ↑f x hφ₂ : ∀ (x : E), φ x ≤ gauge s x hφ₃ : φ x₀ = 1 hφ₄ : ∀ x ∈ s, φ x < 1 ⊢ Continuous φ.toFun
5059de53d562f5c3
TopCat.GlueData.preimage_image_eq_image
Mathlib/Topology/Gluing.lean
theorem preimage_image_eq_image (i j : D.J) (U : Set (𝖣.U i)) : 𝖣.ι j ⁻¹' (𝖣.ι i '' U) = D.f _ _ '' ((D.t j i ≫ D.f _ _) ⁻¹' U)
case a D : GlueData i j : D.J U : Set ↑(D.U i) this : ⇑(ConcreteCategory.hom (D.f j i)) ⁻¹' (⇑(ConcreteCategory.hom (D.ι j)) ⁻¹' (⇑(ConcreteCategory.hom (D.ι i)) '' U)) = ⇑(ConcreteCategory.hom (D.t j i ≫ D.f i j)) ⁻¹' U ⊢ ⇑(ConcreteCategory.hom (D.ι j)) ⁻¹' (⇑(ConcreteCategory.hom (D.ι i)) '' U) ⊆ ⇑(ConcreteCategory.hom (D.ι j)) ⁻¹' Set.range ⇑(ConcreteCategory.hom (D.ι i))
exact Set.preimage_mono (Set.image_subset_range _ _)
no goals
4ed43fa86c2baa31
List.scanl_cons
Mathlib/Data/List/Scan.lean
theorem scanl_cons : scanl f b (a :: l) = [b] ++ scanl f (f b a) l
α : Type u_1 β : Type u_2 f : β → α → β b : β a : α l : List α ⊢ scanl f b (a :: l) = [b] ++ scanl f (f b a) l
simp only [scanl, eq_self_iff_true, singleton_append, and_self_iff]
no goals
5e91e7dc3c7f9a36
Finset.left_mem_Ico
Mathlib/Order/Interval/Finset/Basic.lean
theorem left_mem_Ico : a ∈ Ico a b ↔ a < b
α : Type u_2 a b : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrder α ⊢ a ∈ Ico a b ↔ a < b
simp only [mem_Ico, true_and, le_refl]
no goals
a850e3e6a2a797e6
AnalyticOnNhd.iteratedFDeriv
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
theorem AnalyticOnNhd.iteratedFDeriv [CompleteSpace F] (h : AnalyticOnNhd 𝕜 f s) (n : ℕ) : AnalyticOnNhd 𝕜 (iteratedFDeriv 𝕜 n f) s
𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F f : E → F s : Set E inst✝ : CompleteSpace F h : AnalyticOnNhd 𝕜 f s n : ℕ IH : AnalyticOnNhd 𝕜 (iteratedFDeriv 𝕜 n f) s ⊢ (E →L[𝕜] ContinuousMultilinearMap 𝕜 (fun i => E) F) →L[𝕜] ContinuousMultilinearMap 𝕜 (fun i => E) F
exact ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun _ : Fin (n + 1) ↦ E) F).symm
no goals
30a2541ac18d8023
IsCoprime.prod_left
Mathlib/RingTheory/Coprime/Lemmas.lean
theorem IsCoprime.prod_left : (∀ i ∈ t, IsCoprime (s i) x) → IsCoprime (∏ i ∈ t, s i) x
R : Type u I : Type v inst✝ : CommSemiring R x : R s : I → R t✝ : Finset I b : I t : Finset I hbt : b ∉ t ih : (∀ i ∈ t, IsCoprime (s i) x) → IsCoprime (∏ i ∈ t, s i) x H : ∀ i ∈ insert b t, IsCoprime (s i) x ⊢ IsCoprime (s b * ∏ x ∈ t, s x) x
rw [Finset.forall_mem_insert] at H
R : Type u I : Type v inst✝ : CommSemiring R x : R s : I → R t✝ : Finset I b : I t : Finset I hbt : b ∉ t ih : (∀ i ∈ t, IsCoprime (s i) x) → IsCoprime (∏ i ∈ t, s i) x H : IsCoprime (s b) x ∧ ∀ x_1 ∈ t, IsCoprime (s x_1) x ⊢ IsCoprime (s b * ∏ x ∈ t, s x) x
c624860008ac4be4
MvPolynomial.IsWeightedHomogeneous.pderiv
Mathlib/RingTheory/MvPolynomial/EulerIdentity.lean
protected lemma IsWeightedHomogeneous.pderiv [AddCancelCommMonoid M] {w : σ → M} {n n' : M} {i : σ} (h : φ.IsWeightedHomogeneous w n) (h' : n' + w i = n) : (pderiv i φ).IsWeightedHomogeneous w n'
case refine_1 R : Type u_1 σ : Type u_2 M : Type u_3 inst✝¹ : CommSemiring R φ : MvPolynomial σ R inst✝ : AddCancelCommMonoid M w : σ → M n n' : M i : σ h : φ ∈ Submodule.span R ((fun i => single i 1) '' {d | (weight w) d = n}) h' : n' + w i = n ⊢ ∀ x ∈ (fun i => single i 1) '' {d | (weight w) d = n}, IsWeightedHomogeneous w ((pderiv i) x) n'
rintro _ ⟨m, hm, rfl⟩
case refine_1.intro.intro R : Type u_1 σ : Type u_2 M : Type u_3 inst✝¹ : CommSemiring R φ : MvPolynomial σ R inst✝ : AddCancelCommMonoid M w : σ → M n n' : M i : σ h : φ ∈ Submodule.span R ((fun i => single i 1) '' {d | (weight w) d = n}) h' : n' + w i = n m : σ →₀ ℕ hm : m ∈ {d | (weight w) d = n} ⊢ IsWeightedHomogeneous w ((pderiv i) ((fun i => single i 1) m)) n'
8ec031de5f3c8a44
CategoryTheory.Projective.projective_iff_preservesEpimorphisms_preadditiveCoyoneda_obj
Mathlib/CategoryTheory/Preadditive/Yoneda/Projective.lean
theorem projective_iff_preservesEpimorphisms_preadditiveCoyoneda_obj (P : C) : Projective P ↔ (preadditiveCoyoneda.obj (op P)).PreservesEpimorphisms
case refine_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C P : C a✝ : (preadditiveCoyoneda.obj (op P)).PreservesEpimorphisms ⊢ (coyoneda.obj (op P)).PreservesEpimorphisms
exact (inferInstance : (preadditiveCoyoneda.obj (op P) ⋙ forget _).PreservesEpimorphisms)
no goals
df0da8b1d81c31aa
List.min?_eq_some_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MinMax.lean
theorem min?_eq_some_iff [Min α] [LE α] [anti : Std.Antisymm ((· : α) ≤ ·)] (le_refl : ∀ a : α, a ≤ a) (min_eq_or : ∀ a b : α, min a b = a ∨ min a b = b) (le_min_iff : ∀ a b c : α, a ≤ min b c ↔ a ≤ b ∧ a ≤ c) {xs : List α} : xs.min? = some a ↔ a ∈ xs ∧ ∀ b, b ∈ xs → a ≤ b
case cons α : Type u_1 a : α inst✝¹ : Min α inst✝ : LE α anti : Std.Antisymm fun x1 x2 => x1 ≤ x2 le_refl : ∀ (a : α), a ≤ a min_eq_or : ∀ (a b : α), min a b = a ∨ min a b = b le_min_iff : ∀ (a b c : α), a ≤ min b c ↔ a ≤ b ∧ a ≤ c x : α xs : List α h₁ : a ∈ x :: xs h₂ : ∀ (b : α), b ∈ x :: xs → a ≤ b ⊢ (x :: xs).min? = some a
exact congrArg some <| anti.1 _ _ ((le_min?_iff le_min_iff (xs := x::xs) rfl).1 (le_refl _) _ h₁) (h₂ _ (min?_mem min_eq_or (xs := x::xs) rfl))
no goals
20feb9ca0ad00dc0
Std.DHashMap.Internal.Raw₀.Const.toListModel_alterₘ
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem toListModel_alterₘ [BEq α] [EquivBEq α] [Hashable α] [LawfulHashable α] {m : Raw₀ α (fun _ => β)} (h : Raw.WFImp m.1) {a : α} {f : Option β → Option β} : Perm (toListModel (Const.alterₘ m a f).1.2) (Const.alterKey a f (toListModel m.1.2))
α : Type u β : Type v inst✝³ : BEq α inst✝² : EquivBEq α inst✝¹ : Hashable α inst✝ : LawfulHashable α m : Raw₀ α fun x => β h : Raw.WFImp m.val a : α f : Option β → Option β hc : containsKey a (toListModel m.val.buckets) = false ⊢ toListModel (match f none with | none => m | some b => (m.consₘ a b).expandIfNecessary).val.buckets ~ Const.alterKey a f (toListModel m.val.buckets)
rw [Const.alterKey, getValue?_eq_none.mpr hc]
α : Type u β : Type v inst✝³ : BEq α inst✝² : EquivBEq α inst✝¹ : Hashable α inst✝ : LawfulHashable α m : Raw₀ α fun x => β h : Raw.WFImp m.val a : α f : Option β → Option β hc : containsKey a (toListModel m.val.buckets) = false ⊢ toListModel (match f none with | none => m | some b => (m.consₘ a b).expandIfNecessary).val.buckets ~ match f none with | none => eraseKey a (toListModel m.val.buckets) | some v => insertEntry a v (toListModel m.val.buckets)
46325448e4f73ee5
Finset.map_traverse
Mathlib/Data/Finset/Functor.lean
theorem map_traverse (g : α → G β) (h : β → γ) (s : Finset α) : Functor.map h <$> traverse g s = traverse (Functor.map h ∘ g) s
α β γ : Type u G : Type u → Type u inst✝¹ : Applicative G inst✝ : CommApplicative G g : α → G β h : β → γ s : Finset α ⊢ Functor.map h <$> Multiset.toFinset <$> Multiset.traverse g s.val = Multiset.toFinset <$> Multiset.traverse (Functor.map h ∘ g) s.val
simp only [Functor.map_map, fmap_def, map_comp_coe_apply, Multiset.fmap_def, ← Multiset.map_traverse]
no goals
aea3dce0394b1832
CategoryTheory.Presieve.isSheaf_iff_preservesFiniteProducts
Mathlib/CategoryTheory/Sites/Coherent/ExtensiveSheaves.lean
theorem Presieve.isSheaf_iff_preservesFiniteProducts (F : Cᵒᵖ ⥤ Type w) : Presieve.IsSheaf (extensiveTopology C) F ↔ PreservesFiniteProducts F
case refine_1.refine_2 C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type w hF : ∀ {X : C}, ∀ R ∈ (extensiveCoverage C).covering X, IsSheafFor F R n : ℕ K : Discrete (Fin n) ⥤ Cᵒᵖ Z : Fin n → C := fun i => unop (K.obj { as := i }) this✝ : (ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks this : ∀ (i : Fin n), Mono ((Cofan.mk (∐ Z) (Sigma.ι Z)).inj i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor ⊢ (Sigma.desc fun i => Sigma.ι Z i) = 𝟙 (∐ Z)
ext
case refine_1.refine_2.h C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type w hF : ∀ {X : C}, ∀ R ∈ (extensiveCoverage C).covering X, IsSheafFor F R n : ℕ K : Discrete (Fin n) ⥤ Cᵒᵖ Z : Fin n → C := fun i => unop (K.obj { as := i }) this✝ : (ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks this : ∀ (i : Fin n), Mono ((Cofan.mk (∐ Z) (Sigma.ι Z)).inj i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor b✝ : Fin n ⊢ (Sigma.ι Z b✝ ≫ Sigma.desc fun i => Sigma.ι Z i) = Sigma.ι Z b✝ ≫ 𝟙 (∐ Z)
6216cf6cf2959d2c
exteriorPower.pairingDual_apply_apply_eq_one
Mathlib/LinearAlgebra/ExteriorPower/Pairing.lean
lemma pairingDual_apply_apply_eq_one (a : Fin n ↪o ι) : pairingDual R M n (ιMulti _ _ (f ∘ a)) (ιMulti _ _ (x ∘ a)) = 1
R : Type u_1 M : Type u_2 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : LinearOrder ι x : ι → M f : ι → Module.Dual R M h₁ : ∀ (i : ι), (f i) (x i) = 1 h₀ : ∀ ⦃i j : ι⦄, i ≠ j → (f i) (x j) = 0 n : ℕ a : Fin n ↪o ι ⊢ (Matrix.of fun i j => (f (a j)) (x (a i))).det = Matrix.det 1
congr
case e_M R : Type u_1 M : Type u_2 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : LinearOrder ι x : ι → M f : ι → Module.Dual R M h₁ : ∀ (i : ι), (f i) (x i) = 1 h₀ : ∀ ⦃i j : ι⦄, i ≠ j → (f i) (x j) = 0 n : ℕ a : Fin n ↪o ι ⊢ (Matrix.of fun i j => (f (a j)) (x (a i))) = 1
c301cc6cf4cbc2cf
List.Nat.nodup_antidiagonalTuple
Mathlib/Data/Fin/Tuple/NatAntidiagonal.lean
theorem nodup_antidiagonalTuple (k n : ℕ) : List.Nodup (antidiagonalTuple k n)
case succ.right.succ k : ℕ ih : ∀ (n : ℕ), (antidiagonalTuple k n).Nodup n : ℕ n_ih : Pairwise (Function.onFun Disjoint fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) (antidiagonal n) ⊢ Pairwise (Function.onFun Disjoint fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) ((0, n + 1) :: map (Prod.map Nat.succ id) (antidiagonal n))
refine List.Pairwise.cons (fun a ha x hx₁ hx₂ => ?_) (n_ih.map _ fun a b h x hx₁ hx₂ => ?_)
case succ.right.succ.refine_1 k : ℕ ih : ∀ (n : ℕ), (antidiagonalTuple k n).Nodup n : ℕ n_ih : Pairwise (Function.onFun Disjoint fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) (antidiagonal n) a : ℕ × ℕ ha : a ∈ map (Prod.map Nat.succ id) (antidiagonal n) x : Fin (k + 1) → ℕ hx₁ : x ∈ (fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) (0, n + 1) hx₂ : x ∈ (fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) a ⊢ False case succ.right.succ.refine_2 k : ℕ ih : ∀ (n : ℕ), (antidiagonalTuple k n).Nodup n : ℕ n_ih : Pairwise (Function.onFun Disjoint fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) (antidiagonal n) a b : ℕ × ℕ h : Function.onFun Disjoint (fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) a b x : Fin (k + 1) → ℕ hx₁ : x ∈ (fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) (Prod.map Nat.succ id a) hx₂ : x ∈ (fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) (Prod.map Nat.succ id b) ⊢ False
4c17a19ec5bf0ba2
ProbabilityTheory.gaussianReal_map_add_const
Mathlib/Probability/Distributions/Gaussian.lean
/-- The map of a Gaussian distribution by addition of a constant is a Gaussian. -/ lemma gaussianReal_map_add_const (y : ℝ) : (gaussianReal μ v).map (· + y) = gaussianReal (μ + y) v
case pos μ : ℝ v : ℝ≥0 y : ℝ hv : v = 0 ⊢ Measure.map (fun x => x + y) (Measure.dirac μ) = Measure.dirac (μ + y)
exact Measure.map_dirac (measurable_id'.add_const _) _
no goals
c255a30ef6e9b8ed
Sum.liftRel_swap_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Sum/Lemmas.lean
theorem liftRel_swap_iff : LiftRel s r x.swap y.swap ↔ LiftRel r s x y := ⟨fun h => by rw [← swap_swap x, ← swap_swap y]; exact h.swap, LiftRel.swap⟩
β✝¹ : Type u_1 β✝ : Type u_2 s : β✝¹ → β✝ → Prop α✝¹ : Type u_3 α✝ : Type u_4 r : α✝¹ → α✝ → Prop x : α✝¹ ⊕ β✝¹ y : α✝ ⊕ β✝ h : LiftRel s r x.swap y.swap ⊢ LiftRel r s x.swap.swap y.swap.swap
exact h.swap
no goals
b9260286946e2ea5
bernsteinPolynomial.sum_mul_smul
Mathlib/RingTheory/Polynomial/Bernstein.lean
theorem sum_mul_smul (n : ℕ) : (∑ ν ∈ Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν) = (n * (n - 1)) • X ^ 2
case succ.succ R : Type u_1 inst✝ : CommRing R n : ℕ x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : (pderiv true) x = 1 pderiv_true_y : (pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X k : ℕ ⊢ (↑k + 1 + 1) * (↑k + 1) * (↑(n.choose (k + 1 + 1)) * (X ^ k * X * X) * (1 - X) ^ (n - (k + 1 + 1))) = ↑(n.choose (k + 1 + 1)) * ((1 - X) ^ (n - (k + 1 + 1)) * ((↑k + 1 + 1) * ((↑k + 1) * X ^ k))) * (X ^ 0 * X * X)
ring
no goals
5a1ea5f98d0a949e
gradient_eq_deriv
Mathlib/Analysis/Calculus/Gradient/Basic.lean
theorem gradient_eq_deriv : ∇ g u = starRingEnd 𝕜 (deriv g u)
case neg 𝕜 : Type u_1 inst✝ : RCLike 𝕜 g : 𝕜 → 𝕜 u : 𝕜 h : ¬DifferentiableAt 𝕜 g u ⊢ ∇ g u = (starRingEnd 𝕜) (deriv g u)
rw [gradient_eq_zero_of_not_differentiableAt h, deriv_zero_of_not_differentiableAt h, map_zero]
no goals
28982b9536fea35f
Ordinal.ord_cof_eq
Mathlib/SetTheory/Cardinal/Cofinality.lean
theorem ord_cof_eq (r : α → α → Prop) [IsWellOrder α r] : ∃ S, Unbounded r S ∧ type (Subrel r (· ∈ S)) = (cof (type r)).ord
α : Type u r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = (type r).cof s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : (#↑S).ord = type s ⊢ ∃ S, Unbounded r S ∧ type (Subrel r fun x => x ∈ S) = (type r).cof.ord
let T : Set α := { a | ∃ aS : a ∈ S, ∀ b : S, s b ⟨_, aS⟩ → r b a }
α : Type u r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = (type r).cof s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : (#↑S).ord = type s T : Set α := {a | ∃ (aS : a ∈ S), ∀ (b : ↑S), s b ⟨a, aS⟩ → r (↑b) a} ⊢ ∃ S, Unbounded r S ∧ type (Subrel r fun x => x ∈ S) = (type r).cof.ord
1935e0c9099cb4dd
dvd_add_right
Mathlib/Algebra/Ring/Divisibility/Basic.lean
theorem dvd_add_right (h : a ∣ b) : a ∣ b + c ↔ a ∣ c
α : Type u_1 inst✝ : NonUnitalRing α a b c : α h : a ∣ b ⊢ a ∣ b + c ↔ a ∣ c
rw [add_comm]
α : Type u_1 inst✝ : NonUnitalRing α a b c : α h : a ∣ b ⊢ a ∣ c + b ↔ a ∣ c
5260398ee4d792b4
Set.partiallyWellOrderedOn_iff_finite_antichains
Mathlib/Order/WellFoundedSet.lean
theorem partiallyWellOrderedOn_iff_finite_antichains [IsSymm α r] : s.PartiallyWellOrderedOn r ↔ ∀ t, t ⊆ s → IsAntichain r t → t.Finite
case refine_1.inr.inr α : Type u_2 r : α → α → Prop s : Set α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ t ⊆ s, IsAntichain r t → t.Finite f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : f m = f n h : n < m ⊢ r (f n) (f m)
rw [hmn]
case refine_1.inr.inr α : Type u_2 r : α → α → Prop s : Set α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ t ⊆ s, IsAntichain r t → t.Finite f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : f m = f n h : n < m ⊢ r (f n) (f n)
43bb422c139b758d
LinearRecurrence.sol_eq_of_eq_init
Mathlib/Algebra/LinearRecurrence.lean
theorem sol_eq_of_eq_init (u v : ℕ → α) (hu : E.IsSolution u) (hv : E.IsSolution v) : u = v ↔ Set.EqOn u v ↑(range E.order)
α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : E.IsSolution u hv : E.IsSolution v ⊢ u = v ↔ Set.EqOn u v ↑(range E.order)
refine Iff.intro (fun h x _ ↦ h ▸ rfl) ?_
α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : E.IsSolution u hv : E.IsSolution v ⊢ Set.EqOn u v ↑(range E.order) → u = v
5fb080a45c739da9
Option.filter_eq_some
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Option/Lemmas.lean
theorem filter_eq_some {o : Option α} {p : α → Bool} : o.filter p = some a ↔ a ∈ o ∧ p a
case some α : Type u_1 a✝ : α p : α → Bool a : α ⊢ (if p a = true then some a else none) = some a✝ ↔ a = a✝ ∧ p a✝ = true
split <;> rename_i h
case some.isTrue α : Type u_1 a✝ : α p : α → Bool a : α h : p a = true ⊢ some a = some a✝ ↔ a = a✝ ∧ p a✝ = true case some.isFalse α : Type u_1 a✝ : α p : α → Bool a : α h : ¬p a = true ⊢ none = some a✝ ↔ a = a✝ ∧ p a✝ = true
3260041bf741cef3
Ordnode.delta_lt_false
Mathlib/Data/Ordmap/Ordset.lean
theorem delta_lt_false {a b : ℕ} (h₁ : delta * a < b) (h₂ : delta * b < a) : False := not_le_of_lt (lt_trans ((mul_lt_mul_left (by decide)).2 h₁) h₂) <| by simpa [mul_assoc] using Nat.mul_le_mul_right a (by decide : 1 ≤ delta * delta)
a b : ℕ h₁ : delta * a < b h₂ : delta * b < a ⊢ 0 < delta
decide
no goals
99f41f90e87d06fc
AlgebraicGeometry.isLocallyNoetherian_iff_of_affine_openCover
Mathlib/AlgebraicGeometry/Noetherian.lean
theorem isLocallyNoetherian_iff_of_affine_openCover (𝒰 : Scheme.OpenCover.{v, u} X) [∀ i, IsAffine (𝒰.obj i)] : IsLocallyNoetherian X ↔ ∀ (i : 𝒰.J), IsNoetherianRing Γ(𝒰.obj i, ⊤)
case mpr X : Scheme 𝒰 : X.OpenCover inst✝ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) hCNoeth : ∀ (i : 𝒰.J), IsNoetherianRing ↑Γ(𝒰.obj i, ⊤) fS : 𝒰.J → ↑X.affineOpens := fun i => ⟨Scheme.Hom.opensRange (𝒰.map i), ⋯⟩ ⊢ IsLocallyNoetherian X
apply isLocallyNoetherian_of_affine_cover (S := fS)
case mpr.hS X : Scheme 𝒰 : X.OpenCover inst✝ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) hCNoeth : ∀ (i : 𝒰.J), IsNoetherianRing ↑Γ(𝒰.obj i, ⊤) fS : 𝒰.J → ↑X.affineOpens := fun i => ⟨Scheme.Hom.opensRange (𝒰.map i), ⋯⟩ ⊢ ⨆ i, ↑(fS i) = ⊤ case mpr.hS' X : Scheme 𝒰 : X.OpenCover inst✝ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) hCNoeth : ∀ (i : 𝒰.J), IsNoetherianRing ↑Γ(𝒰.obj i, ⊤) fS : 𝒰.J → ↑X.affineOpens := fun i => ⟨Scheme.Hom.opensRange (𝒰.map i), ⋯⟩ ⊢ ∀ (i : 𝒰.J), IsNoetherianRing ↑Γ(X, ↑(fS i))
1710a80ef0394cfb
Ordnode.Valid'.rotateL
Mathlib/Data/Ordmap/Ordset.lean
theorem Valid'.rotateL {l} {x : α} {r o₁ o₂} (hl : Valid' o₁ l x) (hr : Valid' x r o₂) (H1 : ¬size l + size r ≤ 1) (H2 : delta * size l < size r) (H3 : 2 * size r ≤ 9 * size l + 5 ∨ size r ≤ 3) : Valid' o₁ (@rotateL α l x r) o₂
case node α : Type u_1 inst✝ : Preorder α l : Ordnode α x : α o₁ : WithBot α o₂ : WithTop α hl : Valid' o₁ l ↑x rs : ℕ rl : Ordnode α rx : α rr : Ordnode α hr : Valid' (↑x) (Ordnode.node rs rl rx rr) o₂ H1 : ¬l.size + (Ordnode.node rs rl rx rr).size ≤ 1 H2 : delta * l.size ≤ rl.size + rr.size H3 : 2 * (rl.size + rr.size + 1) ≤ 9 * l.size + 5 ∨ rl.size + rr.size + 1 ≤ 3 ⊢ Valid' o₁ (l.rotateL x (Ordnode.node rs rl rx rr)) o₂
replace H3 : 2 * (size rl + size rr) ≤ 9 * size l + 3 ∨ size rl + size rr ≤ 2 := H3.imp (@Nat.le_of_add_le_add_right _ 2 _) Nat.le_of_succ_le_succ
case node α : Type u_1 inst✝ : Preorder α l : Ordnode α x : α o₁ : WithBot α o₂ : WithTop α hl : Valid' o₁ l ↑x rs : ℕ rl : Ordnode α rx : α rr : Ordnode α hr : Valid' (↑x) (Ordnode.node rs rl rx rr) o₂ H1 : ¬l.size + (Ordnode.node rs rl rx rr).size ≤ 1 H2 : delta * l.size ≤ rl.size + rr.size H3 : 2 * (rl.size + rr.size) ≤ 9 * l.size + 3 ∨ rl.size + rr.size ≤ 2 ⊢ Valid' o₁ (l.rotateL x (Ordnode.node rs rl rx rr)) o₂
0ebe7132c42c2866
Matrix.Pivot.exists_list_transvec_mul_mul_list_transvec_eq_diagonal_aux
Mathlib/LinearAlgebra/Matrix/Transvection.lean
theorem exists_list_transvec_mul_mul_list_transvec_eq_diagonal_aux (n : Type) [Fintype n] [DecidableEq n] (M : Matrix n n 𝕜) : ∃ (L L' : List (TransvectionStruct n 𝕜)) (D : n → 𝕜), (L.map toMatrix).prod * M * (L'.map toMatrix).prod = diagonal D
𝕜 : Type u_3 inst✝² : Field 𝕜 r : ℕ IH : ∀ (n : Type) [inst : Fintype n] [inst_1 : DecidableEq n] (M : Matrix n n 𝕜), Fintype.card n = r → ∃ L L' D, (List.map toMatrix L).prod * M * (List.map toMatrix L').prod = diagonal D n : Type inst✝¹ : Fintype n inst✝ : DecidableEq n M : Matrix n n 𝕜 hn : Fintype.card n = r + 1 ⊢ r + 1 = Fintype.card (Fin r ⊕ Unit)
rw [@Fintype.card_sum (Fin r) Unit _ _]
𝕜 : Type u_3 inst✝² : Field 𝕜 r : ℕ IH : ∀ (n : Type) [inst : Fintype n] [inst_1 : DecidableEq n] (M : Matrix n n 𝕜), Fintype.card n = r → ∃ L L' D, (List.map toMatrix L).prod * M * (List.map toMatrix L').prod = diagonal D n : Type inst✝¹ : Fintype n inst✝ : DecidableEq n M : Matrix n n 𝕜 hn : Fintype.card n = r + 1 ⊢ r + 1 = Fintype.card (Fin r) + Fintype.card Unit
6fda99f6ca7c53ea
Algebra.discr_zero_of_not_linearIndependent
Mathlib/RingTheory/Discriminant.lean
theorem discr_zero_of_not_linearIndependent [IsDomain A] {b : ι → B} (hli : ¬LinearIndependent A b) : discr A b = 0
A : Type u B : Type v ι : Type w inst✝⁵ : DecidableEq ι inst✝⁴ : CommRing A inst✝³ : CommRing B inst✝² : Algebra A B inst✝¹ : Fintype ι inst✝ : IsDomain A b : ι → B hli : ¬LinearIndependent A b g : ι → A hg : ∑ i : ι, g i • b i = 0 i : ι hi : g i ≠ 0 ⊢ traceMatrix A b *ᵥ g = 0
ext i
case h A : Type u B : Type v ι : Type w inst✝⁵ : DecidableEq ι inst✝⁴ : CommRing A inst✝³ : CommRing B inst✝² : Algebra A B inst✝¹ : Fintype ι inst✝ : IsDomain A b : ι → B hli : ¬LinearIndependent A b g : ι → A hg : ∑ i : ι, g i • b i = 0 i✝ : ι hi : g i✝ ≠ 0 i : ι ⊢ (traceMatrix A b *ᵥ g) i = 0 i
f530ce30634a182a
MvPowerSeries.one_mul
Mathlib/RingTheory/MvPowerSeries/Basic.lean
theorem one_mul : (1 : MvPowerSeries σ R) * φ = φ := ext fun n => by simpa using coeff_add_monomial_mul 0 n φ 1
σ : Type u_1 R : Type u_2 inst✝ : Semiring R φ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ (coeff R n) (1 * φ) = (coeff R n) φ
simpa using coeff_add_monomial_mul 0 n φ 1
no goals
051199c63a005a2b
Equiv.swap_bijOn_self
Mathlib/Logic/Equiv/Set.lean
theorem Equiv.swap_bijOn_self (hs : a ∈ s ↔ b ∈ s) : BijOn (Equiv.swap a b) s s
case refine_2.inr α : Type u_1 inst✝ : DecidableEq α a b : α s : Set α hs : a ∈ s ↔ b ∈ s x : α hx : x ∈ s hxa : x ≠ a ⊢ x ∈ ⇑(swap a b) '' s
obtain (rfl | hxb) := eq_or_ne x b
case refine_2.inr.inl α : Type u_1 inst✝ : DecidableEq α a : α s : Set α x : α hx : x ∈ s hxa : x ≠ a hs : a ∈ s ↔ x ∈ s ⊢ x ∈ ⇑(swap a x) '' s case refine_2.inr.inr α : Type u_1 inst✝ : DecidableEq α a b : α s : Set α hs : a ∈ s ↔ b ∈ s x : α hx : x ∈ s hxa : x ≠ a hxb : x ≠ b ⊢ x ∈ ⇑(swap a b) '' s
b9c2b4efbec77056
CategoryTheory.Functor.Elements.ext
Mathlib/CategoryTheory/Elements.lean
lemma Functor.Elements.ext {F : C ⥤ Type w} (x y : F.Elements) (h₁ : x.fst = y.fst) (h₂ : F.map (eqToHom h₁) x.snd = y.snd) : x = y
case mk.mk.refl C : Type u inst✝ : Category.{v, u} C F : C ⥤ Type w fst✝ : C snd✝¹ snd✝ : F.obj fst✝ h₂ : F.map (eqToHom ⋯) ⟨fst✝, snd✝¹⟩.snd = ⟨fst✝, snd✝⟩.snd ⊢ ⟨fst✝, snd✝¹⟩ = ⟨fst✝, snd✝⟩
simp only [eqToHom_refl, FunctorToTypes.map_id_apply] at h₂
case mk.mk.refl C : Type u inst✝ : Category.{v, u} C F : C ⥤ Type w fst✝ : C snd✝¹ snd✝ : F.obj fst✝ h₂ : snd✝¹ = snd✝ ⊢ ⟨fst✝, snd✝¹⟩ = ⟨fst✝, snd✝⟩
48952278ceaed9f9
Memℓp.const_smul
Mathlib/Analysis/Normed/Lp/lpSpace.lean
theorem const_smul {f : ∀ i, E i} (hf : Memℓp f p) (c : 𝕜) : Memℓp (c • f) p
case inr.inr 𝕜 : Type u_1 α : Type u_3 E : α → Type u_4 p : ℝ≥0∞ inst✝³ : (i : α) → NormedAddCommGroup (E i) inst✝² : NormedRing 𝕜 inst✝¹ : (i : α) → Module 𝕜 (E i) inst✝ : ∀ (i : α), BoundedSMul 𝕜 (E i) f : (i : α) → E i hf : Memℓp f p c : 𝕜 hp : 0 < p.toReal ⊢ Memℓp (c • f) p
apply memℓp_gen
case inr.inr.hf 𝕜 : Type u_1 α : Type u_3 E : α → Type u_4 p : ℝ≥0∞ inst✝³ : (i : α) → NormedAddCommGroup (E i) inst✝² : NormedRing 𝕜 inst✝¹ : (i : α) → Module 𝕜 (E i) inst✝ : ∀ (i : α), BoundedSMul 𝕜 (E i) f : (i : α) → E i hf : Memℓp f p c : 𝕜 hp : 0 < p.toReal ⊢ Summable fun i => ‖(c • f) i‖ ^ p.toReal
c315b9f83470cdc9
Set.ncard_diff_singleton_add_one
Mathlib/Data/Set/Card.lean
theorem ncard_diff_singleton_add_one {a : α} (h : a ∈ s) (hs : s.Finite
α : Type u_1 s : Set α a : α h : a ∈ s hs : autoParam s.Finite _auto✝ ⊢ (s \ {a}).ncard + 1 = s.ncard
to_encard_tac
α : Type u_1 s : Set α a : α h : a ∈ s hs : autoParam s.Finite _auto✝ ⊢ ↑(s \ {a}).ncard + 1 = ↑s.ncard
f16c1c8ed81c9874
IsSimpleGroup.prime_card
Mathlib/GroupTheory/SpecificGroups/Cyclic.lean
theorem prime_card [Finite α] : (Nat.card α).Prime
case intro.refine_1 α : Type u_1 inst✝² : CommGroup α inst✝¹ : IsSimpleGroup α inst✝ : Finite α h0 : 0 < Nat.card α g : α hg : ∀ (x : α), x ∈ Subgroup.zpowers g n : ℕ hn : n ∣ Nat.card α h : Subgroup.zpowers (g ^ n) = ⊤ hgo : orderOf (g ^ n) = orderOf g / (orderOf g).gcd n ⊢ n = 1
rw [orderOf_eq_card_of_forall_mem_zpowers hg, Nat.gcd_eq_right_iff_dvd.1 hn, orderOf_eq_card_of_forall_mem_zpowers, eq_comm, Nat.div_eq_iff_eq_mul_left (Nat.pos_of_dvd_of_pos hn h0) hn] at hgo
case intro.refine_1 α : Type u_1 inst✝² : CommGroup α inst✝¹ : IsSimpleGroup α inst✝ : Finite α h0 : 0 < Nat.card α g : α hg : ∀ (x : α), x ∈ Subgroup.zpowers g n : ℕ hn : n ∣ Nat.card α h : Subgroup.zpowers (g ^ n) = ⊤ hgo : Nat.card α = Nat.card α * n ⊢ n = 1 case intro.refine_1 α : Type u_1 inst✝² : CommGroup α inst✝¹ : IsSimpleGroup α inst✝ : Finite α h0 : 0 < Nat.card α g : α hg : ∀ (x : α), x ∈ Subgroup.zpowers g n : ℕ hn : n ∣ Nat.card α h : Subgroup.zpowers (g ^ n) = ⊤ hgo : orderOf (g ^ n) = Nat.card α / n ⊢ ∀ (x : α), x ∈ Subgroup.zpowers (g ^ n)
9a62ce0ba103643e
Irrational.beattySeq'_pos_eq
Mathlib/NumberTheory/Rayleigh.lean
theorem Irrational.beattySeq'_pos_eq {r : ℝ} (hr : Irrational r) : {beattySeq' r k | k > 0} = {beattySeq r k | k > 0}
case h.e'_2.h.h.e'_2.h.a.a.h.e'_2 r : ℝ hr : Irrational r x✝ k : ℤ hk : k > 0 ⊢ ↑⌊↑k * r⌋ < ↑k * r ∧ ↑k * r ≤ ↑⌊↑k * r⌋ + 1
refine ⟨(Int.floor_le _).lt_of_ne fun h ↦ ?_, (Int.lt_floor_add_one _).le⟩
case h.e'_2.h.h.e'_2.h.a.a.h.e'_2 r : ℝ hr : Irrational r x✝ k : ℤ hk : k > 0 h : ↑⌊↑k * r⌋ = ↑k * r ⊢ False
8a9525f89f636dc1
ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear
Mathlib/Analysis/Calculus/ContDiff/Bounds.lean
theorem ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear (B : E →L[𝕜] F →L[𝕜] G) {f : D → E} {g : D → F} {N : WithTop ℕ∞} {s : Set D} {x : D} (hf : ContDiffOn 𝕜 N f s) (hg : ContDiffOn 𝕜 N g s) (hs : UniqueDiffOn 𝕜 s) (hx : x ∈ s) {n : ℕ} (hn : n ≤ N) : ‖iteratedFDerivWithin 𝕜 n (fun y => B (f y) (g y)) s x‖ ≤ ‖B‖ * ∑ i ∈ Finset.range (n + 1), (n.choose i : ℝ) * ‖iteratedFDerivWithin 𝕜 i f s x‖ * ‖iteratedFDerivWithin 𝕜 (n - i) g s x‖
𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁷ : NormedAddCommGroup D inst✝⁶ : NormedSpace 𝕜 D E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G B : E →L[𝕜] F →L[𝕜] G f : D → E g : D → F N : WithTop ℕ∞ s : Set D x✝ : D hf : ContDiffOn 𝕜 N f s hg : ContDiffOn 𝕜 N g s hs : UniqueDiffOn 𝕜 s hx : x✝ ∈ s n : ℕ hn : ↑n ≤ N Du : Type (max uD uE uF uG) := ULift.{max uE uF uG, uD} D Eu : Type (max uD uE uF uG) := ULift.{max uD uF uG, uE} E Fu : Type (max uD uE uF uG) := ULift.{max uD uE uG, uF} F Gu : Type (max uD uE uF uG) := ULift.{max uD uE uF, uG} G isoD : Du ≃ₗᵢ[𝕜] D isoE : Eu ≃ₗᵢ[𝕜] E isoF : Fu ≃ₗᵢ[𝕜] F isoG : Gu ≃ₗᵢ[𝕜] G fu : Du → Eu := ⇑isoE.symm ∘ f ∘ ⇑isoD gu : Du → Fu := ⇑isoF.symm ∘ g ∘ ⇑isoD Bu₀ : Eu →L[𝕜] Fu →L[𝕜] G := ((B.comp ↑{ toLinearEquiv := isoE.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }).flip.comp ↑{ toLinearEquiv := isoF.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }).flip Bu : Eu →L[𝕜] Fu →L[𝕜] Gu := ((compL 𝕜 Eu (Fu →L[𝕜] G) (Fu →L[𝕜] Gu)) ((compL 𝕜 Fu G Gu) ↑{ toLinearEquiv := isoG.symm.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ })) Bu₀ hBu : Bu = ((compL 𝕜 Eu (Fu →L[𝕜] G) (Fu →L[𝕜] Gu)) ((compL 𝕜 Fu G Gu) ↑{ toLinearEquiv := isoG.symm.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ })) Bu₀ Bu_eq : (fun y => (Bu (fu y)) (gu y)) = ⇑isoG.symm ∘ (fun y => (B (f y)) (g y)) ∘ ⇑isoD y : Eu x : Fu ⊢ ‖(Bu y) x‖ ≤ ‖B‖ * ‖y‖ * ‖x‖
simp only [Du, Eu, Fu, Gu, hBu, Bu₀, compL_apply, coe_comp', Function.comp_apply, ContinuousLinearEquiv.coe_coe, LinearIsometryEquiv.coe_coe, flip_apply, LinearIsometryEquiv.norm_map]
𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁷ : NormedAddCommGroup D inst✝⁶ : NormedSpace 𝕜 D E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G B : E →L[𝕜] F →L[𝕜] G f : D → E g : D → F N : WithTop ℕ∞ s : Set D x✝ : D hf : ContDiffOn 𝕜 N f s hg : ContDiffOn 𝕜 N g s hs : UniqueDiffOn 𝕜 s hx : x✝ ∈ s n : ℕ hn : ↑n ≤ N Du : Type (max uD uE uF uG) := ULift.{max uE uF uG, uD} D Eu : Type (max uD uE uF uG) := ULift.{max uD uF uG, uE} E Fu : Type (max uD uE uF uG) := ULift.{max uD uE uG, uF} F Gu : Type (max uD uE uF uG) := ULift.{max uD uE uF, uG} G isoD : Du ≃ₗᵢ[𝕜] D isoE : Eu ≃ₗᵢ[𝕜] E isoF : Fu ≃ₗᵢ[𝕜] F isoG : Gu ≃ₗᵢ[𝕜] G fu : Du → Eu := ⇑isoE.symm ∘ f ∘ ⇑isoD gu : Du → Fu := ⇑isoF.symm ∘ g ∘ ⇑isoD Bu₀ : Eu →L[𝕜] Fu →L[𝕜] G := ((B.comp ↑{ toLinearEquiv := isoE.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }).flip.comp ↑{ toLinearEquiv := isoF.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }).flip Bu : Eu →L[𝕜] Fu →L[𝕜] Gu := ((compL 𝕜 Eu (Fu →L[𝕜] G) (Fu →L[𝕜] Gu)) ((compL 𝕜 Fu G Gu) ↑{ toLinearEquiv := isoG.symm.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ })) Bu₀ hBu : Bu = ((compL 𝕜 Eu (Fu →L[𝕜] G) (Fu →L[𝕜] Gu)) ((compL 𝕜 Fu G Gu) ↑{ toLinearEquiv := isoG.symm.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ })) Bu₀ Bu_eq : (fun y => (Bu (fu y)) (gu y)) = ⇑isoG.symm ∘ (fun y => (B (f y)) (g y)) ∘ ⇑isoD y : Eu x : Fu ⊢ ‖(B (isoE y)) (isoF x)‖ ≤ ‖B‖ * ‖y‖ * ‖x‖
c6fa542bdff00851
WittVector.coeff_p
Mathlib/RingTheory/WittVector/Identities.lean
theorem coeff_p [CharP R p] (i : ℕ) : (p : 𝕎 R).coeff i = if i = 1 then 1 else 0
p : ℕ R : Type u_1 hp : Fact (Nat.Prime p) inst✝¹ : CommRing R inst✝ : CharP R p i : ℕ ⊢ (↑p).coeff i = if i = 1 then 1 else 0
split_ifs with hi
case pos p : ℕ R : Type u_1 hp : Fact (Nat.Prime p) inst✝¹ : CommRing R inst✝ : CharP R p i : ℕ hi : i = 1 ⊢ (↑p).coeff i = 1 case neg p : ℕ R : Type u_1 hp : Fact (Nat.Prime p) inst✝¹ : CommRing R inst✝ : CharP R p i : ℕ hi : ¬i = 1 ⊢ (↑p).coeff i = 0
cb1d7d5ed1383bb1
HomologicalComplex.homotopyCofiber.inrX_d
Mathlib/Algebra/Homology/HomotopyCofiber.lean
@[reassoc (attr := simp)] lemma inrX_d (i j : ι) : inrX φ i ≫ d φ i j = G.d i j ≫ inrX φ j
case pos C : Type u_1 inst✝³ : Category.{u_3, u_1} C inst✝² : Preadditive C ι : Type u_2 c : ComplexShape ι F G : HomologicalComplex C c φ : F ⟶ G inst✝¹ : HasHomotopyCofiber φ inst✝ : DecidableRel c.Rel i j : ι hij : c.Rel i j hj : c.Rel j (c.next j) ⊢ inrX φ i ≫ d φ i j = G.d i j ≫ inrX φ j
apply ext_to_X _ _ _ hj
case pos.h₁ C : Type u_1 inst✝³ : Category.{u_3, u_1} C inst✝² : Preadditive C ι : Type u_2 c : ComplexShape ι F G : HomologicalComplex C c φ : F ⟶ G inst✝¹ : HasHomotopyCofiber φ inst✝ : DecidableRel c.Rel i j : ι hij : c.Rel i j hj : c.Rel j (c.next j) ⊢ (inrX φ i ≫ d φ i j) ≫ fstX φ j (c.next j) hj = (G.d i j ≫ inrX φ j) ≫ fstX φ j (c.next j) hj case pos.h₂ C : Type u_1 inst✝³ : Category.{u_3, u_1} C inst✝² : Preadditive C ι : Type u_2 c : ComplexShape ι F G : HomologicalComplex C c φ : F ⟶ G inst✝¹ : HasHomotopyCofiber φ inst✝ : DecidableRel c.Rel i j : ι hij : c.Rel i j hj : c.Rel j (c.next j) ⊢ (inrX φ i ≫ d φ i j) ≫ sndX φ j = (G.d i j ≫ inrX φ j) ≫ sndX φ j
a8c86133f9b3c635
exists_gt_t2space
Mathlib/Topology/ShrinkingLemma.lean
theorem exists_gt_t2space (v : PartialRefinement u s (fun w => IsCompact (closure w))) (hs : IsCompact s) (i : ι) (hi : i ∉ v.carrier) : ∃ v' : PartialRefinement u s (fun w => IsCompact (closure w)), v < v' ∧ IsCompact (closure (v' i))
ι : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X u : ι → Set X s : Set X inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X v : PartialRefinement u s fun w => IsCompact (closure w) hs : IsCompact s i : ι hi : i ∉ v.carrier si : Set X := s ∩ (⋃ j, ⋃ (_ : j ≠ i), v.toFun j)ᶜ hsi : si = s ∩ ⋂ i_1, ⋂ (_ : ¬i_1 = i), (v.toFun i_1)ᶜ hsic : IsCompact si x : X hx : x ∈ si this : ∀ (j : ι), j ≠ i → x ∉ v.toFun j ⊢ x ∈ v.toFun i
obtain ⟨j, hj⟩ := Set.mem_iUnion.mp (v.subset_iUnion (Set.mem_of_mem_inter_left hx))
case intro ι : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X u : ι → Set X s : Set X inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X v : PartialRefinement u s fun w => IsCompact (closure w) hs : IsCompact s i : ι hi : i ∉ v.carrier si : Set X := s ∩ (⋃ j, ⋃ (_ : j ≠ i), v.toFun j)ᶜ hsi : si = s ∩ ⋂ i_1, ⋂ (_ : ¬i_1 = i), (v.toFun i_1)ᶜ hsic : IsCompact si x : X hx : x ∈ si this : ∀ (j : ι), j ≠ i → x ∉ v.toFun j j : ι hj : x ∈ v.toFun j ⊢ x ∈ v.toFun i
b61f3fede2ad34cb
solvableByRad.induction2
Mathlib/FieldTheory/AbelRuffini.lean
theorem induction2 {α β γ : solvableByRad F E} (hγ : γ ∈ F⟮α, β⟯) (hα : P α) (hβ : P β) : P γ
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E α β γ : ↥(solvableByRad F E) hγ : γ ∈ F⟮α, β⟯ hα : P α hβ : P β p : F[X] := minpoly F α q : F[X] := minpoly F β hpq : Splits (algebraMap F (p * q).SplittingField) (minpoly F α) ∧ Splits (algebraMap F (p * q).SplittingField) (minpoly F β) f : ↥F⟮α, β⟯ →ₐ[F] (p * q).SplittingField := Classical.choice ⋯ ⊢ minpoly F γ = minpoly F (f ⟨γ, hγ⟩)
refine minpoly.eq_of_irreducible_of_monic (minpoly.irreducible (isIntegral γ)) ?_ (minpoly.monic (isIntegral γ))
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E α β γ : ↥(solvableByRad F E) hγ : γ ∈ F⟮α, β⟯ hα : P α hβ : P β p : F[X] := minpoly F α q : F[X] := minpoly F β hpq : Splits (algebraMap F (p * q).SplittingField) (minpoly F α) ∧ Splits (algebraMap F (p * q).SplittingField) (minpoly F β) f : ↥F⟮α, β⟯ →ₐ[F] (p * q).SplittingField := Classical.choice ⋯ ⊢ (aeval (f ⟨γ, hγ⟩)) (minpoly F γ) = 0
baad06864f8e9f42
MeasureTheory.measurable_stoppedValue
Mathlib/Probability/Process/Stopping.lean
theorem measurable_stoppedValue [MetrizableSpace β] [MeasurableSpace β] [BorelSpace β] (hf_prog : ProgMeasurable f u) (hτ : IsStoppingTime f τ) : Measurable[hτ.measurableSpace] (stoppedValue u τ)
Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => τ ω ⊓ i) t : Set β ht : MeasurableSet t i : ι this : stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} = (stoppedValue u fun ω => τ ω ⊓ i) ⁻¹' t ∩ {ω | τ ω ≤ i} ⊢ MeasurableSet ((stoppedValue u fun ω => τ ω ⊓ i) ⁻¹' t ∩ {ω | τ ω ≤ i})
exact ((h_str_meas i).measurable ht).inter (hτ.measurableSet_le i)
no goals
1bd0ad42e2bec67b
isOpen_iff_forall_mem_open
Mathlib/Topology/Basic.lean
theorem isOpen_iff_forall_mem_open : IsOpen s ↔ ∀ x ∈ s, ∃ t, t ⊆ s ∧ IsOpen t ∧ x ∈ t
X : Type u s : Set X inst✝ : TopologicalSpace X ⊢ s ⊆ interior s ↔ ∀ x ∈ s, ∃ t ⊆ s, IsOpen t ∧ x ∈ t
simp only [subset_def, mem_interior]
no goals
bbc12580404b6a0a
List.foldr_filter
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem foldr_filter (p : α → Bool) (f : α → β → β) (l : List α) (init : β) : (l.filter p).foldr f init = l.foldr (fun x y => if p x then f x y else y) init
case nil α : Type u_1 β : Type u_2 p : α → Bool f : α → β → β init : β ⊢ foldr f init (filter p []) = foldr (fun x y => if p x = true then f x y else y) init []
rfl
no goals
643547fd2eee8a3a
BitVec.getMsbD_neg
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Bitblast.lean
theorem getMsbD_neg {i : Nat} {x : BitVec w} : getMsbD (-x) i = (getMsbD x i ^^ decide (∃ j < w, i < j ∧ getMsbD x j = true))
w i : Nat x : BitVec w ⊢ (-x).getMsbD i = (x.getMsbD i ^^ decide (∃ j, j < w ∧ i < j ∧ x.getMsbD j = true))
simp only [getMsbD, getLsbD_neg, Bool.decide_and, Bool.and_eq_true, decide_eq_true_eq]
w i : Nat x : BitVec w ⊢ (decide (i < w) && (x.getLsbD (w - 1 - i) ^^ decide (w - 1 - i < w) && decide (∃ j, j < w - 1 - i ∧ x.getLsbD j = true))) = (decide (i < w) && x.getLsbD (w - 1 - i) ^^ decide (∃ j, j < w ∧ i < j ∧ j < w ∧ x.getLsbD (w - 1 - j) = true))
a66804a595b3aedc